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ABSTRACT
This paper presents a study of the model of triple BAM by
[11] which is an improved variation of the original BAM
model by [7]. This class of model aims at integrating differ-
ent sensory inputs in order to memorize a unified and dis-
tributed representation. An experimental evaluation of the
model is presented that underlines its limitations in terms
of noise robustness and learning capacities. A new model is
presented in order to overcome those initial limitations by
introducing a new online learning algorithm adapted from
the PRLAB initial algorithm that improve both noise ro-
bustness and learning capacities. Finally, model proper-
ties and limitations are considered and discussed within the
context of multi-modal integration and brain modeling.
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1 Introduction

Figure 1. Physiological vue to the multisensorial integra-
tion.

The neuromimetism, or connexionnism, is the study
of the networks of artificial neurons. The origin of this ap-
proach takes as a starting point the cerebral mechanisms in
order to develop new paradigms of computation [3].

This work describes an approach of the phenomenon
of multimodal integration. Indeed, understanding and con-
trol these mechanisms may provide at computer scientists
news tools and algorithms to process the heterogeneous in-
puts signals of their biological inspired models.

To study this phenomenon, we take as a starting point
the neuro-physiological definition of the multimodal in-

tegration. The results of the electrophysiological studies
show that the multimodal integration is built by the con-
vergence of the sensory surfaces in a multimodal common
site [1]. These studies proposed a general outline (Figure 1)
in which the interaction between the zone of multimodal
convergence and the unimodals zones would be at the base
of the integration [11].

Our work focus on the algorithmic of this interac-
tion between multimodals areas and unimodals areas and
on the learning algorithmic and the topology of the integra-
tion zone, which is commonly named associative memory.

2 Associative memories

The memory is a process of storage and exploitation of a
knowledge previously acquired, this process takes place on
the basis of a modification of the properties of a physical
support. In terms of computer sciences simulation, we may
use two different techniques:

1. data-processing approach: an access by address,
sequential and localist with a static representation

2. connectionist approach: access by contents, parallel
and distributed with a dynamic representation.

An associative memory is usually a model which
stores a link between a specific output and a specific input,
in order to recall the output when the input is presented. An
associative memory which associates inputs to themselves
is called an auto-associative memory whereas a memory
which produces outputs different from the inputs is called
hetero-associative memory.
The first work seeking to model the associative memory
were primarily interested in its autoassociative properties
(like the Hopfield and Kohonen models) [3]. On the other
hand, only few models of hetero-associative memories ex-
ist.
The work presented in this paper comes from the model of
E.Reynaud, primarily inspired by the original model pre-
sented by B.Kosko [6][7].



The Kosko Model The BAM’s network of Kosko [7] is
a model of hetero-associative memory. This model spe-
cializes the auto-associative model of Hopfield in order to
associate different inputs. The BAM’s network is made up
of two layers of neurons of different sizes. Each layer sim-
ulates a different input of the network. The layers are com-
pletely inter-connected, and the weights of the connexions
are symmetrical, in a bidirectional way (Figure 2).

Figure 2. The hetero-associative network (BAM) of Kosko.

When a couple of inputs is presented to the network,
the information (the activation of each layer) is reverber-
ated (phase of relaxation) between the two layers of neu-
rons until a state of balance is reached. The weights of the
connections of this model are learnt according to the rule
of Hebb [3].
One of the principal limits of the BAM is its low storage
capacity. This limit is due to the rule of training and the
symmetry of connections. In [13], Wasseman shows that
the storage capacity of the BAM, when N is the size of the
smallest layer, is (N/(2.log2(N))).
Another problem of the BAM, inherited from the hopfield
model, is the catastrophic interference.
In order to improve the BAM properties, several meth-
ods appeared which seek to increase its storage capacity.
These methods explore two main ways: the improvement
of the architecture [4][5][12][14][2] and the developement
of news learning algorithms [8][15][12][13][16].
Among these algorithmic solutions, E.Reynaud was mainly
interested by the method of pseudo-relaxation PRLAB
(Pseudo Relaxation Learning Algorithme for BAM) of Oh
and Kothari [8].

The Oh and Kothari PRLAB algorithm. The PRLAB
algorithm, from Oh and Kothari, is an iterative algorithm
which converges with a finished number of steps. This
algorithm is based on a variation of the method of relax-
ation, inspired from a mathematical technique of resolution
of system of linear inequations.
According to Oh and Kothari [8], PRLAB provides several
advantages, it exploits the maximum capacity of storage of
the BAM, it provides a perfect recall for N learned pairs,
with N neurons in each layer of the BAM, and a storage
of the almost orthogonal examples. Moreover PRLAB is
stable and converges quickly.

Figure 3. The BAM triple model of E.Reynaud. This model
is build with two inputs layers and an associative layer (Z).

