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Efficient Sampling of Random Permutations

Jens Gustedt

INRIA Lorraine & LORIA, France

Abstract

We show how to uniformly distribute data at random (not to be confounded with
permutation routing) in two settings that are able to deal with massive data: coarse

grained parallelism and external memory. In contrast to previously known work
for parallel setups, our method is able to fulfill the three criteria of uniformity,
work-optimality and balance among the processors simultaneously. To guarantee
the uniformity we investigate the matrix of communication requests between the
processors. We show that its distribution is a generalization of the multivariate
hypergeometric distribution and we give algorithms to sample it efficiently in the
two settings.

Key words: random permutations, random shuffling, coarse grained parallelism,
external memory algorithms, uniformly generated communication matrix

1 Introduction and Overview

Random permutation 1 of data is a basic step in many computations. It is
used e.g

• to achieve a distribution of the data to avoid load imbalances in parallel and
distributed computing

• good generation of random samples to test algorithms and their implemen-
tations

• in statistical tests
• in computer games

to only name a few. Creating such permutations is relatively costly: to permute
a vector of long int’s, we observed an average cost per item of about 60 to

URL: http://www.loria.fr/ gustedt/ (Jens Gustedt).
1 Sometimes also call random shuffling, see Knuth (1981).
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100 clock cycles on commonly used architectures such as a 300 MHz Sparc or
an 800 MHz Pentium III. One issue that causes this relatively high cost is the
generation of (pseudo-)random numbers, but it is not the only one.

Procedure Shuffle(A, n) Sequential random permutation.

Input: A table A of n items.
Task: Permute the values in A at random
foreach i = 0, . . . , n − 1 do

Choose a random integer j with i < j < n uniformly at random
Swap the items A[i] and A[j]

Shuffle gives the classical algorithm to generate random permutations, see
Moses and Oakford (1963); Durstenfeld (1964) and also (Knuth, 1981, Sec. 3.4.2).
It obviously has a linear complexity, but it has the disadvantage that it ad-
dresses memory in an unpredictable way and thus causes a lot of cache misses.
It is easy to see that the expected number of misses is close to the total num-
ber of items. So even in a standard memory bound setting, the running time
of Shuffle is more or less proportional to the CPU-memory latency. In the
above tests this bottleneck amounts to about 33% (Sparc) and 80% (Pentium)
of the wall clock time. Applying this same algorithm to an external memory
context that is able to treat massive amounts of data in large files would be
completely infeasible.

Reducing the cost of such a time consuming subroutine is thus an issue, and
here we will present an approach to achieve this. First of all, our approach
is a parallel one, i.e uses several processors to sample a random permutation
in a parallel or distributed setting. Then afterwards we will extend it to the
sequential, IO-sensitive, framework.

When designing an alternative to the straightforward random generation of
permutations, i.e to Shuffle, we have to ensure that we do not loose upon
its quality: assuming that we have a “real” generator of random numbers we
want each possible permutation to occur equally likely.

Our goal is to describe a realistic framework for the generation of random
permutations. As a real suitable family of models of parallel computation we
use a coarse grained setting that was derived from BSP, see Valiant (1990),
which is called PRO, see Gebremedhin et al. (2002). PRO allows the design
and analysis of scalable and resource-optimal algorithms. It is based on

• relative optimality compared to a fixed sequential algorithm as an integral
part of the model;

• measuring the quality of the parallel algorithm according to its granularity,
that is the relation between p and n.
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In particular, coarseness here means p ≤ √
n, for p the number of processors

and n the number of items. Later we will see how this
√

-restriction translates
for the external IO setting.

PRO only considers algorithms that are both asymptotically work- and space-
optimal when compared to the sequential one. This restrictive choice among
possible parallel algorithms is made to ensure that the parallel algorithm is
potentially useful. For real life implementations that are not work-optimal it
is generally not even possible to have a speed up compared to a sequential
program. So the use of such an algorithm (and an investment in a parallel
machine) would not make much sense. As a consequence of this enforced opti-
mality, a PRO-algorithm always yields linear speed-up relative to a reference
sequential algorithm.

When respecting these prerequisites, synchronization cost between supersteps
and communication latency between the processors such as they are measured
in the BSP model are not an issue; these costs are dominated by bandwidth
requirements, see Essäıdi and Gustedt (2006). So in addition, PRO only mea-
sures the coarse grained communication cost in terms of the bandwidth of the
considered point-to-point interconnection network.

The use of such models is in contrast to the assumptions that are made by
Czumaj et al. (1998) (which solve the problem by simulating some fine grained
sorting network) and algorithms developed in the PRAM setting (see e.g Reif
(1985); Hagerup (1991)). Since there the underlying models are fine grained
and thus require a close synchronization between the processors for the treat-
ment of each individual data item, they are not well suited for today’s coarse
grained architectures. Please also note, that the so-called permutation routing
problem (see e.g Kruskal et al. (1990)) as it was intensively studied for the
BSP and similar models is very different from our problem here. There one
tries to optimize the communication of the messages during one superstep, the
so-called h-relation.

