
HAL Id: inria-00112229
https://hal.inria.fr/inria-00112229

Submitted on 1 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Document Logical Structure Analysis Based on
Perceptive Cycles

Yves Rangoni, Abdel Belaïd

To cite this version:
Yves Rangoni, Abdel Belaïd. Document Logical Structure Analysis Based on Perceptive Cycles. 7th
International IAPR Workshop on Document Analysis Systems - DAS 2006, Feb 2006, Nelson, New
Zealand. pp.118 - 128, �10.1007/11669487_11�. �inria-00112229�

https://hal.inria.fr/inria-00112229
https://hal.archives-ouvertes.fr

Document Logical Structure Analysis Based on
Perceptive Cycles

Yves Rangoni and Abdel Beläıd

Loria Research Center - Read Group, Vandœuvre-lès-Nancy, France
{rangoni,abelaid}@loria.fr

WWW home page:
http://www.loria.fr/∼rangoni/
http://www.loria.fr/∼abelaid/

Abstract. This paper describes a neural network (NN) approach for
document logical structure extraction. In this NN architecture, the doc-
ument structure is stretched along the layers, allowing an interpretation
decomposition from physical (NN input) to logical (NN output) level.
The intermediate layers represent succesive interpretation steps. Each
neuron is apparent (not hidden as in classical architectures) and is asso-
ciated to a logical element. The recognition proceeds by repetitive per-
ceptive cycles, propagating the information through the layers. In case
of low recognition rate output , an enhancement is proceeded by error
backpropagation leading to correct or choose a more adapted input fea-
ture subset. Several feature subsets hence are created using a modified
filter method. The first experiments leaded on scientific documents are
very encouraging.

1 Introduction

This paper addresses the problem of document logical structure extraction based
on physical feature observations within document images. Although this problem
have known a lot of solutions, it still remains very challenging for some specific
noisy and variable document classes.

The literature abounds of various methods. A survey of the most important
approaches in document structure analysis can be found in [1] for example. Most
of them are based on formal grammars. However, these methods have drawbacks
because the rules are given by the user and could be not sufficient to handle
complex and noisy documents. It is difficult to remove ambiguities and a lot of
thresholds must be fixed to process the matching between the physical and the
logical structure.

Consequently, a method more oriented towards learning seems to be a more
adapted solution. Artificial neural network (ANN) approaches allow such a train-
ing (rules are learnt) and are more robust to noise. However, ANN like the clas-
sical Multi Layer Perceptron (MLP) is considered as a black box and does not
explicit the relationships between the neurons. In the same time, domain-specific
knowledge appears essential for document interpretation as mentioned in [2] and

it seems useful to keep a part of knowledge in a Document Image Analysis (DIA)
system.

In order to deal with theses two aspects (knowledge and learning), we pro-
pose a new ANN approach that use a Transparent Neural Network (TNN) ar-
chitecture. This method will take MLP advantages and can act, in the same
time, on the reasoning by introducing knowledge. The recognition task is done
progressively by propagation of the inputs (local vision) towards the outputs
(global vision). Back-propagation movements, during recognition step, are used
for a input correction process as the human perception acts. These successive
“perceptive cycles” (vision-interpretation) bring a context return which is very
helpful for the input improvement.

This paper will be organized as follows. The first section is dedicated to
the TNN architecture design. The second section will detail an input feature
clusterization method to speed up the perceptive cycles and reproducing the
human perception. Finally, the last section will be related to experimental results
and discussions about the different methods proposed in this article.

2 The TNN Architecture Description

The proposed TNN architecture is described in Fig. 1. The first layer is made
up of physical features where each element corresponds to a neuron. The follow-
ing layers represent the logical structure at three different levels, from fine to

Semantic
Features

Numerical/Text
Indent

Keyword
Enumeration

…

Geographical
Features

Line
Image
Text

Position
Size

Spacing
…

Logical
structure

Main title
Author

Abstract
Division

…
Copyright
Algorithm
Summary

Logical
elements

Title
Caption

FootNote
Paragraph

List
Enumeration

Table
Bibliography

Float

Structural

Picture
Schema
Formula

Text
Line
Box

Row of cells
Column of cells

Physical level Logical level

Second layer
(21 neurons) Third layer Fourth layer

Input layer
(56 neurons)

Morphological
Features
Font size

Bold
Italic

Underline
Color
…

Fig. 1: Neuron semantic for document analysis.

coarse (see Fig.7 for the whole input and output names). All the layers are fully
connected. This modeling integrates common knowledge on “general” document
structure. It can be more precise if a DTD (Document Type Definition) is given
as the DTD organizes the logical element in hierarchy. The real TNN ouput is
the first logical level (the second layer) while the last layers represent the global
context (third and fourth layers). There are used to precise the context that is
needed for logical structure identification during the perceptive cycles.

