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Une variante de faiceaux adaptée à certaines générations de colonnes

Résumé : Nous donnons une méthode de faisceaux pour l’optimisation convexe sous contraintes. Au lieu d’utiliser une
fonction de pénalité, elle recentre les itérés vers l’ensemble réalisable au moyen d’un point de Slater supposé connu.
D’autre part, la méthod acepte un oracle inexact, donnant les valeurs de fonction et sous-gradient avec une précision non
spécifiée. Notre approche est motivée par des applications en génération de colonnes, dans lesquelles les contraintes sont
positivement homogènes – 0 est alors un point de Slater naturel – et où un oracle exact peut être cher en temps de calcul.
Enfin, notre analyse de convergence utilise des arguments peu utilisés dans la communauté faisceaux. La méthode est
illustrée sur un bon nombre de problm̀es de découpe industrielle.

Mots-clés : Optimisation non différentiable, Optimisation convexe, Méthode de faisceau proximale, Sous-gradient
approché, Génération de colonnes, Problème de découpe industrielle



An Inexact Conic Bundle Variant Suited to Column Generation 3

1 Introduction

We consider the convex constrained minimization problem

inf f(u) , u ∈ C , h(u) 6 0 ; (1)

here C is a “simple” closed convex set in the Euclidean space R
m (typically a polyhedron); f(·) is a “simple” convex

real-valued function (typically linear, or quadratic); h(·) is also a convex real-valued function1, but only known via an
oracle which delivers appropriate information at any given u ∈ C.

The present paper relies upon the assumption that a Slater point

u0 ∈ C such that h(u0) < 0 (2)

exists and is available; motivating applications are given in §§3.2–3.3.
We are interested in algorithms of the cutting-plane type, whose building bricks are linearizations of h(·), i.e., affine

functions `(u) = ua − γ minorizing h(u). At the current iteration k of such an algorithm, the oracle has been called at
a number of trial points u1, . . . , uk in C, and has returned the corresponding couples (h1, a1), . . . , (hk, ak) in R × R

m.
Normally, hj = h(uj) and aj ∈ ∂h(uj) denote the (exact) constraint value and a subgradient at uj . In this paper, the
oracle is allowed to be noisy: we assume for all j

hj = h(uj) − ηj and aj ∈ ∂ηj h(uj) , with ηj > 0 , (3)

where the inaccuracies ηj are unknown. The above notation introduces the η-subdifferential2

∂ηh(u) := {a : h(·) > h(u) − η + (· − u)a} . (4)

As far as cutting planes are concerned, each (hj , aj) from the oracle defines the linearization

u 7→ h̄j(u) := hj + (u − uj)aj , (5)

and the ηj-subgradient inequality gives for all u ∈ R
m

h(u) > h(uj) − ηj + (u − uj)aj = hj + (u − uj)aj = h̄j(u) . (6)

In this context, the general bundle methodology [14, §XV.3] maintains
– a model ȟk(·) of h(·), which must satisfy

ȟk(u) 6 h(u) for all u ∈ C , (7)

– a stability center ûk,
– a stability parameter tk > 0,
and the next reference point uk+1 is the optimal solution of

inf f(u) + 1
2tk |u − ûk|2 , u ∈ C , ȟk(u) 6 0 . (8)

In fact, ȟ(·) := ȟk(·) is piecewise linear (so (8) is typically a quadratic programming problem); as such, it can be
written for some finite index set Jk:

ȟ(u) = max {uaj − γj : j ∈ Jk} , (9)

where each (γj , aj) lies in R×R
m; we will call bundle the data {(γj , aj)}j∈Jk characterizing ȟ(·). The affine functions

in (9) are linearizations of h(·). They can be those of (5), with j ∈ {1 : k} and γj := ujaj − hj ; note that (6) then
guarantees (7). However, §2.3 below will introduce “exogeneous” linearizations, through the operation of aggregation.

