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Un algorithme de type faisceaux pour le routage dans une réseau de
télécommunications

Résumé : Pour optimiser la qualité de service dans un réseau de télécommunications, nous proposons un algorithm à
base de relaxation lagrangienne. L’algorithme dual adapte la méthode de faisceaux à la présente situation où la fonction
duale est somme d’un terme polyédral (provenant des plus courts chemins) et d’un terme différentiable (provenant de la
fonction de congestion).

Mots-clés : Optimisation convexe, routage, multiflot, fonction de retard de Kleinrock
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1 Introduction

We consider the following problem

min f(y) :=

n
∑

j=1

fj(yj)

s.t. Axk = bk, xk > 0, k = 1, . . . , K,
K

∑

k=1

xk = y,

0 6 y < c ,

(1)

where
· fj(yj) is proportional to Kleinrock average delay function:

fj(yj) =
yj

cj − yj

if 0 6 yj < cj (and +∞ otherwise) , (2)

· A is the node-arc incidence matrix of a graph G = (V, E) (m nodes, n arcs),
· bk ∈ R

m are vectors with two nonzero components (corresponding to an origin sk and destination tk) such that
∑m

i=1 bk
i = 0,

· c ∈ R
n is the vector of arc capacities,

· xk are flow vectors representing K commodities between source nodes sk and sink nodes tk, k = 1, . . . , K,
· y is the total link flow vector.

Problem (1), often called (convex) multicommodity flow, occurs in data communication networks and plays an impor-
tant role in the optimization of network performances. Various methods have been proposed in the literature to solve it,
we refer to [15] for a review.
– Direct methods exploit the problem’s block structure. Most popular is flow deviation [6] because of its simplicity; it is a

special case of the Frank-Wolfe method [4], which works on a sequence of linearized problems. It has slow convergence
and many authors have tried to improved it.

– Other classical mathematical programming algorithms (Newton, conjugate gradient) have been adapted to the structure
of (1); see [5] for example.

– Some proposals adopt a dual point of view. They can be classified as cutting-plane methods and arise in connection
with Lagrangian relaxation, resulting in a nonsmooth Lagrangian dual. There we find proximal, ACCPM or subgradient
methods.

Our present proposal belongs to this latter class and solves the dual by a convex-optimization algorithm, comparable to
the recent approach of [1]. We fully exploit the structure of the dual objective function, which is a sum of two pieces: the
convex conjugate of the delay function f , and a polyhedral function which can be approximated through cutting planes.
The smoothness of the first component provides useful second-order information, which we introduce as a quadratic
regularization for the second component. With respect to standard bundle methods (which would apply cutting planes to
the smooth component as well and append an artificial quadratic term), this necessitates new rules for the so-called ascent
and null steps.

The paper is organized as follows. We propose in §2 a (classical) Lagrangian relaxation of (1) and in §3 our model
of the Lagrangian dual function using a second-order oracle. Our adaptation of the bundling technique to cope with
this special model is the subject of §4, while §5 recalls the aggregation mechanism, important for primal recovery. The
algorithm is detailed in §6, its convergence established in §7, while §8 shows how to recover the primal optimal solution
from the dual algorithm. Finally, §9 is devoted to numerical results.

2 Lagrangian relaxation

Associating with the coupling constraints
K
∑

k=1

xk = y the dual variables u ∈ R
n, we define the Lagrangian

L(x, y, u) =
n

∑

j=1

fj(yj) +
n

∑

j=1

uj

(

−yj +
K

∑

k=1

xk
j

)

RR n° 6010



4 Claude Lemaréchal , Adam Ouorou , Georgios Petrou

and we apply Lagrangian relaxation, as explained for example in [13]. We minimize L(·, ·, u) for fixed u; here, this
amounts to computing

Φj(uj) := min
06yj<cj

{fj(yj) − ujyj} [= −f∗
j (uj)], j = 1, . . . , n, (3)

Πk(u) := min{u>xk : Axk = bk, xk
> 0}. k = 1, . . . , K. (4)

It will be convenient for the sequel to use the notation

Φ(u) :=
n

∑

j=1

Φj(uj) , Π(u) :=
K

∑

k=1

Πk(u).

The dual problem is then to maximize with respect to u the so-called dual function, namely: solve

max
u∈Rn

θ(u), where θ(u) := Φ(u) + Π(u). (5)

yj
cjyj(uj)

Φj(uj) = −f∗
j (uj)

fj(yj)

uj

Figure 1: Conjugating Kleinrock function

In (3) (where f∗
j denotes the conjugate function of fj), the optimal yj is easy to compute (see Fig. 2): we obtain

yj(uj) =

{

cj −
√

cj

uj
if uj > 1

cj

0 otherwise ,
(6)

so that Φj has the expression

Φj(uj) =

{

−
(√

cjuj − 1
)2

if uj >
1
cj

0 otherwise .
(7)

On the other hand, computing Π from (4) amounts to solving K independent shortest path problems, each of which
being posed between sk and tk and having arc lengths uj . The next simple result says that this computation has to be
done with positive arc lengths only.