This system can be considered as a hybrid method between a model-driven
(i.e. DTD integration) and data-driven approach (i.e. training phase). As for a
classical MLP, a database is used to train the links between physical and the
final logical structure. The complete list of input and output is given in Fig. 7.

The training of the whole network is accomplished locally for each consecu-
tive pair of layers. As the desired output of each layer is known, the system is
seen as a MLP cascade without hidden layers. Weight modifications are carried
out by an error correction principle. The first stage consists in initializing the
weights with random values, then for each couple (Input, Output) of the training
database, predicted value is computed by propagation. The error between the
computed output P and the awaited output O is then determined. The second
stage back-propagates this error in the previous layers. If the activation function
is a sigmoid, the value to add to a weight wi,j is α(Oj − Pi)Pi(1− Pj)Ii.

Fig. 2: A TNN classifying RGB pixels in hot and cold colors. It
uses a rainbow color decomposition in its intermediary layer.

The Fig. 2 shows a small example of a trained TNN that classifies RGB colors
in rainbow colors. The green links are for a positive contribution and red are for
a negative one. The line thickness is proportional to the link weight.

Contrary to a MLP, the recognition process is more complicated. The MLP
looks at the maximum output layer component Oi and deduces that the input
pattern belongs the ith class. In a TNN system, the outputs are analyzed and
two decisions can be chosen (Fig. 3.):

Xn

X2

X1

An

A2

A1

Inputs Outputs

Context

Ambiguity?

Initial
pattern

database

« Mean » Selection

E1 E2 E3 E4

Representative samples by classes

Pattern is
recognized

No

Correct inputs

• Context information
• Input pattern expected
• Re-tune algorithm

Input sample

Yes

Document
image

Fig. 3: Perceptive cycles: propagation, analyse, context return,
correction.

– the first decision concerns the output when it is close to an unit vector. Thus,
the system gives a ruling on a “good” pattern. This means that a class has a
sufficient score ‖O‖∞ > ε with 0� ε > 1 (acceptable class) and this winning
class has a score greater than the others Γ (O) = n((

P
Oi)

2−
P

O2
i)

(n−1)(
P

Oi)2
6 η with

0 < η � 1 (superior class). If such an output checks these rules, the system
stops and the pattern is classified.

– the alternative decision occurs when the system reports an ambiguity (i.e. the
pattern is confused among several classes). At that moment, the latest TNN
layers react and propose a context. Thanks to the known neuron semantic,
information from upper layers are used to determine the possible or unlikely
classes. A hypothesis is created about the possible pattern class, then the
input is analyzed in order to find the wrong component values.

As the input physical features (e.g. bounding box, font style, text, etc.) are
determined by specific algorithms, it is possible to operate on their precision (or

quality) by reconsidering the algorithm parameters, or by changing totally the
algorithm method. An example of “re-tuning” can be the OCR settings that give
the text. It is possible in an OCR engine to change the amount of computation
but change consequently the recognition quality. The “High Speed” mode is
chosen when it is needed to separte text and image whereas “High Quality”
mode is prefered if a precise word (a key-word for example) is searching in the
text bloc.

Another example of algorithm “swapping” is the evaluation of word number
in a text bloc. Two solutions can be chosen. The first algorithm uses a RLSA
and evaluate the number of connex components. The second algorithm uses an
OCR and simply counts the number of words. The first solution is the fastest but
gives approwimates results whereas the second solution is more time expensive
but is more accurate.

With the use of context, new information comming from the training data-
base can be added during the correction. For example, if a segmentation problem
occurs, the system find the “mean” awaited bounding box and corrects the pre-
vious bounding box dimensions. This example is not insignificant, because sege-
mentation error are frequent and penalize the whole physical extraction. The
context returns allow often a better segmentation and contribute to a better
recognition accuracy (see Fig. 4).

