
HAL Id: inria-00111987
https://hal.inria.fr/inria-00111987

Submitted on 6 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Malware: A future framework for Device, Network and
Service Management
Radu State, Olivier Festor

To cite this version:
Radu State, Olivier Festor. Malware: A future framework for Device, Network and Service Manage-
ment. [Research Report] 2006, pp.8. �inria-00111987�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50416482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00111987
https://hal.archives-ouvertes.fr

Malware : A Future Framework for Device,

Network and Service Management

Radu State, Olivier Festor
email :(state, festor)@loria.fr

Management of Dynamic Networks and Services

INRIA Lorraine

France

Abstract— While worms and their propagation have been a
major security threat over the past years, causing major financial
losses and down times for many enterprises connected to the
Internet, we will argue in this paper that valuable lessons can
be learned from them and that network management, which is
the activity supposed to prevent them, can actually benefit from
their use. We focus on five lessons learned from current malware
that can benefit to the network management community. For
each topic, we analyse how it is been addressed in standard
management frameworks, we identify their limits and describe
how current malware already provides efficient solutions to
these limits. We illustrate our claim through a case study on a
realistic application of worm based network management, which
is currently developed in our group.

I. INTRODUCTION

Integrated network and service management is the main

component in a network allowing to operate a network and

provide value added services with respect to contracted service

levels. Network management activities are divided in five

main functional areas (FCAPS) related to fault management,

configuration, accounting tasks, performance and security mo-

nitoring. Management operations are performed within an

administrative domain. From an historical perspective, an

administrative domain is well delimited both by contractual

and operational measures. In the new and rapidly evolving

Internet, these limits become blurred. End users purchase

devices and services requiring at least partial management

from a third party. Multi provider service gateways become a

reality and new management paradigms must emerge in order

to cope with these challenges. There are multiple challenges

that must be addressed. Managing a large scale infrastructure

is probably among the first and major issues. Evolving towards

a management plane capable to deal with millions of devices,

spread over the whole Internet and accessible through firewalls

and network address translation devices, is the main driving

direction of research in network and service management. We

argue that the ingredients for the future management plane

are already being developed, although in a community that

has not always the best intentions. The creators of malware

and worms had been confronted from the early days with large

scale infrastructures operated in hostile environments. We will

highlight in the following the main features in current malware

that we consider essential building blocks for managing the

future Internet.

Our paper is structured as follows. The five main challenges

that network management must face are presented in individual

sections. Each section concludes with conceptual solutions ins-

pired from current existing malware. Section II addresses the

issue of large scale network management. Next, we consider

the cases of multi-vendor and heterogeneous equipment which

is the subject of section III. Three essential building blocks for

any network management plane are given by its ability to be

flexible, adaptive and to operate reliable and securely. These

issues are addressed in the sections IV, V and respectively VI.

A case study of a large scale distributed honeypot is described

in section VII, where a malware based management is the only

viable approach. Finally, we conclude the paper and highlight

future works in section VIII.

II. LARGE SCALE DEVICE MANAGEMENT

A. Scale processing in the standard management approaches

Scale has always been a concern in the device, network

and service management community and various proposals to

deal with it have been made over the last twenty years. In

the early stages of management standardization, namely late

80’s, management framework designers did address the scale

issue by extending the simple albeit efficient manager/agent

model to a centralized hierarchical model where managers

could be cascaded to deal each with a subset of the managed

environment, thus applying a divide and conquer method.

For example, some commercial OSI management platforms

did provide a smart name-based routing scheme enabling

management requests to travel to their destination agent trough

a tree of managers. While this approach has been proven

efficient in some contexts, it did also show its limits ; typically

in the domain of fault-management and event correlation

where the routing of events among a big tree of management

nodes caused long delays in their processing.

A major step forward in the evolution of management

architectures came through the proposal of management by

delegation [1]. This model went beyond a tree of managers

by proposing (and enabling) processing to be dynamically

assigned to management agents themselves. This model has

been instantiated over the years in many ways and efforts were

undertaken within IETF to provide a standard support for such

a delegation as part of the DISMAN initiative which has led

to some RFCs on delegation and remote operations [2].