Proposition 1 Consider the set

U :=
{

u ∈ R
n : uj >

1

cj

, j = 1, . . . , n
}

. (8)

For any u /∈ U , there is u′ ∈ U such that θ(u′) > θ(u). As a result, (5) is not changed if the constraint u ∈ U is inserted
(this can only eliminate some optimal u).

Proof. Let u ∈ R
n be such that uj0 < 1/cj0 for some j0 and increase uj0 until the value 1/cj0 . Because xk > 0 in (4),

each Πk can only increase. As for the Φj’s, only Φj0 can change; but (7) shows that it remains constantly 0. 2

Thus, to ease the computation of the Πk’s, the constraints uj > 1/cj may be inserted into (5): this does not prevent
the computation of a dual optimal solution and does not change the optimal dual value.

INRIA



A bundle-type algorithm for routing in telecommunication data networks 5

3 Model of the dual function

Taking advantage of Proposition 1, we reformulate (5) as

max
u∈U

θ(u) := Φ(u) + Π(u) :=

n
∑

j=1

Φj(uj) +

K
∑

k=1

Πk(u). (9)

To solve it, we propose a hybrid method working as follows:
– Each smooth function Φj is approximated by its second-order development, as in Newton’s method. This development

is made at a point – call it û – controlled according to its (dual) objective value θ(û).
– Each polyhedral function Πk is approximated by cutting planes, as in Kelley’s method [9, 2].
In a way, the above method can be viewed as a bundle variant [14], see also [1], in which
– the cutting-plane paradigm is applied to a part of the (dual) objective function, namely Π,
– stabilization around û is obtained by the Newtonian term u>∇2Φ(û)u, instead of an artificial |u|2 weighted by a hard-

to-tune penalty coefficient.
Finally, since Lagrangian relaxation is column generation, our algorithm can be viewed as a Dantzig-Wolfe variant where
the masters are suitably stabilized.

At each iteration s, (4) is solved with the iterate us, provides a shortest path xk(us), which in turn provides an upper
linearization: by definition, Πk(u) 6 u>xk(us) for all u ∈ R

n. Accumulating these shortest paths, we form at the current
iteration S the K polyhedral functions

Π̂k(u) := min
s=1,...,S

u>xk(us) > Πk(u), for all u ∈ R
n. (10)

As for the Φj’s, note that they have analytic derivatives over the feasible domain:

Φ′
j(uj) =

√

cj

uj

− cj , Φ′′
j (uj) =

−1

2uj

√

cj

uj

if uj >
1

cj

(11)

and that −Φ′
j(uj) = yj(uj) is the optimal yj of (6).

In addition to the Π̂k’s, suppose also that a stability center û ∈ U is available at the current iteration. Analogously to
Πk, each Φj will be replaced by its quadratic approximation near û:

Φ̃j(uj) := Φj(ûj) − yj(ûj)(uj − ûj) +
1

2
Mj(uj − ûj)

2 [' Φj(uj)], (12)

where yj(ûj) = −Φ′
j(ûj) is given by (6) and Mj := Φ′′

j (ûj) by (11).
We will use the notation

Φ̃(u) :=

n
∑

j=1

Φ̃j(uj), Π̂(u) :=

K
∑

k=1

Π̂k(u), θ̂(u) := Φ̃(u) + Π̂(u)

and the essential part of the algorithm will be to maximize θ̂, which can be viewed as a model of the true dual function θ
in (9). We also find it convenient to use the change of variable h = u − û: we solve

max
{

Φ̃(û + h) + Π̂(û + h) : û + h > 1/c
}

.

Introducing additional variables πk (connoting Π̂k), this is the simple quadratic programming problem

max
h,π

{

Φ̃(û + h) +
K

∑

k=1

πk
}

s.t. πk 6 (û + h)>xk(us), for

{

k = 1, . . . , K,
s = 1, . . . , S,

hj >
1

cj

− ûj , j = 1, . . . , n.

(13)

Note that the somewhat artificial constraint û + h = u > 1/c is useful for a fast computation of Πk(u) in (4); but it is
even more useful for the dual algorithm: from (7), Φ′′

j (uj) = 0 if uj < 1/cj . If such a u is a û, then Φ̃j will degenerate
and (13) will perhaps be unbounded from above1.

1This difficulty can be eliminated, though. Observe in (1) that the constraint y > 0 is redundant; each fj of (2) can therefore be extended as we like
on R−. A convenient extension is

fj(yj) :=
y2

j

c2
j

+
yj

cj

for yj 6 0,

RR n° 6010



6 Claude Lemaréchal , Adam Ouorou , Georgios Petrou

Proposition 2 Problem (13) has a unique optimal solution (ĥ, π̂), with π̂k = Π̂k(û + ĥ).