3 Input Feature Clustering

In the previous section, the TNN is showed to be able to analyze its outputs
and improve its inputs accordingly. This system can obtain better scores than a
MLP thanks to the perceptive cycles. However, “high-level” and time consuming
features are needed to be extract for each cycle.

In order to speed-up the global process, the input features are categorized and
classified in subsets. The feature subsets are used, progressively, as TNN input.
A first feature set is chosen, then if the recognition rate is too low, another
(containing the first and additional features) is selected and so on until reaching
the final solution. As the whole features are not necessary needed to classify
many patterns, the computation is consequently reduced.

Two criteria are used for feature classification: “quality” and “velocity”. The
“velocity” corresponds to the algorithm execution time given either by exper-
iments or formally by studying its complexity. For the “quality” there is no
straightforward measurement method. A specific method based on feature subset
selection is proposed. The objective is to determine the best feature combination
to feed a pattern classification system. This method is used to create a feature
partitioning.

The literature mentions two main feature selection methods: filter and wrap-
per [3]. The first one selects variables by ranking them with correlation co-
efficients (it is usually suboptimal for building a predictor, particularly if the
variables are redundant). The second one assess subsets of variables according

to their usefulness to a given predictor (but the predictor is needed to construct
the subsets).

As the subsets are needed to construct the TNN architecture, a filter method
has been considered. The filter method is also adapted to exclude many redun-
dant variables in the same subset and keeping the most relevant ones.

The Karhunen-Loeve transform is used as a first step for the filter selection
method. In [4] we used an extension of the PCA in order to build subset of initial
features and not rewrite the features in another base (as the PCA is originally
designed).

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nm

m

m

n x

x
x

x

x
x

2

1

1

21

11

K

m vectors Xi in
Rn

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nnn

n

rr

r
rrr

KKK

MOM

MOM

MO

KK

1

21

11211

Correlation matrix
CRMat

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nλ

λ
λ

000
00

00
000

2

1

L

OO

MOOOM

O

K

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nnn vv

v
vv

KK

MOM

MM

MO

K

1

21

1211

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nnn vv

v
vv

KK

MOM

MM

MO

K

1

21

1211

=

T

Vi
Vi Vi

Vi
ViVi

Vi Vi

Clusterize Vi

13 2

Chose
the best

xi

Chose the
second
best xi

…

Eigenvector
Matrix

Eigenvector
Matrix

Eigenvalue
Matrix

Fig. 4: Data categorization according to predictive capacity.

The eigenvectors V (in absolute value) of the data correlation matrix CRMat =
(cor(Xi, Xj)) are computed. The vectors are then clusterized using a Self Orga-
nized Map (SOM) with an Euclidian distance (Fig. 4.). The clusters obtained
contain similar eigenvectors (i.e. redundant variables). The feature correspond-
ing to the nearest eigenvector from each cluster center is chosen to create a new
subset. This subset contains high predictive features which are the less corre-
lated. By fixing the SOM neuron number the number of desired subsets can be
chosen.

An important phase of this clusterization process is to set the lower-space
dimension q (i.e. the variance to be kept). As there is no optimal solution, some
heuristics proposed by the literature have been tested:
– fixed number q: this is a straightforward method where cutting level is im-

posed by the user.
– fixed percentage: similarly to the previous case, but here the user choose the

first p% of the eigenvalues.
– cumulated percentage: the number q is determined when the sum of the first

variance (eigenvalue) is greater than a given fixed percentage.

These three methods are frequent but this assumes that the user overcome its
application and can appreciate what dimension he must use. They are often
used in social sciences because it is easier to interpret the data. Two other
methods which are more general and more robust are founded on the shape of
the eigenvalue sequence:

– Kaiser method: the average of all the variances is calculate, the space di-
mension q is determined when the sum of the first variance is greater than
this average. Of a wide spread employment, it can be put at fault.

– Cattell method: [5] suggests to find the place where the smooth decrease of
eigenvalues appears to level off to the right of the plot (the scree-test). This
heuristic is often considered as the most powerful [6]

4 Experimental Results and Discussion

Before introducing results on document image anlaysis, experiments about “low-
level” and highly correlated features are presented.

A first experimentation procedure is mainly employed to illustrate the vari-
able subset creation method. We use the MNIST database [7].