The pressure of scale in the management plane has again

increased in the last five years for two reasons. First, new net-

work infrastructures and services push the scale requirements

on management to never imagined levels beyond millons of

devices. This applies for example to dynamic update (e.g.

patch distribution) of many millions of hosts [3], configu-

ration and monitoring of several millions of cable modems

and services in the home by a single operator, management

of large P2P communities [4]. Second, management cannot

live anymore in a world, where resources can be considered

infinite. While the benchmarking activity has seen a good

evolution in the community, really large scale issues have not

been addressed in a satisfactory manner. In fact, researchers of

the management community did mainly focus their work on

management integration enabling new network domains to be

remotely managed (e.g. by making home networks managed

by UPnP visible over TR-69 protocols in the provider domain

through gateways), but these efforts are far from complete.

For example, manual configuration is very often required on

any single device to make it manageable and interference

among services in many networks remains a problem for

the management plane. In fact most standard management

protocols simply do not work in most networks where firewalls

and NATs are in place.

B. Malware and large scale management

It is known that botnets (network of compromised machines)

under the sole control of one malicious user can range well

into hundreds of thousands if not even millions of devices.

A well documented case [5] is more that illustrative. One

person was charged with having compromised more than

400.000 machines, installing malware and allowing third party

spammers to use them as relay servers. Spammers could use

this on-demand infrastructure over a delimited time frame

and billing was done online. It is more than surprising to

discover that 1) managing a large scale of bots is possible,

2) allowing partial third party control to this infrastructure

(in network management terms, we would call it CNM :

customer network management) is possible and that 3) billing

and accounting have been also well addressed. It is true that

the functionalities of the network were limited to only a limited

set of well defined operations, but nevertheless even these

primitive management operations are good examples for the

viability of such an approach. The idea of using malware type

of techniques (see figure 1) for doing benefic activities is

not new. In fact, the "ethical worm" [6] did already attack

machines that were infected by the Code Red worm and

removed the latter. The Code Green worm attacked infected

machines using the same exploit code and thus provided for a

first real world example of worm based management platform.

A similar case is given by the Dabber and Gaobot.AJS which

perform direct attacks against the Sasser worm. We will not

discuss further the legal and ethical implications of managing

equipment belonging to another administrative domain but

it’s worth to note that this real world experiment showed

the viability of such management, although it used only the

propagation features of worms. We argue that such approaches

extended with administrative domain bounded propagation and

additional middleware are the ingredients for highly efficient

network management bricks. A promising early work on

benefic (nematodes) controlled worms is described in [7].

Fig. 1. The Antiworm

III. HETEROGENEOUS MULTI-VENDOR EQUIPMENT

A. Standard network management protocols

The goal to manage in an integrated way, heterogeneous

devices and services was (and still is) the “raison d’etre”

of standardization in the management plane. Undertaken in

the late 80’s, standardization of the management plane was

initially driven by ISO and ITU which defined the founda-

tions of Integrated Network and Service Management : the

Manager/Agent model, the functional areas, the concept of

device independent information model and the standard service

and protocol to remotely access management information. This

model was very ambitious, but complex, resource consuming

and often ambiguous and hardly usable despite the large

industrial support to instantiate the standard through industrial

experience and tuning (as done in the Network Management

Forum for example). While today many parts of the OSI

management model remain in most management approaches,

its information modeling approach and language together with

its service and protocol have vanished. In fact, they still remain

operational in many telecommunication networks but are not

deployed in any new infrastructure. Following the ISO efforts,

other bodies did initiate their own management standardization

activities. The first one was of course IETF which came out

with the SNMP (initially designed as a transition technology

before the full support and deployment of OSI-based manage-

ment technologies ...). More recently, DMTF, Oasis-Open and

many other technology groups (3GPP, ATM Forum,) did

publish their own management frameworks dedicated to the

services they address.

There is no doubt that standardization has been of great

value to establish common foundations and models for device,

network and service management. History however tells us

that the goal to build a generic widely accepted management

model applicable to universal domains has clearly failed.