Proof. From standard convex analysis, each function Π̂k is concave; and each Φ̃j is a strictly concave quadratic function
(from (11), Mj < 0!): θ̂ has a unique maximum û + ĥ, making up the h-part of the optimal solution in (13); and each πk

has to reach its maximal value, namely Π̂k(û + ĥ). 2

Note to conclude this section that our approach can of course be applied to the maximization of any concave function
θ made up of two parts: a polyhedral one (given by an oracle) and a smooth one (whose Hessian is at hand). In (12), Mj

is the jjth entry of the Hessian (here diagonal) of the smooth part of θ.

4 Ascent steps, null steps and backtracking

The resolution of (13) predicts an increase
δ := θ̂(û + ĥ) − θ(û) (14)

in the dual objective function. We will see below (Lemma 4) that δ is an optimality measure of û: the algorithm can be
stopped if δ is small. Note that δ > 0 anyway, since θ(û) 6 θ̂(û) 6 θ̂(û + ĥ).

In our bundle variant, the next iterate u+ will be set to û + tĥ, for some suitable stepsize t ∈ ]0, 1]. When doing so, it
is desirable to increase “substantially” the dual function; this is quantified by

θ(û + tĥ) > θ(û) + κtδ, (15)

κ ∈ ]0, 1[ being a fixed tolerance. If (15) holds, the next iterate u+ is set to û + tĥ and û can safely be moved to the
definitely better point u+; iteration S is terminated, this is an ascent step in the bundle terminology. Theorem 1 will show
that this update does imply convergence of the algorithm.

Another desirable feature is to improve the approximation Π̂. If û is not moved (no ascent step is made), (ĥ, π̂) must
not be feasible in the next QP (13) – see Lemma 4 below. We quantify the required improvement as

Π(û + tĥ) 6 Π(û) + t[Π̂(û + ĥ) − Π(û)] − κ′tδ, (16)

κ′ ∈ ]0, κ] being another positive tolerance; by concavity of Π̂, this implies that Π(û + tĥ) is “definitely” smaller than
Π̂(û + tĥ). If (16) holds, u+ is set to û + tĥ and û is kept as it is; again iteration S is terminated, this is a null step.

When neither (15) nor (16) holds, Φ̃ is a bad approximation of Φ. To improve it, we decrease t and test (15), (16)
again; we will make sure in Lemma 2 below that this backtracking phase cannot go forever.

Standard bundle has no backtracking: it merely uses t = 1 and overlooks (16). Actually, if the whole of θ is ap-
proximated by cutting planes, “not (15)” implies that (ĥ, π̂) will be infeasible in the next instance of (13). In the present
variant, the argument is destroyed by the Φ̃-part of θ̂.

5 Toward primal recovery: the aggregate linearization

The necessary material to state the dual algorithm is now available. However, remember that our problem is rather (1)
than (5). To establish the connexion between the two resolutions, we need some more sophisticated material from convex
analysis. First we introduce some notation.

· The normal cone NU (u) is the set of vectors ν ∈ R
n such that (v − u)>ν 6 0 for all v ∈ U ;

· y(û) ∈ R
n will be the vector whose components are yj(ûj), see (6);

· M := ∇2Φ(û) will be the diagonal (negative definite) n × n matrix whose jjth element is Mj = Φ′′
j (ûj) of (12);

· the unit simplex of R
S will be ∆S :=

{

α ∈ R
S :

∑

s αs = 1, α > 0
}

.

Now we recall some elementary subdifferential calculus. Denote by

∂θ(u) := −∂(−θ)(u) = {g ∈ R
n : θ(v) 6 θ(u) + (v − u)>g for all v ∈ R

n}

the “superdifferential” of a concave function such as θ.
· The superdifferential of the smooth concave function Φ̃ is its gradient: ∂Φ̃(u) = −y(û) + M(u − û);

which is C2 and strongly convex; its conjugate enjoys the same properties and the algorithm can work.

INRIA



A bundle-type algorithm for routing in telecommunication data networks 7

· the superdifferential of θ̂ is the sum of superdifferentials:

∂θ̂(u) = −y(û) + M(u − û) +
{

K
∑

k=1

x̂k
}

with x̂k describing ∂Π̂k(u);

· the superdifferential of Π̂k is the convex hull of the active slopes in (10):

∂Π̂k(u) =
{

x̂k =
∑S

s=1 αsxk(us) : α ∈ ∆S ,

αs = 0 if u>xk(us) > Π̂k(u)
}

.
(17)

This allows us to describe the solution of (13):

Proposition 3 The unique optimal solution ĥ of (13) is characterized as follows: for some x̂k ∈ ∂Π̂k(û + ĥ), k =