The E.Reynaud Model In order to simulate multisenso-
rial integration, E Reynaud -in is Phd Thesis [11]- proposes
a new adaptation of the BAM model of Kosko. In her
model, E.Reynaud adds an associative layer to the original
BAM model, this layer is added between the two different
inputs layers (Figure 3). This associative layer (Z) con-
nects the two perceptive layers (X and Y). The connections
between the associative layer and the perceptive layers are
bidirectional and asymmetric. The learning algorithm is
based on PRLAB. The recall of the associated pairs is ini-
tiate by the activation of the perceptive layers.
This model, called triple BAM, is an connectionist alter-
native solution to store associations of inputs patterns. In
addition to the storage, E.Reynaud wishes to integrate the
inputs in the associative layer, the pattern matching learnt
in the associative layer can be regarded as a linking code of
the perceptions.

Figure 4. The ten matching set of the test data base.

To evaluate the properties and the capacities, in terms
of learning and generalization, of this new model of BAM,
we have used the data base of E Reynaud. This data base
consists of images of letters and images of numbers (Fig-
ure 4): the letters are encoded by the perceptive layer X out
of 256 neurons, and the numbers by the perceptive layer Y
on 225 neurons.
To initiate the learning, the pattern presented at the associa-
tive layer (Z in the figure) is a random pattern, which has
to be a discriminant pattern. In our experimental network,
this pattern is encoded on 150 neurons.

Conclusions of our experimentations After our experi-
ments, we isolated some problems which penalize the per-
formances and the robustness of the triple BAM model:

• The initialization of the associative layer acts upon
the noise robustness of the triple BAM.

• The order of presentation of the matching patterns
acts on the learning.



Moreover, this model presents two main limits:

• The Oh and Kothari algorithm is a batch learning
algorithm, it is impossible to make a dynamical
learning of a new pattern matching (on-line learning).

• The triple BAM has low performances in terms of
recalls with the lack of one modality (perception).

The goal of this work is to find solutions to solve these dif-
ferent limits in order to approach the phenomenon of mul-
timodal integration. We particularly wish to focus on the
distributed character of computations, on the results and
the robustness of this hetero-associative memory.
The next sections of this paper presents three new algo-
rithms to improve the Bam of E.Reynaud and which pre-
serve the main properties of her model: the architecture
and the learning algorithm of the triple BAM.

3 The multiassociative BAM

The linking code initialization The learning algorithm
of the triple BAM needs a discriminant initialization of the
associative layer to converge, a discriminant linking code.
Moreover, our studies show a strong influence of this ini-
tialization on the dynamic of the network:

• Random and discriminant initialization make the
network noise sensitive.

• An initialization based on the compression of the
inputs makes best performances for the dynamic. But
this method doesn’t assure the discrimination and so
this doesn’t assure the convergence of the learning.

We provide here a solution to assure the convergence of
the learning and the noise robustness of the network. This
solution uses affectation areas to initialize the associative
layer (Figure 5). With this initialization method, for a N

Figure 5. Associative layer initialization with the affecta-
tion areas method.

neurons associative layer, and an one neuron length affec-
tation area, we may affect N different linking codes. And
so, it is possible to learn N different matching.
This method assures a hamming distance higher than two
times the length of the affectation areas. And each linking
code is different, so it assures the convergence of the learn-
ing.
On the other hand, we lost the distributed aspect of the cod-
ing of the associative layer.

The architecture of the multiassociative BAM The
multiassociative BAM is an adaptation of the triple BAM.
The main evolutions are:

• The associative layer is initialized with the affectation
areas method.

• The order of presentation of the matching patterns is
random.

Figure 6. The architecture of the multiassociative BAM

In terms of architecture, the multiassociative BAM is
composed with two different kinds of layers:

• One input layer per perception (U1, ..., Un).
• The multimodal associative layer (M).

The learning algorithm is issue to the PRLAB algorithm of
the triple BAM model.

Evaluation of the affectation areas method. In this sec-
tion we evaluate the influence of the initialization of the
associative layer, and more particularly, the results of the
affectation areas method. To do this, we made the experi-
ments on a model with two perceptives layers : the first (X)
contains 256 neurons and the second (Y ) 225 neurons. The
multimodal associative layer (Z) contains 150 neurons.

Figure 7. The error rate for the recall of pattern matching.

The results (figure 7) show that the new method for
initialization, by the use of affectation areas, improves the
noise robustness of our network. Indeed, if the method of
compression is better than affectation areas, in terms of the
noise robustness, the compression does not assure the con-
vergence of the learning. On the other hand, the method of
random initialization, which assures convergence, is worse
than affectation areas in terms of the noise robustness.



The influence of the random pulling of the inputs. To
avoid results dependent on a specific data base, we use a
50 patterns matching data base. Each pattern of this base
is coded on 50 neurons, built with +1 and -1 randomly
distributed on the neurons. Our multiassociative Bam is
built with two perceptive layers, with 50 neurons each, and
an 50 neurons associative layer.