Goodrich (1997) proposed an algorithm for our problem on the BSP archi-
tecture. Its main disadvantage is that it needs sorting of keys in the range of
[0 . . . n2] to achieve its goal. If this is done with comparison based sorting it
requires an overhead per item of log n and is thus not work optimal. When
using involved radix sorting techniques instead, potential load imbalance be-
tween the processors becomes a problem.

Guérin Lassous and Thierry (2000) investigated several other algorithms to
sample random permutations in a coarse grained setting. They found none
that simultaneously fulfills the following criteria:

uniformity: Provided we have a perfect generator of randomness, all permu-
tations must appear equally likely.
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work-optimality: To be suitable for useful implementations, the total work
(including communication and generation of random numbers) must at least
asymptotically be the same as in a sequential setting.

balance: During the course of the algorithm none of the processors must be
overloaded with work or data.

Especially uniformity and balance seem to work against each other. A typical
trick to obtain balance for an algorithm that has some (small) probability of
imbalance is to start-over whenever such an imbalance is detected. Usually this
works well on the work-optimality when probabilities are small enough, and
only increases the average running time a bit. But this also means that certain
runs that lead to valid permutations are rejected. For such a procedure one
then would have to guarantee not only that all permutations can be obtained,
but that they all would be drawn with equal probability.

Another trick to avoid imbalance and non-uniformity is to iterate. If we have a
method that is non-uniform but balanced we can iterate it to obtain a uniform
distribution. Usually this needs a logarithmic number of iterations and so the
total work is a log-factor away from optimality.

The goal of this paper is to close this gap by proving the following theorem:

Theorem 1 There is a PRO-algorithm for computing a uniform random per-
mutation that has an optimal grain compared to Shuffle: a network of p
homogeneous processors may uniformly sample a random permutation of size
n = p · m, p ≤ m. The usage of the following resources is O(m) per processor
and thus O(n) in total: memory, bandwidth, computation time, and random
numbers.

Here we account for four different resources that to our opinion are the most
significant in this setting: the use of random access memory, interprocessor
communication bandwidth, general computation time and draws of random
numbers. In particular, we think that it is important to distinguish the later
two, since the quality of the solution to our problem inherently depends on
the quality of the random generator that is used. Whereas pseudo-random
generators could be accounted for by a constant number of operations, real
devices of randomness (such as linux’ /dev/urandom) tend to be much slower.
So it is important to account for their cost separately.

The tools that we develop also allow us to go beyond that
√

-bound and
formulate an IO-optimal algorithm for the problem.

Theorem 2 There is an IO-efficient algorithm for computing a uniform ran-
dom permutation: a machine with IO-block size B and an internal memory of
m IO-blocks may uniformly sample a random permutation of N = nB items
with O(n logm n) IO-operations.

4



The organization of this paper is as follows. Section 2 introduces the idea
of separating the sampling of a p × p communication matrix between the
processors and the generation of the permutation itself. Section 3 discusses
the probability distribution of such communication matrices. Sections 4 and
5 then provide sequential and parallel algorithms to sample such a matrix.
Section 6 gives the extension to the external IO setting and Section 7 concludes
by briefly discussing some experiments and tests.

2 Simulating random permutations by the number of elements dis-
tributed between the processors

Given a vector v of size n our goal is to sample a random permutation v′ of
v. We assume that v is distributed with mi elements on processor Pi, i.e that

n =
∑

i=1,...,p

mi, (1)

and that the newly permuted vector v′ should be distributed alike. To be able
to better describe the distribution and to give algorithms to simulate it, it will
be convenient to generalize the problem: we assume that we have p source-
chunks 2 Ci that send the data to p′ target-chunks C ′

j such that the chunk
sizes of the source array (i.e the array before performing the permutation) are
m1, . . . ,mp and of the target array are m′

1, . . . ,m
′
p′ .

Problem 1 (Random Permutation with chunks)

Input: Vector v of n items in total that is distributed on p source processors
Pi, i = 1, . . . , p, such that processor Pi holds a chunk Ci of mi elements; target
vector v′ of the same length n such that target processor P ′

j, j = 1, . . . , p′ holds
a chunk B′

j of m′
j items.

Task: Redistribute the elements of v into v′ such that every permutation is
equally likely.