1, . . . , K and ν ∈ NU (û + ĥ),

ĥ = M−1ĝ , where ĝ := y(û) − x̂ + ν, x̂ :=
K

∑

k=1

x̂k ∈ ∂Π(û + ĥ). (18)

Proof. Watching for various changes of sign, apply the optimality condition [7, Thm. VII.1.1.1(iii)]: there is some super-
gradient in ∂θ̂(û + ĥ) lying in NU (û + ĥ). In view of the above-mentioned calculus rules, this writes

−y(û) + Mĥ +

K
∑

k=1

x̂k = ν,

which is just (18). 2

With the particular form of U , the property ν ∈ NU (û+ ĥ) means that ν 6 0 is in complementarity with û+ ĥ−1/c >

0.
Note that each x̂k is a convex combination as described in (17). To make up x̂, one needs K sets of convex multipliers

αk ∈ ∆S , which indeed are the KKT multipliers (not necessarily unique) associated with the constraint involving πk in
(13); any reasonable QP solver computes them, in addition to the optimal (ĥ, π̂). In the next statement, this remark could
also be used for an alternative proof, based on complementarity slackness:

Lemma 1 With the notation of Proposition 3, Π̂k(u) 6 u>x̂k for all u ∈ R
n. Equality holds for u = û+ ĥ. In particular,

Π̂(û + ĥ) = (û + ĥ)>x̂.

Proof. Apply (17) with u = û+ ĥ: x̂k =
∑

s αsxk(us) for some α ∈ ∆S . The required inequality is therefore clear from
the definition (10) of Π̂k. Besides, this convex combination involves only indices s such that (û+ ĥ)>xk(s) = Π̂k(û+ ĥ),
so the stated equality holds as well; and the last statement follows by summation over k. 2

The whole business of dual convergence will be to drive δ to 0, and this has interesting consequences:

Proposition 4 With the notation of Proposition 3, δ = δh + δx + δν , where

δh := −1

2
ĥ>Mĥ > 0 , δx := û>x̂ − Π(û) > 0 , δν := ĥ>ν > 0. (19)

Besides, for all u ∈ U ,
θ(u) 6 θ(û) + δx + δν − (u − û)>ĝ. (20)

Proof. Write the definition (14) of δ, using (12) and Lemma 1:

δ = Φ(û) − ĥ>y(û) + 1
2 ĥ>Mĥ + (û + ĥ)>x̂ − Φ(û) − Π(û)

= 1
2 ĥ>Mĥ +

[

û>x̂ − Π(û)
]

− ĥ>(y(û) − x̂)

and (19) follows because y(û) − x̂ = Mĥ − ν from (18).
Then remember from (11) that M is negative semi-definite: δh > 0. The property δx > 0 comes from Lemma 1; and

δν = (û + ĥ − û)>ν is nonnegative because ν ∈ NU (û + ĥ).

RR n° 6010



8 Claude Lemaréchal , Adam Ouorou , Georgios Petrou

Now take an arbitrary u ∈ U . Using feasibility of x̂k in (4), concavity of Φ and definition of normal cones,

Π(u) 6 u>x̂ = û>x̂ + (u − û)>x̂
Φ(u) 6 Φ(û) − (u − û)>y(û)

0 6 (û + ĥ − u)>ν = (û − u)>ν + ĥ>ν.

Summing up and disclosing appropriate δ-values:

θ(u) 6 Π(û) + δx + Φ(û) + (u − û)>(−ĝ) + δν ,

which is just (20). 2

Thus, when δ is small, δh, δx and δν are small. If M behaves itself, |ĝ| is also small and (20) shows that û is
approximately optimal in (9).

6 The algorithm

We are now in a position to state the algorithm. Knowing the expression of Kleinrock function, it works with the help of
the “oracle” solving (4) for given u > 1/c. It uses the improvement parameters κ and κ′ satisfying 0 < κ′ 6 κ < 1, and
the stopping tolerance δ > 0. The starting point u1 ∈ U is given, as well as the initial shortest paths xk(u1) forming the
initial bundle, and the initial quadratic model Φ̃.

Algorithm 1 (Combined Newton-cutting-plane algorithm (Ncp)) Initialize S = 1, û = û1 = u1.
STEP 1 (Trial point finding). Find ĥ, x̂ = x̂S and ĝ = ĝS as described by Proposition 3. Compute δ = δS by (14)
STEP 2 (Stopping test). If δS 6 δ stop, returning û and x̂.
STEP 3 (Line-search). Set t = 1.

STEP 3.1 (Oracle call). Set u+ := û + tĥ. Compute xk(u+) from (4) and the resulting values Π(u+), θ(u+).
STEP 3.2 (Ascent test). If (15) holds, set ûS+1 = u+; update the quadratic approximation Φ̃.

Go to Step 4.
STEP 3.3 (Null-test). If (16) holds, set ûS+1 = ûS .