A MultiLayer Perceptron is used to evaluate the group validity. This classifier
has the same settings along all the experiments (topology, initial random weights,
etc.). We have made two experiments have been made on this database The first
uses the whole initial pixels of each image (digits are 28×28 pixel images). The
second experiment uses resampled images (in a 7×7 format). Thus, we have for
the first experiment 784 variables and for the second 49.

The MLP is trained with the different variable subsets and the recognition
rate is chosen as a quality measurement. The subsets are compared to the ran-
domly created. One thousand of random subsets have been generated and eval-
uated by the MLP. Then the best one is retained for the comparison. This pro-
cedure will be the same for the following experiments about document analysis.

Mean digit image 25 chosen pixels 50 chosen pixels 100 chosen pixels

Fig. 5: Feature subsets created for MNIST database.

Table 1 shows normalized comparison results between the subset obtained by
our method and the best of the random subsets for the initial MNIST database.

Method
features Random Our selection

784(max) 100% 100%
500 98.4% 99.2%
300 95.9% 98.4%
150 90.5% 96.5%
100 84.2% 94.2%
50 70.9% 87.8%
25 47.1% 67.6%

Table 1: MNIST digit classification accuracy while decreasing
the number of features

Method
features Random Our selection

49(max) 100% 100%
35 94.2% 99.3%
25 81.2% 88.6%
15 56.2% 70.5%
10 43.9% 55.2%

Table 2: Resampled MNIST digit classification accuracy while
decreasing the number of features

The Fig. 5 shows where the selected pixels are in the image. The first image
represents the “mean” digit comming from the whole database (1

n

∑n
i=1 Ii) and

in the next three pictures, chosen pixels can be seen. The table 2 is similar to
the Table 1 but here, 7×7 pixel images are used for test.

The approach gives good results in spite of the strong influence of each pixel
(expecting those on the border) on the classifier. The method keeps the two
thirds of the information by keeping less than 4% of features (Table 1: with 25
of the 784 variables 67.6% of the information is kept).

Experiments concerning the document logical structure analysis are pre-
sented below. We have chosen as a main database some Siggraph 2003 conference
papers [8]. The documents are scientific articles having numerous and diversified
logical structure elements (see Fig. 6 for two examples).

In these 74 documents, 21 logical structures are labeled that represents more
than 2000 patterns. The input and output features are presented in Fig. 7.
Note that all the physical inputs (geometrical, morphological and semantic) are
numerical values between 0 and 1 after possibly a normalization. In general,
the number represents a percentage (e.g. the percentage of bold charaters in a

Permission to make digital/hard copy of part of all of this work for personal or
classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication, and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.
© 2003 ACM 0730-0301/03/0700-0651 $5.00

Interactive Boolean Operations on Surfel-Bounded Solids

Bart Adams∗ Philip Dutré∗

Department of Computer Science
Katholieke Universiteit Leuven

Abstract

In this paper we present an algorithm to perform interactive boolean
operations on free-form solids bounded by surfels. We introduce
a fast inside-outside test to check whether surfels lie within the
bounds of another surfel-bounded solid. This enables us to add,
subtract and intersect complex solids at interactive rates. Our algo-
rithm is fast both in displaying and constructing the new geometry
resulting from the boolean operation.

We present a resampling operator to solve problems resulting
from sharp edges in the resulting solid. The operator resamples the
surfels intersecting with the surface of the other solid. This enables
us to represent the sharp edges with great detail.

We believe our algorithm to be an ideal tool for interactive edit-
ing of free-form solids.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and ob-
ject representations; I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types I.3.4 [Com-
puter Graphics]: Graphics Utilities—Graphics editors

Keywords: free-form modeling, boolean operations, surfels,
point-based geometry

1 Introduction

Constructive solid geometry (CSG) has been a useful tool in com-
puter graphics for many years. Usually, CSG is applied to primitive
objects (spheres, cylinders, cubes) to construct objects with a more
complex geometric shape. However, boolean operations are also a
versatile tool for editing free-form solids. Adding, subtracting and
intersecting solids enables us to create more complex models. In
this paper we present boolean operations as an intuitive and inter-
active editing tool for free-form solids bounded by surfels. Surfels,
represented as oriented points in 3D space, approximate the local
orientation of the surface they represent. Each surfel can be con-
sidered to represent a small area of this surface. As a consequence,
when performing boolean operations on two solids A and B, most
of the surfels of the surface of solid A are completely inside or out-
side solid B and vice versa. Only a small number of surfels intersect
with the surface of the other solid.