We achieve our goal by first computing a matrix A = (aij) that accounts
for the amount of communication from chunk Ci to chunk C ′

j. A is not an
arbitrary matrix but has special properties. We have

2 We refer to chunks as large contiguous parts of the data. This is to distinguish
them from blocks which will be used to describe minimal units of communication in
the external IO setting.
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(b) with different chunk sizes and groups
of processors

Fig. 1. Permutation from 6 source chunks to 6 target chunks

mi =
∑

j=1,p′

ai,j, for all i = 1, . . . , p (2)

m′
j =

∑

i=1,p

ai,j, for all j = 1, . . . , p′. (3)

A permutation can then be realized by using the matrix A to send out aij

items between all pairs of processors. As we aim for a random permutation we
must ensure that

• the individual items that are sent from Pi to P ′
j are chosen arbitrarily and

that
• all items that are received on P ′

j are mixed randomly.

This can easily be achieved by two local random permutations, one before the
communication and the other thereafter, see Procedure ParPerm.

Obviously, all matrices with properties (2) and (3) may arise as such a com-
munication matrix: it is easy to set up a permutation that exactly achieves
such a matrix. So we easily get the following proposition.

Proposition 1 Procedure ParPerm is correct. Besides the computation of the
matrix A the algorithm is balanced and asymptotically work-optimal.

Proof: A particular matrix might look unbalanced and send quite different
amounts of items between different pairs of processors. Equations (2) and (3)
guarantee that the amount that each processor sends and receives stays under
control. So if the send and receive operations are done without blocking, the
communication phase stays balanced. ✷
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Procedure ParPerm(Ci, (mi), C
′
i, (m

′
i)): Parallel Random Permutation

Input: Each source processor Pi for i = 1, . . . , p has a chunk Ci of mi input
elements and each target processor P ′

j has a chunk C ′
i of length m′

i to
hold the result.

Output: The elements in all Ci are globally permuted into the vectors C ′
i

such that any permutation appears equally likely.
foreach Pi, i = 1, . . . , p do permute Ci locally in parallel
Choose A = (ai,j) according to (2) and (3)
foreach Pi, i = 1, . . . , p do

for j = 1, . . . , p′ do send ai,j items to processor P ′
j

foreach P ′
j, j = 1, . . . , p′ do

for i = 1, . . . , p do receive ai,j items from processor Pi

foreach P ′
j, j = 1, . . . , p′ do permute C ′

i locally in parallel

If we want the distribution of the resulting permutations to be uniform not
all possible matrices A occur with the same probability. This can already be
observed for the permutation of 4 items 12|34 that we separate into to two
source and target chunks of size two, each:

12|34 12|43 13|24 13|42 14|23 14|32 21|34 21|43 23|14 23|41 24|13 24|31

2 0 2 0 1 1 1 1 1 1 1 1 2 0 2 0 1 1 1 1 1 1 1 1

0 2 0 2 1 1 1 1 1 1 1 1 0 2 0 2 1 1 1 1 1 1 1 1

31|24 31|42 32|14 32|41 34|12 34|21 41|23 41|32 42|13 42|31 43|12 43|21

1 1 1 1 1 1 1 1 0 2 0 2 1 1 1 1 1 1 1 1 0 2 0 2

1 1 1 1 1 1 1 1 2 0 2 0 1 1 1 1 1 1 1 1 2 0 2 0

We observe that of the three possible matrices, two occur only four times each
whereas the third occurs 16 times. For such a random permutation of 4 items
it is unlikely (probability 1/6) that the items of each chunk stay in the same.
And for the general problem the (unique) diagonal matrix that describes the
event that all chunks keep their items occurs with a very small probability,
only.

The distribution of the matrix itself under these assumptions is not trivial
and in particular the different aij are not independent. In the example, each
of the occurring matrices can in fact be determined from the upper left entry,
say. In an important part of this paper we will investigate how to get our
hand on these matrices and how to generate them randomly with the desired
distribution. The generation has to be done in such a way that it does not
dominate the running time of Procedure ParPerm.

Problem 2 (Random Communication Matrix)

Input: Vectors mi and m′
i as for Problem 1.

Output: A random choice of communication matrix A with properties (2) and
(3) such that all matrices occur with the probability which is induced by Prob-
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lem 1, i.e by first choosing a random permutation and computing its commu-
nication matrix a posteriori.

Proposition 2 If the communication matrix A in Procedure ParPerm is cho-
sen according to Problem 2 it provides a solution to Problem 1.

Proof: If we fix some communication matrix A, then the local permutations
before and after the communication ensure that all permutations that realize
A are generated with the same probability. Since A in turn is supposed to be
chosen with the right probability the correctness follows. ✷

In Sections 4 and 5 we will then give algorithms that will prove the following
theorem, and thus conclude the proof of Theorem 1.

Theorem 3

(1) There is a sequential algorithm that samples a matrix as described in
Problem 2 with linear cost, i.e O(p2).