In fact, even in a single standardization body, one finds

several management standards, although designed for specific

functions, often featuring services that compete with others.

A typical example can be found in IETF with Netconf, the

various COPS and SNMP. A second element that confirms the

failure of standardization to handle heterogeneity is the success

of proprietary non-standardized solutions provided by vendors

(e.g. CLI, ad-hoc protocols & frameworks like Webmin) or

even private branches of standardized approaches (most MIB

information available today are proprietary data not standar-

dized in an information model). The inability of management

standards to cope with the reality of the networks that evolve

very fast is increasing every day. A simple, albeit strong,

reason is the increasing delays that management evolutions

face in standardization bodies. Even if not encouraged by the

various standardization bodies, today standards emerge long

after the protocol/service they are supposed to manage and

evolutions of existing management standards take a very long

time (if not eternity).

The more we progress, the less management standards are

used and usable to solve the heterogeneity problem of ma-

naged devices. Standard management is not existent anymore

and if available, not operational in many networks that need

management on a large scale. The time has come to find

alternatives.

B. Malware and cross-system integration

In the world of malware, dealing with multiple types of

systems and access mechanisms did not really seem to be a

major problem. Worms like described in [9] are capable to

spread using at least two very different operating systems.

These type of malware are exploiting known vulnerabilities

on these systems and during their propagation, an accurate

remote fingerprinting capability allows to attack a target with

the matching exploit code. An exploit code will typically inject

a shellcode in the process space of a vulnerable application.

The shellcode represents in most cases machine code that

can be directed executed on the targeted machine. Although

this machine code is highly specific to a target machine

architecture, recent advances in shellcode generation moved

towards multisystem shellcode [10] capable to be executed on

different platforms.

The lesson is that a promising approach for managing

multivendor and heterogenous systems, might be to shift

from addressing the integration at the agent side, towards

flexible management proxies able to interact with various

agent endpoints. If we consider the relative long timeframe

required to standardize a network management protocol, such

an approach might prove efficient on both the short and long

term.

IV. DYNAMIC MANAGEMENT PLANE

A. Dynamic Delegation

The need to offer the ability to dynamically change the

behavior of a management entity (either the manager or

the agent) was recognized very early in the management

community and has led to a full range of investigations

and innovations over the last decade. Dynamics was first

introduced in the concept of delegation in the mid 90s [1].

This model did extend existing scripted agent approaches with

elastic servers for management enabling any type of delegation

code to be shipped to and run by remote management agents.

Active networks [11] represent the ultimate approach for

dynamic network management. The basic approach is similar

to the delegation approach of Yemini but the active network

model links more strongly the network activity to the code

of its management. The model supports various dynamicity

levels for delegation of management code (from an external

pre-provisioning of management code on the devices to a per

packet level management code deployment) and has led to

interesting proposals in the area of fully distributed cooperative

management where several management packets with different

capabilities are cruising in the network calling in specific

support (i.e. other packets transporting specific management

code) on the discovery of specific events (e.g. a long lasting

congestion, an identified DDOS, ...) [12], [13], [14].

While active networking for management was a promising

approach, it failed to gain any acceptance for many reasons.

First its focus on the network plane did limit its potential

deployment in the dedicated network devices which are often

closed devices with no capability for hosting external code

for local processing. The second reason for the low impact

of active networks so far is the lack of security of the

infrastructure and the difficulty for administrators to maintain

the management plane under control.

B. Artificial Life and worms

While active networking technology promised seamless

deployment of new applications and functional extension of

already existing software frameworks, its real world deploy-

ment and effective usage remained more than modest. Network

operators did not endorsed this concept and the lack of a

standardized software interface and application programming

interface did limit the usefulness of these approaches. One of

the major problems that was not solved by the work done in

this area was the identification of a real "killer application that

would otherwise not be possible.