Our algorithm works in two steps: in a first step we classify the
surfels of both solids as inside, outside or intersecting with the sur-

∗email:{barta,phil}@cs.kuleuven.ac.be

Figure 1: Two free-form surfel-bounded solids constructed using
CSG (inspired by ”Bond of Union” by M.C. Escher).

face of the other solid. In a second step we resample the surfels
intersecting with the surface of the other solid. Our method is fast,
both in displaying the boolean operations as in calculating the new
geometry of the resulting solid. An example of a free-form surfel-
bounded solid constructed with our algorithm is shown in figure 1.

This paper addresses the following important questions:

• How to test efficiently whether a surfel of one surfel-bounded
solid lies inside or outside another surfel-bounded solid?

• How to represent the sharp edges typically resulting from per-
forming boolean operations on solids, using surfels?

We start by giving a brief overview of related work in section 2.
Section 3 introduces the concepts related to surfel-bounded solids.
In section 4 we present a fast inside-outside test that enables us
to classify the surfels of solid A as inside, outside or intersecting
with the surface of solid B. In section 5 we consider the surfels
intersecting with the surface of the other solid and propose the fast
resampling operator. Section 6 gives implementation details and
illustrates that we are able to perform boolean operations on com-
plex solids at interactive rates. We conclude and give some topics
of future research possibilities in section 7.

2 Related Work

Point-Based Geometry
The interest in using points as a display primitive in com-
puter graphics has grown tremendously in recent years. Pfister
et al. [2000] introduced the concept of surfels inspired by the
work of Levoy and Whitted [1985], and more recently the work
of Grossman and Dally [1998]. Significant research has been
performed on efficient high quality rendering of point-based
geometry. QSplat [Rusinkiewicz and Levoy 2000] uses a hierarchy
of bounding spheres for progressive rendering of large models.
Zwicker et al. [2001] introduce surface splatting which makes
the benefits of the Elliptical Weighted Average (EWA) filter
available to point-based rendering. Alexa et al. [2001] present
point set surfaces and use down-sampling and up-sampling to
meet the required display quality. Kalaiah and Varshney [2001]

651

(a) (b) (c) (d) (e)

Figure 3: Density in plane space. (a) Scene with face f and its three vertices highlighted. (b) Set of planes going through each vertex.
represented in plane space. The plane of f corresponds to the intersection of the three sheets. (c) Validity domain of each vertex. (d)
Discretized validity domain of f . (e) Coverage for the whole house. We clearly see 6 maxima (labelled) corresponding to the 4 side faces and
the 2 sides of the roof. Note in addition the degenerate maximum that spans a whole row for φ � π � 2. All values of θ match the same plane:
the plane of the ground.

}

j

}

i

}

k

Figure 4: Rasterization in plane space.

Greedy (input model, threshold ε)
set of faces F =input model
billboard cloud BC = /0
while F �� /0

Pick bin B with highest density
Compute validF

ε � B �
Pi = RefineBin (B , validF

ε � B �)
UpdateDensity(validF

ε � Pi �)
F = F � validF

ε � Pi �
BC = BC Pi

Compute textures(BC)

Figure 5: Pseudocode of the greedy selection of planes.

3 Greedy optimization

Now that we have defined and computed a density over plane space,
we present our greedy optimization approach to select a set of
planes that approximate the input model. We iteratively pick the
bin with the highest density. We then search for a plane in the bin
that can collapse the corresponding set of valid faces. This may re-
quire an adaptive refinement of the bin in plane space as explained
below. Once a plane is found, we update the density to remove the
contribution and penalty due to the collapsed faces, and proceed to
the next highest-density bin. Once all the faces have been collapsed,
we compute the corresponding textures on each plane.

3.1 Adaptive refinement in plane space

Our grid only stores the simple density d
�
B � of each bin, and for

memory usage reasons, we do not store the corresponding set of
faces validε

�
B � . We iterate on the faces that have not yet been col-

lapsed to compute those that are valid for B . Further computations
for the plane refinement are performed using only this subset of the
model. We note quantities such as density or validity set restricted
to such a subset of faces F with the superscript F .