(2) A network of p homogeneous processors may sample such a matrix such
that the usage of the following resources is O(p) per processor and thus
O(p2) in total: memory, computation time, random numbers and band-
width.

3 The probability distribution of A

We will see that the distribution of communication matrix A is closely related
to the so-called hypergeometric distribution h(t, w, b). This is the distribution
of an urn experiment Xt,w,b where we draw t balls out of w “white” and b
“black” balls and measure the outcome of the number of whites 3 . It has the
probability

P (Xt,w,b = k) =

(

w

k

)(

b

t−k

)

(

w+b

t

) (4)

The hypergeometric distribution can be sampled quite efficiently, see Stad-
lober and Zechner (1999); Zechner (1997); Zechner and Stadlober (1993). Its
computational cost is dominated by the calls to a random generator subrou-
tine. For the experiments that are described in Essäıdi and Gustedt (2006) the
amount of calls to the random generator (POSIX’ erand48 in our case) that
were issued by one call of h was less than 1.5 on average and strictly below 10
for the worst case.

3 The reader that is not familiar with these notions might refer to Siegrist (2001).
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Proposition 3 Each individual entry ai,j of communication matrix A = (ai,j)
obeys a hypergeometric distribution h(m′

j, mi, n−mi) where n =
∑

mi =
∑

m′
i.

Proof: The element ai,j reflects the number of elements that processor Pi sends
to processor Pj. We consider the elements on Ci as being “white”, w = mi,
and all the others as being “black”, b = n − w = n − mi and set t = m′

j. A

random permutation π chooses to send all
(

n

t

)

subsets of cardinality t with

equal probability to C ′
i. Among those t-subsets there are

(

w

k

)(

b

t−k

)

that have
exactly k white elements. ✷

The special case when the matrix is actually a row (or column) is also known
as the multivariate hypergeometric distribution, see e.g. Siegrist (2001) for the
terms.

The matrix A has another interesting property, namely that it is self-similar
to sums of submatrices.

Proposition 4 Let A be as above, 0 = i0 < i1 < · · · < iq = p and 0 = j0 <
j1 < · · · < jq′ = p′. Then the matrix

A = (ar,s) r=1,...,q
s=1,...,q′

for ar,s =
∑

ir−1<i≤ir
js−1<j≤js

ai,j

is distributed as for the problem with input chunks of size

mr =
∑

ir−1<i≤ir

mi and m
′
s =

∑

js−1<j≤js

m′
j.

Proof: This follows directly by the fact that we may join the input chunks Ci

and output chunks C ′
j according to the super-indices ir and js. ✷

In view of Proposition 4, Proposition 3 has an easy generalization.

Proposition 5 Let 0 = i0 < i1 < · · · < iq ≤ p and 0 = j0 < j1 < · · · < jq′ ≤
p′ and A = (ar,s) be as above. Then each ar,s is distributed with h(t, w, b) with

t = m
′
r,s (5)

w = mr,s (6)

b = n − mr,s (7)

Having identified the individual distribution for each entry of A is not sufficient
to efficiently draw samples for A. This can already be seen if we only consider
p = 2 as in the example of Section 2. Once we have chosen a1,1 = k, all the
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three other matrix entries are already determined by (2) and (3). Namely we
have

A|a1,1=k =







k m1 − k

m′
1 − k n − (m′

1 + m1) + k





 . (8)

So for this special case the rest of the matrix is already completely determined
by the first value and in general the same holds for the last column and row of
the matrix which are determined by the other columns and rows respectively.

In general we split our matrix at some index i1 into an upper and lower part
and describe the relative influence of the outcome in both parts by some
suitable conditional probability. All algorithms that we will present will be
based on this principle: first they will sample some (possibly multivariate)
hypergeometric distribution to describe the split of the problem and then
they will proceed to solve the two parts independently.

Proposition 6 Let A be as above, 0 = i0 < i1 < i2 = p, js = s for
s = 1, . . . , p′. Suppose (a1,s) as defined above has the outcome (αs) then the
conditional distribution for the upper half of matrix A is the same as for the
problem with input m1, . . . ,mi1 and α1, . . . , αp′.

Clearly an analogous claim holds for the outcome of the lower half and for a
split of the matrix into a left and right half.

4 Sequential algorithms to sample A

From Proposition 6 with choice of i1 = p − 1 we get a first sequential algo-
rithm that samples a communication matrix. We need the special case (Pro-
cedure MultVarHyp) where the matrix consists of exactly one row (or column)
(the multivariate hypergeometric distribution) as a subroutine for the general
one. A first algorithm to solve the general problem is then summarized as
Procedure SampMat.