In the field of Artificial Intelligence, a major wave of

research activities were driven in the late 80’s by the notion

of genetic programming [15] and artificial life [16]. The

major idea behind these concepts was to build self replicating

programs capable to drive the evolution of an initial population

towards better and more performant future generations. Simu-

lating a Darwinian type of evolution, a computer program was

considered to be an individual and genetic operations between

two individuals allowed to generate new offsprings bearing

the most important and relevant functionalities. Most of the

approaches in these works considered that a computer program

is represented under a tree type of structure and that such tree

structures can be combined and evolved towards better and

more suitable code structures. Unfortunately, in real world

scenarios, combining code structures without addressing the

semantics and without using domain specific knowledge does

seldom lead to something meaningful. Most of the evolved

code structures are not fit and capable to provide reliable and

functional programs. On the other hand, internet worms show

that active technology, or at least some of its components

existed before and survived the works done by the active

networking community. The major illustrative example is the

online combination of a worm with a virus (see figure 2) as

described in [9]. The Cholera worm and the CTX virus use

the same files for hiding and propagating. When the CTX

virus infected machine is next infected with the Cholera worm,

a new creature is born combining functionalities from both

malwares and having more propagation capabilities.

Fig. 2. Artificial Life in malware

What should we learn from this case study ? The lesson

learned with the application of active network technologies

in the management plane is that autonomy for management

functions is interesting and in some cases useful but that

at any point in time, centralized control must be offered.

Also, deployment models that do not rely on the standard

fixed, pre-configured manager/agent paradigm are promising

but need to be refined and evaluated in several large scale

management scenarios. Techniques coming from the artificial

life community could be very interesting for having evolving

and adaptive management functionalities. The important issue

that we must deal with it to define the right code granularity.

Unlike to the traditional artificial life approaches where a very

fine granularity (at instruction level) is used to represent each

evolving creature, we should use a higher level granularity (at

file level or sub-parts of a file) and allow combinations and the

generation of new offsprings from these artificial creatures.

V. RELIABLE MIDDLEWARE

A. The dedicated management network

Standard management makes a couple of assumptions

among which the fact that the management channel is fixed

and operational. In several telecommunication networks, the

management plane is supported by a dedicated physical net-

work on which both managers and agents interact over a

reliable infrastructure and middleware. The most used midd-

leware for supporting management applications, i.e. the midd-

leware used to bind all the applications of a management plat-

form has without doubt been Corba combined with messaging

systems. Today this middleware is slowly being replaced by

web services.

In most emerging networks the provisioning of a dedicated

network solely for management purpose is not feasible any-

more. A good example is the wireless world were management

data is shipped to and from the devices over the same channels

as application payload (e.g. shipping management commands

to a cell phone is often done over SMS). Moreover the advent

of new large scale distributed services like P2P systems offer

an alternative to dedicated large and complex management

centers, enabling the management activity to be spread among

a community providing sufficient assurance on the availability

and the quality for the offered service.

B. Worms IRC and P2P

There are two notable examples of worms using state of

the art supporting middleware. The first one is the case of

the Slapper worm [17]. The second notable illustration is

given by a large category of worms using the IRC protocol

(see figure 3 for an example of the Tendoolf worm) as the

supporting service. The key components of an IRC network are

clients, servers and channels. A client will join a channel on

a particular server. A channel is supported by multiple servers

and these servers are responsible to relay messages among the

multiple clients. These IRC servers build an overlay network

which behaves like an application level spanning tree.

A client connecting to a server will directly communicate

with this one, but all messages sent to a channel will be relayed

among all the servers. A channel can be conceptually seen

as the equivalent of a multicast group. A server will receive

messages on a given channel if and only if it supports clients

on that channel. It is considered in [18] that this approach does

not scale well for two main reasons :

1) Network congestion might cause a link connecting two

servers to fail,

2) additional state information about the channels and

clients is required to be supported by the servers.