We want to study the learning and recall abilities of
our multiassociative BAM when the examples used are ran-
domly selected. To do that, our model has learnt an increas-
ing number of random patterns (from 10 to 50 patterns).
And, for each step, we have calculated the error rate of the
recall on the perceptive layers. And, for each step, we have
calculated the error rate of the recall on the perceptive lay-
ers, after convergence.

Figure 8. Error rate for the recall

Figure 8 shows the results after 100 experiments. The
random pulling of the inputs strongly improve the learning
performances of the triple BAM (the error rates are lower
than 0.5%).

The noise robustness The recall capacities, from noisy
data, are important properties from the associative memo-
ries. We measure here the error rates, in terms of recall in
the perceptive layers, when one input is noised (X ) and then
when both (X and Y ) are noised.

Figure 9. Recall error rate with noisy data.

Figure 9 shows the results after 100 experiments. We
may conclude that our model is robust in terms of noisy
data. The recall error rate stays lower than 10% even for
30% noised pattern.

Recall with missing data. We evaluate here the capacity
of recall with missing data of the multiassociative BAM.
We have tested the recall of a matching pattern when one
input is missing. When a white pattern replace the missing
input, as shown in figure 10, the recall error rate is higher
than 11%.

Figure 10. Example of a recall with a missing input, re-
placed by a white pattern.

Nevertheless, the choice of the algorithmic represen-
tation of the missing pattern is problematic. This repre-
sentation leads to present one pattern, same if it is totally
white, to the perceptive layer, this is not really one simula-
tion of a missing pattern.

Conclusions for multiassociative BAM. To develop the
multiassociative BAM we have made some modifications
on the triple BAM. We have modified the initialisation of
the associative layer, the adaptation of this associative layer
and the draw of the examples during the learning phase.

These modifications really improve the noisy robust-
ness and the recall capacities of the original triple BAM
model.

Nevertheless, the learning algorithm of the multi-
assiciative BAM is the PRLAB algorithm of Oh and
Kothari [8]. This algorithm, which improves the storage
capacities of the BAM models, is off-line by design. The
PRLAB algorithm, which is used in our model, needs to
know all the example corpus to begin the learning. It is
currently impossible to learn new perceptions dynamically,
and to have a network which adapts its weights during its
interactions with its environment.

4 The on-line multiassociative BAM.

Figure 11. The on-line multiassociative BAM learning al-
gorithm. When a new pattern matching, (B-2) here,is pre-
sented to the network and is not recognized (network’s re-
laxation doesn’t converges on an affectation area). The net-
work activates each its stored affection areas, here only one
affectation area, this activation recalls the learning pattern
matching, here (A-1). (B-2) is not learned, it is not close to
a learning pattern matching then the network creates a new
affectation area for this pattern matching.

To approach biological reality, and with the Cortex
team’s perspectives in terms of autonomous robotics, we
are interested to develop models which may learn dynami-
cally (on-line algorithms). To implement this kind of learn-
ing, we may decide on a compromise between adaptation



and stability. The network may forgot some already learned
data, with too much adaptation or it may be unable to learn
the new data, with too much stability.
As we saw, the PRLAB learning algorithm doesn’t allow
the on-line learning. To provide on-line learning property
to our network, we need to adapt PRLAB to define a new
learning algorithm.
We propose a new method based on the stable states of the
network. The stable states are the states of the network af-
ter it has converged for a pattern matching. For each new
pattern, or pattern matching, the network tests all its stable
states and decide if the new input must be learnt.
The study of the stable states is based on the inverse recall.
After the learning of a pattern, we store the state of the as-
sociative memory which is associate to this pattern. With
the affectation areas, this step consists of the storage of the
affectation area concerned by this input pattern (Figure 5).

When a new pattern matching is presented to the net-
work, the on-line multiassociative BAM activates the as-
sociative layer with each stable state stored. After relax-
ation, the perceptive layers are activated. Our algorithm
calculates distance between these activities, which repre-
sents patterns already learnt, and the new inputs. If this
distance is sufficient, the network learns this new pattern in
a new affectation area (Figure 11).
Learning a new pattern consists on the store of the new
pattern (the sum of the perceptive inputs) with the patterns
already learned, then we use PRLAB algorithm with the
complete corpus of the patterns stored.
This method allows to not forget the patterns previously
learned, because they are all included in the news PRLAB
learning process.