Recall that the density stored in our plane-space grid uses the
simple validity, and that the faces that are simply valid for a bin are
not necessarily valid for all its planes. We therefore need to refine
our selection of a bin to find the densest plane. We subdivide bins

RefineBin (bin B , set of faces F)
plane P = center of B
if (validF

ε � P � �!� validF
ε � B �)

return P
bin Bmax=NULL
for each of the 27 neighbors Bi of B

Subdivide Bi into 8 sub-bins Bi j

for each Bi j // there is a total of 8*27 such Bi j

Compute dF � Bi j �
if (dF � Bi j �#" dF � Bmax �)

Bmax
� Bi j

return RefineBin (Bmax , validF
ε � Bmax �)

Figure 6: Pseudo-code of recursive adaptive refinement in plane
space.

adaptively until the plane at the center of a sub-bin is valid for the
entire validity set of the sub-bin (Fig. 6).

We allow the refinement process to explore the neighbors of the
bin as well. Indeed, because we use simple validity, the densest
plane can be slightly outside the bin we initially picked, as illus-
trated by figure 7. We use a simple strategy: We subdivide the bin
and its 26 neighbors, and pick among these 27 $ 8 sub-bins, the one
with highest simple density.

valid(f2)valid(f2)

valid(f3)

B1 B2

P

Figure 7: Simple density in plane space. Although bin B1 has max-
imum simple density, the densest plane is P , which is in bin B2.

Bins are then updated to remove the contributions and penalties
of the collapsed faces. We iterate over the faces collapsed on the
new plane and use the same procedure described in Section 2.4,
except that contributions and penalties are removed. The algorithm
then proceeds until all faces of the model are collapsed on planes.

3.2 Computing textures

Each plane Pi is assigned a set of collapsed faces validF
ε
�
Pi � during

the greedy phase. We first find the minimum bounding rectangle of
the projection of these faces in the texture plane (using the CGAL
library[CGA n. d.]), then we shoot a texture by rendering the faces

692

Fig. 6: Two scientific document database samples.

text bloc) and for other features that represent a number (e.g. the number k

of keywords in a text bloc) we use the serie
∑k

n=1 1/(n + 1) to have a number
between 0 and 1.

As previously, the same input feature selection protocol is experimented on
this document database. We extracted physical information from the document
layout. There are 56 features holding geometrical, typographical, and morpho-
logical information (see Fig. 7) and we use once again a MLP as classifier.

Table 3 synthesizes some results of logical structures recognition accuracy ac-
cording to the eigenvalue choice methods as mentioned at the end of the previous
section. The five methods have been tested on different subset sizes.

The space dimension choice influences the results quality. Even if the MLP
is a classifier able to give good results with few features, choosing too low or
too high eigenvector dimension can be bad for the input feature clustering and
consequently on the classifier.

It seems here (and for other tests that have be done on MNIST) that the
Cattell method (that choose q = 19) is most of the time better than Kaiser
(with q = 14). The two methods, which automatically find the number q, give
the same or superior results than the classical ones where the operator must fix
this number. We will hold for the following tests the Cattell method that seems
to be the most robust on many experimentations.

Considering the results in Table 4, we observe that this “high-level” features
better lends themself to this selection as we were expecting.

Logical Physical
Geometrical Morphological Semantic

Title Text Bold IsNumeric
Author Image Italique KeyWords
Email Table Underlined %KnownWords

Locality Other Strikethrough %Punctuation
Abstract x position UpperCase Bullet

Key words y position Small Capitals Enum
CR Categories Width Subscript Language
Introduction Height Superscript Baseline
Paragraph NumPage Font

Section UpSpace Font Size
SubSection BottomSpace Scaling

SubSubSection LeftSpace Spacing
List RightSpace Alignment

Enumeration LeftIndent
Float RightIndent

Conclusion FirstIndent
Bibliography NumLines
Algorithms Boxed
Copyright Red/Green/Blue

Acknowledgments
Page number

Fig. 7: Logical outputs and physical inputs for documents.

Choosing a small set of features here is more difficult. This method seems
to be appropriate when the number of features is rather small and can be very
powerful in this case (more than 83% of information is kept by dividing the
variable number by 5).

Feature
number

Fixed number Fixed % % Variance Kaiser
(q=14)

Cattell
(q=19)Num Accur. F% Accur. %V Accur.