For the multivariate hypergeometric distribution we want to place m items
into b bins. The b bins are grouped together into p chunks that hold b1, . . . , bp

bins. The goal is to know how many items will fall into each of the chunks.
The idea of MultVarHyp is to choose the number toRight among the m items
that will go to the part “on the right”, i.e. with indices greater than i. Observe
that αi = m − toRight is then distributed according to h(bi, b − m, b).

SampMat generalizes the main idea to sample a whole matrix. The matrix is
sampled row by row, starting with the last row. Instead of one value “toUp”
we now have to compute a vector of the number of items for each column.

10



Procedure MultVarHyp(p, b, m, (bi)): Sequential sampling of a multivariate
hypergeometric distribution

Input: Integers p, b and m, a vector (b1, . . . , bp) with m ≤ b =
∑

i=1,...,p bi.
Output: Random vector (αi) distributed with a multivariate hypergeometric

distribution with parameters m and (bi).
for i = 1, . . . , p do

Choose toRight according to h(b − bi, m, b − m)
Set αi = m − toRight, m = toRight and b = b − bi.

Procedure SampMat(p, (mi), p
′, (m′

i)): Sequential sampling of a communi-
cation matrix
Input: Integer p, vector of p values (mi), integer p′ and vector of p′ values

(m′
i).

Output: Random communication matrix (ai,j) such that all such matrices
appear with the probability corresponding to the number of
permutations that realize them.

for i = p, . . . , 1 do
split Choose vector (toUp1, . . . , toUpp′) according to a multivariate

hypergeometric distribution with parameters mi and (m′
1, . . . ,m

′
p′)

update for j = 1, . . . , p′ do
ai,j = m′

j − toUpj

m′
j = toUpj

Proposition 7 SampMat samples (ai,j) with O(p · p′) basic operations and
O(p · p′) samples of the hypergeometric distribution h.

Proof: For the correctness observe that the algorithm is a direct application
of Proposition 6.

For the complexity it is clear that each call to MultVarHyp in split costs O(p′).
Since update also goes in O(p′) and the loop is done p times this proves the
claim. ✷

To go a step towards a possible parallelization we give a recursive algorithm
for the same task, see Procedure RecMat. Observe that MultVarHyp could be
seen as an iterative variant of RecMat for the special choice of q = 1. The
recursive formulation also has the advantage that we may split the input for
the samples of the hypergeometric distribution more or less evenly.
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Procedure RecMat(p, (mi), p
′, (m′

j)): Recursive sampling of a communica-
tion matrix
Input: Integer p, vector of p values (mi), integer p′ and vector of p′ values

(m′
i).

Output: Random communication matrix (ai,j) such that all such matrices
appear with the probability corresponding to the number of
permutations that realize them.

if p < 2 then return (m′
j)j=1,...,p′ else

Choose an index 0 < q < p and set t =
∑

q≤i<p mi

Choose vector (toUpj) according to a multivariate hypergeometric
distribution with parameters t and (m′

j)
Set vector (toLoj) to (m′

j − toUpj)
Sample (ai,.)i=1,...,q−1 with RecMat(q, (mi), p

′, (toLo))
Sample (ai,.)i=q,...,p with RecMat(p − q, (mi+q), p

′, (toUp))

5 Parallel algorithms

We will derive our first parallel algorithm from RecMat by taking care of the
fact that we cannot assume that one of the processors may hold the whole com-
munication matrix. For the parallel algorithm we will focus on the symmetric
case where p = p′ is the number of processors and such that all processors
have the same local share M = n/p of the vector that will be permuted. The
reader may easily adapt this algorithm to the general situation.

Proposition 8 ParaMatLog is correct. The running time, communication cost
per processor and number of samples of the hypergeometric distribution h per
processor are Θ(p log p). The total work load, total communication and total
number of samples of h are Θ(p2 log p) each.

Proof: For the correctness observe that the while-loop iteratively divides the
processor range in halves r ≤ id < s. The main work of what would be a
recursive call in RecMat is always done by the “head” processor Pr. In each
iteration, Pr updates its local data and the new head Pq of the upper half of
the range receives the necessary data. So they are both able to perform the
computation in the next iteration correctly.

For the complexity observe that the while-loop is executed O(log p) times. ✷

Observe that this does not give us a work-optimal algorithm for sampling of
the matrix. We have a log p-factor both in the time and in the cost. But for
solving the permutation problem this matrix generation can already be useful.
The communication cost for the exchange of the data dominates the running
time as long as p log p < M = n/p ⇐⇒ p2 log p < n. So with ParaMatLog we
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Procedure ParaMatLog(p, id, M): Parallel sampling of a communication
matrix (with a log-factor in the total work)

Input: Total number of processors p, processor id with 1 ≤ id ≤ p and
value M .