Go to Step 4.
STEP 3.4 (Interpolation). Select a new t “well inside” the segment ]0, t[.

Go to Step 3.1.
STEP 4 (Bundle updating and loop). For k = 1, . . . , K, append xk(u+) obtained in Step 3.1 to the bundle. Increase S

by 1 and go to Step 1. 2

In Step 3.4, the simplest is to divide t by 2. More sophisticated interpolation formulae can be designed, in the spirit of
cubic fitting in NLP. The expression “well inside” can mean for example “in the segment [0.1t, 0.9t]”: the new t should
be not too close to the old t for obvious reasons, but also not too close to 0 for convergence of the overal algorithm. Of
course, the bundle updating of Step 4 is beneficial for storage requirement and complexity of (13). However this should
be done cautiously, as it might substantially deteriorate the algorithm’s efficiency.

Remark 1 (Sum of max vs. max of sum) Our approximation of Π uses K individual approximations Π̂k of (10). Tra-
ditional bundle methods actually ignore the summation property Π =

∑

k Πk: they use just one supergradient, say
ξs ∈ ∂Π(us) for each us, corresponding to the compound linearization u>ξs of Π(u). Here, ξs is of course the sum of
the shortest paths xk(us).

Storing S linearizations needs Sn elements (as opposed to the KSn elements needed here). Besides, the S th quadratic
problem (13) simplifies to

max
u,π

{

Φ̃(u) + π
}

s.t. π 6 u>
K
∑

k=1

xk(us), for s = 1, . . . , S,

uj > 1
cj

, j = 1, . . . , n,

which has just S linking constraints. It corresponds to a less accurate description of Π, therefore its solution is probably
of lesser quality.

Even with the above simplification, Algorithm 1 needs potentially infinite memory. However, traditional bundle
methods make use of the aggregate linearization x̂ revealed by Proposition 3: a “minimal” variant would approximate Π
at iteration S + 1 by a polyhedral function made up of two pieces only, namely

min{u>x̂S , u>ξS+1}. 2

INRIA



A bundle-type algorithm for routing in telecommunication data networks 9

7 Dual convergence

In this section, we pretend that δ = 0 in Algorithm 1. Then we prove that lim inf δS = 0; this implies that the algorithm
will eventually stop if δ > 0. We use the terminology introduced in §5. First we make sure that each backtracking phase
terminates.

Lemma 2 Assume κ + κ′ 6 1; let −L 6 −` < 0 be lower and upper bounds on the eigenvalues of M over the segment
[û, û + ĥ]. Then (15) or (16) holds (or both) whenever t 6 `/L.

Proof. Suppose that neither (16) nor (15) holds. Subtracting and using definitions:

Φ(û + tĥ) < Φ(û) − t[Π̂(û + ĥ) − Π(û)] + (κ + κ′)tδ

= Φ(û) + t[Φ̃(û + ĥ) − Φ(û)] + (κ + κ′ − 1)tδ

6 Φ(û) + t[Φ̃(û + ĥ) − Φ(û)]

= Φ(û) + t
[

−y(û)>ĥ + 1
2 ĥ>Mĥ

]

.

Apply some mean-value theorem to Φ: for example, denoting by M̃ the Hessian of Φ at some point between û and û+ tĥ

Φ(û + tĥ) = Φ(û) − ty(û)>ĥ +
t2

2
ĥ>M̃ĥ,

so that

−ty(û)>ĥ +
t2

2
ĥ>M̃ĥ < t

[

−y(û)>ĥ +
1

2
ĥ>Mĥ

]

.

Divide by t > 0 and simplify to obtain

−tL|ĥ|2 6 tĥ>M̃ĥ < ĥ>Mĥ 6 −`|ĥ|2 < 0. 2

As usual with a bundle method, our convergence proof considers two cases.

7.1 Case of infinitely many ascent steps

To simplify our analysis, we will assume here that (1) is feasible. This guarantees the Slater property, which is a key for
an appropriate primal-dual behaviour:

Lemma 3 If (1) has a feasible point, then θ is sup-compact on U : the sets of u ∈ U such that θ(u) > b are (closed and)
bounded. As a result, (9) has a unique solution.

Proof. Closedness classically follows from upper semi-continuity of a dual function. Let x̊ and ẙ =
∑

k x̊k make a
feasible point. Because each ẙj < cj , we can find ε > 0 and B > 0 such that

for j = 1, . . . , n, ẙj 6 yj 6 ẙj + ε =⇒ fj(yj) 6 B.

Take an arbitrary u ∈ U ⊂ R
n
+ and set yu := ẙ + ε u

|u| . By definition of the dual function,

θ(u) 6 L(̊x, yu, u) = f(yu) + u>
(

−ẙ − ε
u

|u| +
K

∑

k=1

x̊k
)

= f(yu) − ε|u|;

but 0 6 yu
j 6 ẙj +ε for each j (0 6 uj 6 |u|!), hence f(yu) 6 nB. We have proved that b 6 θ(u) implies b 6 nB−ε|u|.