These arguments are sound but as of today, the IRC provided

a sufficient scalable solutions for large scale communication

Fig. 3. IRC based worms

among infected zombies and their master. The key architec-

tural design behind the worms using IRC is the use of a

publish subscribe communication system. IRC Servers keep

channels allowing only to publishers to talk. These publishers

can be both infected machines or the zombie master. Infected

machines will typically post multiple types of information :

the IP address, details about the configuration and the ope-

rating system as well as replies to requests coming from

the zombie master. The zombie master posts requests (these

can be commands to continue the infection and propagation),

perform denial of service attacks, or to stop the propagation

and perform a collective suicide [6]. In the same time, clients

will listen on a channel, wait for events and act if required

to. An even more advanced middleware is embedded in the

Slapper worm (see figure 4). The Slapper worm [17] builds an

overlay network capable to provide advanced features among

which, the most notable are :

– Reliable end to end message delivery using the overlay

network. Each node in the P2P network implements a

simple and efficient message delivery process allowing

retransmissions and probabilistic routings. A node that

has to forward a message to another node, will randomly

select a neighboor to which the message will be forwar-

ded. A timeout mechanism will assure the retransmission

and an additional message tracking will assure that no

routing loops are generated.

– Coping with network partitions and reshaping. Firewalls

and system security management might lead to network

partitions or machines that are taken out from the bot

network. The P2P middleware of the Slapper worm is

capable to adapt to such events, respawn a new ovrequi-

redetwork (if requird) and maintain the logical topology

of the network.

– Anonymous message delivery. One of the key features

that Slapper implements is that application level routing

allows to one node to communicate with another node

such that their identity (IP addresses) remain anonymous.

This is implemented by the probabilistic routing mecha-

nism. This hinders any effort to identify the endpoints of

a communication. From a conceptual point of view, this

scheme is equivalent to a simplified onion routing [19]

scheme.

The lesson that network management should learn from

these architectures is that the classical client server interaction

between a manager and an agent has to evolve towards either

a novel peer to peer based management framework or a native

publish subscribe one. Such a scheme is better suited for

intermittent network connectivity and allows a high degree

of privacy for network management.

Fig. 4. P2P based worms

VI. SECURITY AND CONFIGURATION MANAGEMENT

A. Security in the management plane

At times where a dedicated network was in place which

carried all the management traffic and was unaccessible to any

intruders, security was physically enforced. When manage-

ment traffic started to be mixed in application traffic, security

suddenly became important to network administrators (who

discovered that the community string sent in clear text over

the wire was a real threat towards the management plane). The

advent of secure protocols like SNMPv3 in the management

plane unfortunately did not solve the security problem in the

management plane as it should have, mainly for three reasons.

First very few administrators did move from an unsafe version

of SNMP (v1) to SNMPv3 on their networks. Second, the

multiplication of management interfaces on a single device has

opened many vulnerable channels. As an illustration, while the

CLI interface of a large campus switch was secured, it took

us three minutes to get full control of the device simply by

changing the accounts on the device over SNMP which was

left open. This is often the case with other devices today like

printers and their web-based management interfaces.

Recent work in our group has led to the design of generic

management plane level security and we have designed several

mapping approaches that enable to maintain a consistent

security policy on various management channels (Netconf,

CLI and SNMPv3) over many devices [20]. While this work

is promising, it does not yet include all possible management

interfaces (e.g. Web-based interfaces, Web-services specific

interfaces, ...) and would need standardization support for

the definition and maintenance of policies and technology

interfaces. This is unlikely to happen very soon leaving the

management plane unsecured still for a long time.

B. Secure worm based configuration

Although from the early years of Internet and its worms,

authors of malware considered that a secure configuration

management lifecycle has to be an essential and integrated

building block. Among the different existing approaches the

most illustrative case is the Hybris virus ([9], [21]). As it is

illustrated in figure 5, an advanced cryptographic authentifyis

used to autentify the manager and assure the integrity and

confidentiality of the software updates. The authors of this

virus wanted to guarantee that only legitimate updates can be

deployed via a public medium (news server) and the contents

of these updates remains accessible only to the infected and

controlled agents.

The underlying idea is very simple and elegant. The updates

can be checked for integrity using a public key based crypto-

graphy. A shared symmetric encryption key is computed from

the code of the virus and used to decrypt the contents of these

updates. The large number of different updates that emerged

in the following years shows that both from a conceptual and

operational aspect this design was sound.