5

2 64.4 2% 61.6 10% 66.5

69.2 68.1
5 64.3 5% 72.1 20% 67.9

10 60.3 10% 64.3 40% 61.4

15 59.2 20% 57.8 60% 63.6

10

2 78.4 79.7 81.1

77.7 82.3
5 79.8 82.7 73.5

10 72.9 77.1 78.4

15 70.0 76.6 72.6

20

2 85.4 82.1 82.3

85.7 86.1
5 84.9 82.8 86.1

10 83.6 83.3 82.3

15 82.6 83.3 78.8

30

2 85.2 82.9 84.2

87.4 88.0
5 86.8 85.6 85.8

10 86.6 86.5 86.7

15 86.3 85.4 87.7

Table 3: Logical structure recognition accuracy (in %) according
to dimensionnality q reducing method.

Method
features Random Our selection

56(max) 100% 100%
35 86.9% 99.3%
25 65.0% 79.6%
15 51.8% 80.1%
10 35.1% 83.8%
5 17.9% 44.9%

Table 4: Logical elements classification accuracy while decreasing
the number of features

Leaving side input features selection, results about complete DIA system are
presented. Three inputs features subsets are created with the preceding method.
Extraction tools, which can be configured, are used for extraction the physical
layout. During the recognition phase, the sytem can chose between the feature
subsets and act on extraction tools as mentioned in Section 3. The training stage
uses 44 documents and 30 are used for the testing. Test results between a MLP
and the TNN at the end of four perceptive cycles are presented in Figure 5.

The perceptive cycles increase the recognition rates (after 4 cycles the classi-
fier reach 91.7%). A TNN without perceptive cycles is worse than a MLP (45.2%
instead of 81.6%) because TNN does not have many constraints in its intermedi-
ate layers. With perceptive cycles, the context returns makes it possible to gain
in precision while multiplying only, in our case, the computing time by about
2.5.

Recognition TNN
rates MLP C1 C2 C3 C4

All elements 81.6% 45.2 78.9 90.2 91.7%
Best class 86.9% 66.7 85.3 85.3 99.3%

Worst class 0.0% 0.0 0.0 4.0 28.6%

Recognition time
(MLP as reference)

100% 70% 145% 185% 240%

Table 5: Logical elements classification by MLP an TNN with
perceptive cycles

5 Conclusions

We have presented in this article a neural network architecture for document
logical structure analysis. The method uses a Transparent Neural Network that
make possible to introduce knowledge in each neuron and organize in hierarchy
the neurons in order to create a “vision” decomposition. The topology can sim-
ulate a decomposition hierarchy from fine (the patterns to recognized) to coarse
(the global context). Thanks to this system, we can adapt the computation
amount according to the pattern granularity and complexity. This “perceptive
cycles” as named in cognitive psychology allows to simulate in the same system
an recognition process that use automatic and fixed knowledge rules, a hierarchi-
cal view, and a interpretation-correction process thanks to hypothesis creation.
An input feature clusterization has been made to speed-up the perceptive cycles.

The TNN gives encouraging results. Although some improvments are in hand,
tests are already better than a simple MLP, without necessarily adding too heavy
computations. In our future works, we will propose a genetic-method to choose
representative samples in the database during the context return. Another works
will be done to improve the feature subset creation and a method to deal with
the final cases of rejected patterns will be presented.

References

1. Mao, S., Rosenfelda, A., Kanungo, T.: Document structure analysis algorithms: A
literature survey. SPIE Electronic Imaging (2003)

2. Nagy, G.: Twenty years of document image analysis in pami. PAMI (2000)
3. Guyon, I., Elisseeff, A.: An introduction to variable and feature extraction. Journal

of Machine Learning Research (2003)
4. Rangoni, Y., Beläıd, A.: Data categorization for a context return applied to logical

document structure recognition. ICDAR (2005)
5. Cattell, R.: The scree test for the number of factors. Multivariate Behavioral

Research (1966)
6. Zwick, W.R., Velicer, W.F.: Comparison of five rules for determining the number

of components to retain. Psychological Bulletin (1986)
7. LeCun, Y.: (http://yann.lecun.com/exdb/mnist/)
8. Siggraph: http://www.siggraph.org/s2003/. (2003)