Then (9) has at least one optimal solution, which is unique because Π is concave and (11) shows that Φ is strictly
concave. 2

Sup-compactness classically eliminates the duality gap and allows the characterization of primal-dual solutions via
the superdifferential of the dual function. We will recover these results in a constructive way, by establishing appropriate
convergence properties of the sequences û and (y(û), x̂) (the latter being established in §8 below).

Theorem 1 Assume that (1) has a feasible point and let Algorithm 1 generate an infinite sequence S of ascent steps. Then
the subsequences (δs)S , (ĥs)S and (ĝs)S tend to 0; and the sequence ûs tends to the optimal solution of (9)2.

2Note that the whole sequence ûs coincides with (ûs)S , since ûs+1 = ûs if s /∈ S.
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Proof. The increasing sequence θ(ûs) has a limit, not larger than the optimal value θ̄ of (9). From Lemma 3, the sequence
ûs is bounded; L > 0 [resp. ` > 0] of Lemma 2 is bounded from above [resp. away from 0], t is bounded away from 0:
say t > t > 0. Then we have from (15)

θ(ûs+1) > θ(ûs) + κtδs if s ∈ S
θ(ûs+1) = θ(ûs) otherwise

and we obtain by summation
∑

s∈S

δs 6 [θ̄ − θ(u1)]/κt: (δs)S tends to 0. The three components of δs in (19) tend to 0 as

well, and this is also true of the subsequences (ĝs)S and (ĥs)S .
Then take a cluster point of ûs and pass to the limit in (20): this cluster point has to be the unique optimal solution of

(9). 2

Note that, if (1) has no feasible point, then θ(û) will typically tend to +∞; δ has no reason to tend to 0, the stop in
Algorithm 1 will never occur. To prevent this situation, it is wise to insert an “emergency stop” when θ(û) is unduly large.

7.2 Case of finitely many ascent steps

First we show that the next QP will modify the present ĥ (remember from Proposition 2 that Π̂(û + ĥ) = π̂):

Lemma 4 If (16) holds, the new linearization x(û + tĥ) satisfies

(û + ĥ)>x(û + tĥ) 6 Π̂(û + ĥ) − κ′δ. (21)

Proof. Use simplified notation: with u+ = û + tĥ, set x+ := x(u+) and z := (û + ĥ)>x+.

u+ = û + tĥ û + ĥ

Π̂(û + ĥ)

Π(u+)
Π(û)

û

z = (û + ĥ)>x+

slope ĥ>x+

Figure 2: The new linearization passes under Π̂(û + ĥ)

Because x+ ∈ ∂Π(u+), we have by definition Π(û) 6 Π(u+) − tĥx+; hence ĥ>x+ 6 [Π(u+) − Π(û)]/t, so that

z = Π(u+) + (1 − t)ĥ>x+ 6 Π(u+) + 1−t
t

[Π(u+) − Π(û)] =
1
t
Π(u+) − 1−t

t
Π(û).

Now use (16) to bound Π(u+):

z 6
1

t
Π(û) + Π̂(û + ĥ) − Π(û) − κ′δ − 1 − t

t
Π(û),

which is just (21). 2

The proof of the next result uses explicitly the fact that all linearizations are stored in the bundle: to accommodate the
bundle compression alluded to at the end of Remark 1, a more sophisticated proof would be required, along the lines of
[7, Thm. XV.3.2.4].

Theorem 2 Suppose the stability center stops at some iteration S: ûs+1 = ûs for all s > S. Then δs → 0 and ûS is the
optimal solution of (9).

Proof. The situation is as follows: at all iterations s following S, û = ûS , M and y(û) are fixed; δ = δs forms a
nonincreasing sequence since (13) has more and more constraints; Lemma 4 then guarantees that ĥ = ĥs is bounded. It
follows that us+1 = û + tshs is also bounded, as lying in the segment [û, û + ĥs]; hence x(us) ∈ ∂Π(us) is bounded
([7, Prop. VI.6.2.2]).
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Write (21) and the definition (10) of Π̂ at the sth iteration: for all s > S and all r 6 s,

(û + ĥs)>x(us+1) + κ′δs
6 Π̂(û + ĥs) 6 (û + ĥs)>x(ur),

so that
κ′δs

6 (û + ĥs)>[x(ur) − x(us+1)] 6 B|x(ur) − x(us+1)|,

where we have used the Cauchy-Schwarz inequality and B is a bound for |û + ĥs|. Now assume δs > ε > 0 for all s.
Then

|x(ur) − x(us+1)| >
κ′ε

B
for all s > S and all r 6 s.