Even though a secure life cycle management represents only

a subset of service management it’s worth to notice that using

well established cryptographic protocols and a simple key

distribution mechanism are the necessary ingredients for a well

secured service management plane. A more extended approach

should address a broader scope of management functionalities

including service monitoring and configuration as well as more

network level related operations.

VII. TOWARDS A WORM BASED MANAGEMENT PLANE : A

CASE STUDY

In this section we will illustrate a simple case study for

worm based management.

The Internet as of today is becoming the virtual playground

of a more and more younger user category, but is unfortunately

also the working environment of criminal predators, among

which a major category is associated to crimes and abuses

against children. A safer Internet can be made by keeping the

predators away from a vulnerable user population. Technically

this can be done by a sort of black list, where IP addresses

from this list are not allowed to connect to virtual chat rooms,

Fig. 5. Secure Configuration life cycle

direct communication or blogs used by young Internet users.

The key information required to configure such a blacklist

are the IP addresses of potential predators. These predators

are involved in trading/exchanging illegal files (in most cases

multimedia files which are illegal and violate any moral and le-

gal law) using multiple types of overlay distribution networks.

Such users can use a large variety of client software, ranging

from the well known P2P clients (emule, edonkey, dc++)

and up to the more efficient bittorrent or IRC networks. One

solution towards the identification of such a user category is a

large scale distributed overlay honeypot. The major objective

of such a honeypot would be to advertise the availability of

such illegal content and identify the clients trying to download

it. Although some false positives might be possible, it is

reasonable to assume that one IP address that is frequently

trying to download such content can be safely assumed to

harbor a predator. From an operational perspective, obviously

no real content will be distributed over the network. Rogue

data will be advertised and clients trying to download the data

will be logged and put forever on a download waiting list. Our

main working assumptions are the following :

1) A large population of users will deploy the client side of

the honeypot. Many well intentioned users will want to

help and participate in this collective hunt of predators.

2) Malicious users will install the honeypot and tamper

with it in order to identify and attack the management

plane.

3) The operations of the honeypot should be highly secure

in a potential hostile environment, while still being

transparent to well intentioned users.

Why do we require a worm based management framework

for such a purpose ? If we assume that a very large category

of users particpate in this hunting effort, then we will have

to address the management of a set of devices and services

having the major features :

– Large scale distributed management. For a large popula-

tion of users taking part in such a honeypot, we will have

to manage the individual honeypots. This management

must assure at least the configuration (list of file names

to be advertised) as well as the monitoring (requesting the

logs of IP addresses having tried to download a particular

file).

– Secure update and configuration. The management must

be done in full security. The minimal requirements are

to authenticate the manager and securely retrieve the

information about the clients having tried to upload a

given file.

– Provide to the client deploying the honeypot the infor-

mation about the advertised file names (if requested by

the client) while still assuring that no tampering from the

latter is possible. This can be done using cryptographic

mechanisms that are similar to the ones encountered in

the case of the Hybris virus.

– Preserve the anonymous identity of the management

plane. If one honeypot is to be deployed by a malicious

user, he should not be able to identify where the manage-

ment operations are initiated from. For this case, publish

subscribe communication paradigms and onion routing

mechanisms similar to the ones used by the Slapper worm

or the IRC based worms are the only viable solution.

Fig. 6. Worm based management : a case study

The described architecture (see figure 6) is under current

development in our group and an open source implementation

will be released in the very short future.

VIII. CONCLUSIONS AND FUTURE WORK

Valuable lessons can be learned from worms and current

malware. Even though the authors of malware are driven by

less honorable intentions, from a technical point of view they

successfully managed to overcome some major technical chal-

lenges. We argue in this paper that similar technical solutions

must become essential components for current network and

service management frameworks. Addressing in a cost efficient

way the management of large scale infrastructures with the

current traditional approaches is no more viable. On the other

hand, Internet worms are solid proofs that large scale device

management is possible with relative low costs in highly

hostile environments. Firewalls, network intrusion detectors

as well as system and network managers are the hostile

environments, in which worms and malware are capable to

propagate and exist. The rigid and well established manager

agent interaction based on standardized information models

and management protocols requires a major shift towards a

lightly coupled, epidemiologic management architecture. In

order to meet these goals, two paths are possible. The first

path is highly radical and assumes to start with a complete

clean slate for network management grounded on worm based

behavioral features. The second path is more smooth and

transitional, where existing management frameworks will gra-

dually include such features. Only time will show which is the

right path to go, but in order to succeed major future research

and technological challenges must be faced by the network

management community.