Result: For each processor Pi a vector (βi) representing a row of the random
communication matrix (ai,j) such that all such matrices appear with
the probability corresponding to the number of permutations that
realize them.

if id = 1 then Initialize (βi) ≡ M
r = 1 and s = p + 1
while s − r > 1 do

q = ⌊(r + s)/2⌋
switch id do

case r:
t = (s − q)M
Choose vector (toUpi) according to a multivariate hypergeometric
distribution with parameters t and (βi)
Send (toUpi) to processor Pq

(βi) = (βi − toUpi)

case q: Receive (βi) from processor Pr

otherwise do nothing

if id ≤ q then r = q else s = q

are only a log-factor away from the optimal granularity of
√

n.

ParaMat avoids this extra log-factor. The difference between the two algo-
rithms is that here the matrix is not only sliced in one dimension. In alterna-
tion, they are split along both dimensions. This is controlled by variables ∆
and ∇ that are set to symbolic values ✷

✷ and ✷✷. Also the index computation
gets more involved, r, s and q now control the processor indices, whereas r✷✷,
s✷✷ and q✷✷ control the indices for the vertical split and r

✷
✷, s

✷
✷ and q

✷
✷ control

those for the horizontal split.

Proposition 9 ParaMat is correct. The running time, communication and
samples of the hypergeometric distribution h are Θ(p) per processor and Θ(p2)
in total.

Proof: The proof is analogous to that of Proposition 8. At the end of the
while-loop every processor is left with a sub-matrix that it has to sample.
The test of the while-loop guarantees that the size of this matrix is O(p).
This shows in particular that all processors only have to handle data of the
size of O(p).

For the complexity observe that the while-loop is still executed O(log p) times
but that the time for each iteration diminishes. In fact, the total size of both
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Procedure ParaMat(p, id, M): Cost-optimal parallel sampling of a commu-
nication matrix
Input: Total number of processors p, processor id with 1 ≤ id ≤ p and

value M .
Result: A vector representing a row of random communication matrix (ai,j)

such that all such matrices appear with the probability
corresponding to the number of permutations that realize them.

if id = 1 then Initialize (β✷✷

i ) and (β
✷
✷

i ) to M1

∆ = ✷✷ and ∇ = ✷
✷

Set r, r✷✷, r
✷
✷ to 1 and s, s✷✷, s

✷
✷ to p + 1

while s✷✷ − r✷✷ >
√

p or s
✷
✷ − r

✷
✷ >

√
p do2

q = ⌊(r + s)/2⌋
q∆ = ⌊(r∆ + s∆)/2⌋
switch id do

case r:
t =

∑

q∆≤i<s∆

β∆
i

foreach q∆ ≤ i < s∆ do Send β∆
i to processor Pq

for the range r∇ ≤ i < s∇ do
Choose vector (toDeltai) according to a multivariate

hypergeometric distribution with parameters t and (β∇
i )

foreach r∇ ≤ i < s∇ do
Send toDeltai to processor Pq

β∇
i = β∇

i − toDeltai

foreach q∆ ≤ i < s∆ do Send β∆
i to processor Pq

case q:
foreach q∆ ≤ i < s∆ do Receive β∆

i from Pr

foreach r∇ ≤ i < s∇ do Receive β∇
i from Pr

otherwise do nothing

if id < q then
r = q

r∆ = q∆

else
s = q

s∆ = q∆

Swap the values of ∆ and ∇
Sequentially sample the submatrix (ai,j) of the communication matrix with3

indices r✷✷ ≤ i < s✷✷ and r
✷
✷ ≤ j < s

✷
✷ according to the input vectors

(β✷✷

i )r✷✷≤i<s✷✷ and (β
✷
✷

i )r
✷
✷≤i<s

✷
✷
.

Redistribute the matrix such that each processor holds the row (aid,.)4
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ranges halves with every second iteration. So by a standard halving argument
the total time for the while-loops is O(p).

Sampling the submatrix (by Section 4) and the final data communication is
linear in p, so this concludes the proof. ✷

Proof of Theorem 1: It is straightforward to see that ParPerm when applied
to the case that m0 = · · · = mp−1 = m′

0 = · · · = m′
p−1 =

√
n has linear cost on

each processor for sampling the two local permutations and for sending and
receiving messages.

Theorem 3 now provides us with the necessary tool to sample the communi-
cation matrix. ParaMat samples matrices with the needed probability distri-
bution (giving correctness) and has a cost of O(p) per processor. Thus as long
as p ≤ n, ParaMat does not change the complexity of ParPerm, which stays
linear in n. So, in particular ParPerm is a PRO algorithm with an optimal
grain compared to the sequential reference algorithm Shuffle. ✷

6 IO efficiency

In view of the idea to use efficient coarse grained algorithms also for the context
of external memory, see Cormen and Goodrich (1996); Dehne et al. (1997),
our ideas are not only useful for parallel algorithms but can also be used in a
setting which is concerned about IO, see also Gustedt (2003). In this section
we will show how our algorithms performs in view of IO considerations.