In words: around each x(ur), there is a ball of fixed radius κ′ε/B which cannot contain any other x; because the x’s are
confined in a bounded set, this is impossible.

It follows that the monotone sequence δs tends to 0, pass to the limit in (20) to establish optimality of û. 2

8 Primal recovery

It is known that convergence of the dual algorithm has its counterpart concerning the primal problem. However, we solve
here (9), while the dual of (1) is rather (5). The issue is therefore more delicate, especially when infinitely many ascent
steps are performed; we analyze this case first.

Theorem 3 The assumptions are those of Theorem 1. The subsequence {y(us)}s∈S tends to the unique y-optimal solution
of (1). For k = 1, . . . , K, the subsequences {x̂k,s}s∈S are bounded and any of their cluster points makes up an x-optimal
solution of (1).

Proof. We already know from Theorem 1 that (δs)S , (ĥs)S and (ĝs)S tend to 0. We also know that ûs has a limit ū;
therefore y(ûs) → y(ū) and we proceed to prove that (x̂s)S → y(ū). Note that (ûs + ĥs)S → ū.

Define the set J∗ := {j = 1, . . . , n : ūj = 1/cj} of artificial constraints that are active at ū.

– For j /∈ J∗, ūj > 1/cj so that ûs
j + ĥj

j > 1/cj for s ∈ S large enough, The property νs ∈ NU (ûs + ĥs) therefore
implies νs

j = 0, hence x̂s
j = yj(û

s) − ĝs
j tends to yj(ū).

– For j ∈ J∗, yj(ū) = 0; hence yj(û
s) → 0 and x̂s

j → 0 because, from (18),

0 6 x̂s
j = yj(û

s) − ĝs
j + νs

j 6 yj(û
s) − ĝs

j → 0.

Piecing together, we see that
(x̂s − y(ûs))S → 0. (22)

Now write
θ(ûs) = Φ(ûs) + Π(ûs) = f(y(ûs)) − (ûs)>y(ûs) + Π(ûs)

and pass to the limit for u ∈ S:
θ(ū) = f(y(ū)) − ū>y(ū) + Π(ū).

But observe from (22) that
−ū>y(ū) + Π(ū) = lim

s∈S

[

−(ûs)>x̂s + Π(ûs)
]

= lim
s∈S

δs
x

where we have used the notation of Lemma 4. Since (δs
xδs

x)S → 0,

θ(ū) = f(y(ū)). (23)

Finally, the convergent sequence (x̂s)S is bounded. Being nonnegative and summing up to (x̂s)S , the subsequences
(x̂k,s)S are also bounded. Consider a cluster point: say, with S ′ ⊂ S, (x̂k,s)S′ → x̄k for k = 1, . . . , K. The x̄k’s are
feasible in (1) and they sum up to y(ū): (x̄, y(ū)) makes a feasible point in (1). In view of (23), weak duality tells us that
this point is primal optimal. 2

The case of finitely many ascent steps is just easier, as ûs reaches its limit ū for some finite s.

Theorem 4 Suppose that the stability center stops at some iteration S. Then the conclusions of Theorem 3 hold, with S
replaced by the whole sequence S + 1, . . . In fact, ûS is the optimal solution of (9).
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12 Claude Lemaréchal , Adam Ouorou , Georgios Petrou

Proof. Invoke Theorem 2: the whole sequences δs, ĥs and ĝs converge to 0. Then proceed exactly as for Theorem 3,
with the simplifying property that ûs = ū for all s > S. 2

Note that this result makes no assumption about primal feasibility . . . and yet proves primal existence. This has an
interesting consequence:

Corollary 1 Suppose that (1) has no feasible point. Then the dual function θ does not reach its maximum.

Proof. Suppose for contradiction that (9) has an optimal solution ū. Initialize Algorithm 1 with u1 = ū. There can be no
descent step and Theorem 4 establishes the existence of an optimal primal solution. 2

9 Numerical illustrations

To get a feeling of the numerical merits of our approach, we benchmark it on 16 test-problems against two implementations
of its direct concurrent: the standard bundle method, which we briefly recall now.

If no attention is paid to its smoothness, Φ can be approximated via the linearizations Φ̄s
j(uj) := Φj(uj) − (uj −

us
j)

>yj(u
s
j), instead of the quadratic functions Φ̃j(uj) of (12). Then Φ can be approximated just as Π by a polyhedral

function (call it Φ̂) instead of the quadratic function Φ̃ of (12); then a bundle method maximizes the resulting polyhedral
approximation Φ̂ + Π̂ of θ, stabilized by a quadratic term 1

2t
|u − û|2; t > 0 is a parameter. Standard bundle methods

maximize this approximation, and then manage the stability center û just as in Algorithm 1 (except that no backtracking
is necessary).