Experiments with the on-line multiassociative BAM.
We have studied the properties of this new learning algo-
rithm for the multiassociative BAM. This study concerns
the learning capacities of the algorithm and the recall ca-
pacities of the network.
We tested our model with a 50 patterns data base. We
used a network with two perceptive layers, with 50 neurons
each. The associative layer contains 50 neurons too. The
on-line multiassociative BAM learnt an increasing number
of random patterns. For the tests, the model learnt an in-
creasing number of random patterns. The affectation areas
length of the on-line multiassociative BAM is set to 5 neu-
rons for the 10 patterns matching tests, and it to 2 neurons
for the 20 patterns matching tests. The results obtained af-
ter 100 experiments are shown in table 1.

10 patterns learnt 20 patterns learnt
mean standart mean standart

deviation deviation
epochs 3.00 0.00 5.40 1.01
’reverberations’ 1.11 0.17 1.31 0.22
Recall error rate 0.30% 0.64% 1.30% 1.45%

Table 1. learning results with the on-line multiassociative
BAM (PRLAB parameters used: λ = 1.9 and ξ = 50).

These results show that the model may learn 20 pat-

terns matching with a recall error rate of 1.30 %. These ex-
periments have also shown the limits of our model. Some
experiments with more than 25 patterns matching as inputs,
with the affectation areas set to 1 neuron, the learning fails.
Our results show that the storage capacity of the model is
lower than 0.5 ∗ N different inputs, when the associative
layer contains N neurons.

Conclusions for the on-line multiassociative BAM. The
multiassociociative BAM, with the on-line adaptation of
the PRLAB algorithm, may adapt his configuration (its
weights) to new perceptive signals (inputs), without for-
getting its previous learning. Thus, this solution solves one
of the main weaknesses of the triple BAM model, in terms
of biological plausibility. The initialisation of the associa-
tive layer with affectation areas and the recall of the stable
states are the main tools to obtain this property.
Nevertheless, we need to know some parameters to use our
algorithm: the maximum number of examples to learn and
the length of the affectation areas of the associative layer.
Moreover, the value of these two parameters are a great in-
fluence on the learning performances of our network. The
on-line algorithm doesn’t solve by itself the problem of
the compromise between adaptation and stability. That re-
quires an external tuning of the parametres.
On the orther hand, the algorithm doesn’t use the length of
the associative layer. Each new example learnt just adds
the length of the affectation area in the number of neurons
used of this layer. With this property, it seems possible to
convert our algorithm to an incremental learning algorithm.
Thus, the associative layers will only contain the used neu-
rons and each new learning will increase the length of the
associative layer.

5 Conclusions

We have presented in this paper several experiments related
to the triple BAM model as introduced by E. Reynaud in
order to evaluate the model in terms of information pro-
cessing based on distributed and numerical computations.
In the context of adaptive algorithms, it is quite clear that
this model lacks a unified representation of the environment
would enable for example a robot to evoluate freely in an
unknow environment.

This study clearly demonstrates that performances of
the model concerning noise robustness and learning are
not suitable for online learning, mainly because there is a
strong dependency between learning and the order of pre-
sentation of examples as well as a weakness in recall when
a whole perception is missing. This has been underlined
throughout the study and emphasize the need for alterna-
tive algorithms.

To cope with these limitations, we introduced some
original algorithms in order to improve the triple BAM
model. More precisely, the new initialization algorithm that
has been introduced for the associative layer and the initial-



ization by affectations areas greatly enhanced noise robust-
ness while ensuring the convergence of learning. More-
over, the new random distribution of examples provides a
simple solution to the dependency problem and the online
learning algorithm, based on the one by [8] allows for an
extended use of the affectation areas method. Finally, while
this was not the original goal of the study, it is to be noted
that global performances of the original model have been
greatly improved.

If we now look closer to the structure of the model,
it is clear that the model we introduced may be seen as a
model of the hippocampus instead of a multi-sensory inte-
gration cortical area. If we look at experimental results, it
is quite clear that the model exhibits declarative memory
properties (i.e. learning by heart) where each new exam-
ple can either be learned or recalled. Consequently, This
functional behavior is not realloy suited for generalization

Furthemore, affectation areas that have been used to
initialize the associative layer, have been introduced in the
first place to solve the convergence problem of the PRLAB
learning algorithm. The problem with this approach is that
the associative layer does not represent any more a real in-
tegration of presented data. This layer is now more of a
kind of pointer to a learned example where the on-line al-
gorithm is used to somehow seek something within mem-
ory. This is problematic when one wants to have a real
distributed model: information is not distributed anymore
but is localised within affectation areas.

Finally, we want to emphasize that the triple BAM
model is not adapted to real distributed and numerical com-
putations. The problem is not architectural but rather func-
tionnal in terms of offline learning where the PRLAB al-
gorithm revealed itself not adapted at all. Being rooted in
the Hopfield learning algorithms (which is totally offline),
it is not designed to provide a continuous learning. Further-
more, PRLAB has been designed to provide performances
in terms of storage capacities and not to provide a unified
representation of perceptions, that is still to be done.
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