The now classical IO model, see Vitter (2001), captures the constraints that
modern architectures impose when handling massive data. Its main character-
istics are that it supposes that accessible memory is divided into a small and
nearby part of size M , called internal memory, that is directly accessible and
a large and distant part of size N , called external memory. Usually this model
is imagined as handling RAM as internal memory and disk space as external
memory, but may also represent any two consecutive levels of the memory
hierarchy.

IO to the external memory is done block by block, with blocks of size B. The
complexity of an algorithm is then expressed in the amount of block-IO of the
algorithm. 4

The average-case and worst-case number of I/Os required for permuting N

4 Generally the model also includes the case that the external memory is split in
D independent disks. Here we will assume that D = 1.
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data items, see Vitter and Aggarwal (1988), is essentially the same as for
sorting, namely

Θ (min {N, n · logm n}) , (9)

where m = M
B

and n = N
B

are the number of blocks of the internal memory
and the data, respectively.

A parallel coarse grained algorithm in PRO immediately translates into an
algorithm for external memory: we just have to divide the data into chunks to
which we attribute a ‘virtual’ processor. We then simulate the different pro-
cessors in a round robin fashion, one superstep after the other. Interprocessor
communication then translates into IO on the external medium. It has been
shown in Gustedt (2003) that the constraints of PRO guarantee that the IO
in such a setting behaves nicely: the write operations accumulate large enough
chunks of data such that the number of block IOs is proportional to the overall
communication of the PRO algorithm accounted in blocks.

At a first glance this seems to show that we need less block IO, namely linear,
than the bound in (9). But as we have that p is at most

√
N we also have that

M has to be at least
√

N . So in fact

1 < logm n =
log N − log B

log M − log B
<

log N

log M
<

log N

log
√

N
= 2. (10)

Observe that this bound of 2 is independent of the block size B.

A straightforward transcription of ParPerm is given in Procedure IOPermEq.

Procedure IOPermEq(F, F ′, N): Sequential Random Permutation with
equal chunk sizes

Input: File-pointer F of N items.
Output: A random permutation of the items written in file-pointer F ′

Split the input and output file into p =
√

N chunks Ci respectively C ′
i of

approximately equal size
Choose A = (ai,j) according to (2) and (3)
foreach i = 1, . . . , p do

Load Ci into internal memory
Permute Ci

for j = 1, . . . , p do
Write ai,j items from Ci to C ′

j.

foreach j = 1, . . . , p do
Load C ′

j into internal memory
Permute C ′

j

Write C ′
j back to the external memory
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Proposition 10 If for the sizes N and M of the external and internal mem-
ory

√
N ≤ M ≤ N/2, Procedure IOPermEq performs with Θ(N/B) IO opera-

tions.

Proof: It is easy to see that the choice of the matrix A can be done efficiently
with n = N/B IO operations, so the claim follows directly. ✷

This algorithm is not yet suitable for a generalization where the respective
sizes N and M are arbitrary. The main problem here is that the data is
permuted twice in internal memory, so if we would simply apply recursion we
would increase the complexity. Another issue is then the computation of the
matrix A. To avoid unnecessary IO operations it will be better to sample it
incrementally, line by line, as we will use it.

IOPerm is such a procedure. It uses different sizes for the chunks on the ‘input’
and ‘output’ side. The idea is to choose the chunks on the input side small,
such that each chunk fit into internal memory at once. Then we may permute
these input chunks directly without going into recursion. On the output side,
the chunks are large but few, so few that at any time we may hold one IO-block
from each output chunk in internal memory.

The following propostion states that in fact IOPerm is an algorithm as claimed
by Theorem 2, and thus the proof of the proposition concludes the proof of
the theorem, too.

Proposition 11 If m the number of IO-blocks in internal memory is at least
2, Procedure IOPerm performs with O(n logm n) IO operations.

Proof: For simplicity, we will first assume that m, B ≥ 4 and briefly point out
below how this restriction may be relaxed. First, we show that all operations
of the procedure can be performed in internal memory. For the if -part this is
direct, since here F is small enough to fit into internal memory.

For the else-part we first observe that for any of the output chunks C ′′
i we

need at most one IO-block in internal memory at a time: the write operations
in write may write IO-blocks as they are filled completely to the file and only
have to keep one fractional part per chunk between iterations. So the number
of blocks needed for this are

p′ = n/t′ ≤ nm

2n
= m/2. (11)

The two vectors ai,. and toLo have a length of t′ words, each. Thus each of
them occupies p′ < m/2 machine words and both together m/B ≤ m/4 blocks.
Finally, each of the Ci has less than m/4 blocks and so in total we use at most
m/2 + m/4 + m/4 = m blocks simultaneously.
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Procedure IOPerm(F, F ′, N, w, B, m) IO-optimal Random Permutation

Input: File-pointers F and F ′ to N items, the number w of machine words
per item, the IO-block size B in machine words, and the size of the
internal memory m in number of IO-blocks.