An implementation in the spirit of the present paper uses the individual approximations Φj(uj) 6 Φ̂j(uj) :=
mins Φ̄s

j(uj), thus replacing (13) by

max
h,φ,π

{

n
∑

j=1

φj +

K
∑

k=1

πk − 1

2tS
|h|2

}

s.t.

φj 6 Φ̄s
j(ûj + hj), j = 1, . . . , n ,

πk 6 (û + h)>xk(us), k = 1, . . . , K ,

}

s = 1, . . . , S,

hj >
1
cj

− ûj , j = 1, . . . , n.

We will refer to this implementation as bfull, as it fully splits the approximation of θ. Now remember Remark
5: ignoring the summation in Φ, we can also use the compound (less accurate) polyhedral approximation Φ(u) 6

mins

∑

j Φ̄s
j(uj). In compensation, the resulting quadratic program simplifies to

max
h,φ,π

{

φ +
K

∑

k=1

πk − 1

2tS
|h|2

}

s.t.

φ 6

n
∑

j=1

Φ̄s
j(ûj + hj) ,

πk 6 (û + h)>xk(us), k = 1, . . . , K ,











s = 1, . . . , S,

hj >
1
cj

− ûj , j = 1, . . . , n.

We also compare our method to this implementation, referred to as bhalf: it uses only a half of the splitting possibilities
in θ.

With Algorithm 1 (referred to as Ncp), this makes three solvers, which have been implemented in C on a bi-processor
Intel Xeon (30.06GHZ, 1.5GB RAM) under Linux operating system. Both standard bundle variants are home-made
implementations of [11] (in particular for the t-management); Dijkstra’s algorithm is used for the shortest path problems
and the various QP are solved by Cplex 10.0. We use κ = κ′ = 0.1 in Algorithm 1; the stopping criterion is δ = 10−6

for Ncp and ε = 10−6 for bm. We group the commodities by source nodes so that each computation of Π calls at most m
times Dijkstra’s algorithm.

Table 1 gives the result.
– The first group of 4 columns describes the 16 test problems, ranked by number K of commodities (recall that the number

of dual variables is n). Problems 3,7,10 and 13 are the random networks already used in [15]. Problems 1 and 4 are
nso22 and nso148, well known in the convex optimization community: see [5, 8]. The remaining test problems are
based on actual networks.
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iterations total CPU final θ
Pb m n K

Ncp bfull bhalf Ncp bfull bhalf Ncp bfull bhalf
1 14 22 23 12(88) 19 645 0.03 0.20 286.2 103.412019 103.412019 103.4119
2 19 68 30 5 (6) 11 16 0.02 0.14 0.08 8.994992 8.994991 8.994992
3 60 280 100 7 (95) 14 93 0.20 1.47 8.01 53.080767 53.080767 53.080767
4 61 148 122 7 (8) 24 167 1.07 8.84 61.09 151.926869 151.926869 151.926866
5 20 64 133 7 (8) 16 156 0.35 2.67 70.59 39.635462 39.635462 39.635460
6 122 332 162 9 (90) 21 309 0.61 5.23 495.4 276.321357 276.321357 276.321354
7 100 600 200 7 (96) 17 190 0.78 6.91 250.6 84.967483 84.967482 84.967481
8 30 72 335 7 (104) 24 1000* 0.13 3.56 5982.1 36.451716 36.451712 36.4516
9 21 68 420 7 (8) 42 151 5.62 88.66 856.5 68.838958 68.838958 68.83891

10 100 800 500 10(304) 16 274 9.60 26.32 2061 139.096514 139.096509 139.0964
11 67 170 761 8 (133) 32 158 4.84 64.26 409. 109.895582 109.895579 109.895577
12 34 160 946 5 (6) 14 285 1.03 12.20 1650.2 19.566682 19.566681 19.566681
13 300 2000 1000 11(319) 22 569 73.37 322.51 30564. 304.389462 304.389460 304.38940
14 48 198 1583 9 (80) 22 803 13.09 68.45 5h45 135.463182 135.463168 135.463124
15 81 188 2310 3 (4) 19 1000* 2.44 308.51 28h 41.791840 41.791826 41.75
16 122 342 2881 9 (73) 30 1000* 311.85 764.5 42h 242.714771 242.714733 238.7

Table 1: Comparison of Algorithm 1 (Ncp) with standard bundle (bhalf uses a compound approximation of Φ).
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14 Claude Lemaréchal , Adam Ouorou , Georgios Petrou

– The next group of columns gives the number of QP solved; column Ncp gives also the number of oracle calls (which
depends on the number of backtracking steps; for standard bundle, one iteration is one QP resolution and one oracle
call).

– The remaining columns are self-understanding. Computing times are in seconds; they are mainly indicative and would
probably change substantially with the use of a specialized QP solver such as [10, 12, 3].

Note the difficulties of bhalf on Problems 8, 15 and 16, which could not reach the stopping criterion within 1000
iterations.
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