Acknowledgment This paper was supported in part by the

EC IST-EMANICS Network of Excellence (#26854).

REFERENCES

[1] G. Goldszmidt and Y. Yemini, “Distributed management by delegation,”
in 15th International Conference on Distributed Computing Systems.
IEEE Computer Society, 1995.

[2] J. Schoenwaelder and J. Quittek, “Secure management by delegation
within the internet management framework,” in 6th IFIP/IEEE Interna-

tional Symposium on Integrated Network Management, Boston. IEEE
Computer Society, 1999.

[3] C. Gkantsidis, T. Karagiannis, P. Rodriguez, and M. Vojnovic, “Planet
scale software updates,” in Proc. ACM SIGCOMM’2006, Sep 2006.

[4] G. Doyen, E. Nataf, and O. Festor, “A hierarchical architecture for a
distributed management of p2p networks and services.” in DSOM, ser.
Lecture Notes in Computer Science, J. Schönwälder and J. Serrat, Eds.,
vol. 3775. Springer, 2005, pp. 257–268.

[5] R. Lemos, “Major prison time for bot master,” 2006,
http ://www.securityfocus.com/brief/205.

[6] J. Nazario, Defense and Detection Strategies against Internet Worms.
Artech House Publishers, 2003.

[7] D. Aitel, “Nematodes,” http ://www.immunitysec.com/resources-
papers.shtml, 2006.

[8] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-
Wesley Professional, 1998.

[9] P. Szor, The Art of Computer Virus Research and Defense. Addison-
Wesley Professional, 2005.

[10] J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, and N. Mehta, The

Shellcoder’s Handbook : Discovering and Exploiting Security Holes.
John Wiley and Sons, 2004.

[11] D. Tennenhouse and D. Wetherall, “Towards an Active Network Archi-
tecture,” Computer Communication Review, vol. 26, no. 2, April 1996.

[12] K. Sugauchi, S. Miyazaki, K. Yoshida, S. Nakane, K. a nd Covaci,
and T. Zhang, “Flexible Network Management Using Active Network
Framework,” in Active Networks : Proc. First International Working

Confere nce, IWAN’99, S. Covaci, Ed. Berlin, Germany : Springer
Verlag, LNCS 1653, June 1999, pp. 241–248.

[13] P. Brunner and R. Stadler, “The Impact of Active Networking Tech-
nology on Service Manageme nt in a Telecom Environment,” in Proc.

Sixth IFIP/IEEE International Symposium on Integrated Network Ma-

nagement (IM’99), Boston, MA.

[14] B. Schwartz, A. Jackson, W. Strayer, W. Zhou, D. Rockwell, and
C. Partridge, “Smart Packets : Applying Active Networks to Network
Management,” ACM Transactions on Computer Systems, vol. 18, no. 1,
pp. 67–88, February 2000.

[15] J. Koza, Genetic Programming : On the Programming of Computers by

Means of Natural Selection. The MIT Press, 1992.

[16] A. Adamatzky and M. Maciej Komosinski, Artificial Life Models in

Software. Springer, 2005.

[17] I. Arce and E. Levy, “An analysis of the slapper worm,” IEEE Security

and Privacy, 2003.

[18] IETF, “Network working group c. kalt request for comments : 2810,”
2000.

[19] D. Goldschlag, M. Reed, and P. Syverson, “Hiding routing information,”
LNCS, vol. 1174, pp. 137–150, 1996.

[20] V. Cridlig, O. Festor, and R. State, “Role-based access control for
xml enabled management gateways.” in DSOM, ser. Lecture Notes in
Computer Science, A. Sahai and F. Wu, Eds., vol. 3278. Springer,
2004, pp. 183–195.

[21] E. Filiol, Computer Viruses : from theory to applications. Springer,
2005.