Output: A random permutation of the items written to file-pointer F ′.
Let n = ⌈Nw/B⌉ be the number of IO-blocks in F
if n ≤ m then

Load F into internal memory
Permute F
Write F to F ′

else
Create an auxiliary file F ′′ for N items.
Let t = max{2, ⌊m/4⌋}. Split the input file into p chunks Ci of t
IO-blocks.
Let t′ = min{⌈n/2⌉, ⌈2n/m⌉}. Split F ′ and F ′′ into p′ chunks C ′

j and C ′′
i

of t′ IO-blocks.
Initialize a vector toLo with the p′ sizes of the C ′

i.
foreach i = 1, . . . , p do

Sample a row ai,. of the communication matrix and update toLo.
Load Ci into internal memory.
Permute Ci.
for j = 1, . . . , p do

write Write ai,j items from Ci to C ′′
j .

foreach j = 1, . . . , p′ do
IOPerm(C ′′

j , C ′
j, wt′, w, B, m)

Delete F ′′.

For the IO-complexity of the procedure itself, not accounting for recursion,
note that we read each input block exactly once. Output blocks that are en-
tirely part of a chunk are also only written once when they are full. There are
at most 2p′ < m/2 < n/2 partial blocks at the beginning or end of the output
chunks, so the IO is O(n).

For the recursion, the choice of t′ ensures that the chunks are always split
on IO-block boundaries and so we don’t have to consider partial blocks for
the computation of the problems sizes that go into recursion. So the total
amount of IO-blocks that are handled is n for each level of recursion. Since
the recursion level is easily seen to be O(logm n), the claim for the case that
m, B ≥ 4 follows.

For B < 4 we have to ensure that the parts of the matrix that we store at a
given time are not too large. This can be done by reading toLo into internal
memory and using MultVarHyp to sample ai,. and update toLo. Then ai,. and
toLo can be written to external memory and the parts of ai,. that are needed
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afterwards can be read as we need it. All these reads and writes are at most
O(p′) = O(m/4) = O(m) IO-operations.

In the case of 2 ≤ m < 4 we have that t = 1 and p′ = 2. It is easy to
see that then each of the p = n iterations can be done with 3 read and 4
write operations. So the number of IOs is again O(n) when not accounting for
recursive calls. The recursion depth is log2 n ≤ log2m·logm n ≤ log24·logm n =
2 logm n, which proves the claim. ✷

7 Conclusion and Outlook

In the present paper we presented algorithms that for the first time allow
for the efficient generation of randomized permutations that simultaneously
fulfill the three criteria of uniformity, work-optimality and balance. Only the
combination of these three properties guarantees the usefulness of such an
algorithm in a practical setting:

• only a uniform distribution gives sufficient quality on the randomness of the
permutations such that they allow for unbiased simulations and fair games

• only work-optimality and balance together guarantee a linear speed-up such
that the running time of applications is not dominated by the generation of
random input samples.

The main effort that we had to invest in this paper was to provide a subroutine
needed in Procedure ParPerm: it uniformly samples the communication matrix,
the matrix that describes the amount of items that each pair of processors has
to exchange.

In fact, the algorithms as presented here translate to straightforward imple-
mentations. Part of the algorithms (sequential sampling of the matrix, only)
were implemented and then tested on different platforms (Sun Sparc, Intel
Pentium Linux, SGI IRIX) with up to 128 processors and 5 billion items.
The framework for the implementation was SSCRAP (now integrated into
parXXL), see Essäıdi et al. (2002); Gustedt et al. (2006), our environment
for coarse grained algorithms. To our complete satisfaction, this generation
of permutations is now a solid basis for randomized performance tests and
benchmarks of the library.

The overhead due to the parallelization over the simple sequential algorithm
is a factor between 2 and 3 as one would expect: we have to perform two local
permutations and the communication between the processors. Therefore the
absolute efficiency of a parallel implementation of algorithm will at most be
between 30 and 50%.
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The tests showed that the main limitation for Procedure ParPerm when run on
large data sets is the communication phase, even when executed on a shared
memory machine. On the other hand, for smaller data sets, the computation
of the matrix might be a bottleneck. So in situations where medium sized
permutations are needed repeatedly a parallel implementation of the matrix
sampling will be helpful.

SSCRAP also allows for the efficient simulation of parallel algorithms in an ex-
ternal memory setting. Tests in such a setting with the algorithms as presented
in this paper have been reported in Gustedt (2003).
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