Remark 1 We have introduced two ways for characterizing an affine function such as h̄j(·):
– (9) is the natural way; it uses the constant term γj , which will be useful for the applications in §3;
– (5) rather translates the origin to uj , which is useful for the description and analysis of the algorithm; we will see in

§2.4 that translating the origin to û is even more appropriate. 2

1In this paper, we will systematically use notation such as f(·), h(·), . . . for functions, while f , h, . . . will be reserved to particular values of such
functions.

2For reasons to come in §3 below, u and a are considered as row and column vectors respectively: a will be a column of an m×n constraint matrix
A and u will be a multiplier vector.
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4 Krzysztof C. Kiwiel , Claude Lemaréchal

With the above notation, (8) can be more concretely written as

inf f(u) + 1
2tk |u − ûk|2 , u ∈ C , uaj − γj

6 0, j ∈ Jk . (10)

Lemma 1 Under assumption (2), (8) has a unique optimal solution uk+1 given by

uk+1 = ûk − tkĝk , with ĝk := bk + µkâk + νk , (11)

where
· bk ∈ R

m is a subgradient of f at uk+1,
· µk > 0 satisfies µkȟk(uk+1) = 0,
· âk ∈ R

m is a subgradient of ȟk at uk+1,
· νk ∈ R

m lies in the normal cone NC(uk+1) to C at uk+1.
With the explicit expression (9), we have in (11)

µk =
∑

j∈Jk

λj and µkâk =
∑

j∈Jk

λjaj , (12)

where the nonnegative multipliers λj satisfy λj(uk+1aj − γj) = 0.

Proof. Because of (7), the Slater assumption is transmitted to (8), which clearly has a unique optimal solution. Then these
statements are just the standard optimality conditions, see for example [34, Chap. 28]: a subgradient of the Lagrangian is
opposite to the stated normal cone. Such a subgradient can be written b + u−û

t
+ µâ for (8) or b + u−û

t
+

∑

j λjaj for
(10). 2

This result reveals the crucial m-vectors ĝk and âk. Up to the approximation h(·) ȟk(·), ĝk is a distinguished sub-
gradient of the Lagrangian associated with (1) and the update formula uk+1 = ûk − tkĝk of (11) resembles a subgradient
step with stepsize tk, to minimize that Lagrangian. With respect to footnote 2, page 3, note that the subgradient ĝk is a
column; but tkĝk should be viewed as a row. The whole business of convergence will be to drive ĝk to 0. As for âk, it
takes its importance for aggregation (§2.3), and also for Lagrangian relaxation, or rather column generation (§3.1).

The paper is organized as follows: §2 reviews the various points in the paper which make its originality; §3 is devoted
to our motivating application: column generation; §4 states the algorithm, whose convergence is analyzed in §5 and
interpreted in the primal space in §6; we conclude in §7 with numerical illustrations on cutting-stock problems.

2 Main ideas in the paper

We first proceed to outline the algorithm studied in this paper, by describing its current kth iteration. In this informal
description, we will often drop the index k to alleviate notation; then the superscript “+” will stand for k + 1.

2.1 Maintaining the stability center

The role of û := ûk is to control a suitable balance between objective and constraint values. Our variant uses the Slater
point (2) to take care of feasibility of each û; as a result, the management of the stability center may disregard h-values
and needs to check f -values only.

More precisely, having called the oracle at the new iterate u+, we construct the interpolated point

ŭk := u0 + β̆k(uk+1 − u0) with β̆k :=







1 if hk+1 6 0 ,
−h0

hk+1 − h0
otherwise .

(13)

Note here that β̆ ∈ [0, 1]. The algorithm uses the (strictly negative) answer h0 from the oracle, but a0 need not be used.
The next result is illustrated by Fig. 1.

Lemma 2 h(ŭk) 6 η̆k := (1 − β̆k)η0 + β̆kηk+1 6 max {η0, ηk+1}.

INRIA
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Figure 1: Interpolation guarantees h(ŭ) 6 (1 − β̆)η0 + β̆η+.

Proof. By convexity of h(·),

h(ŭ) 6 (1 − β̆)h(u0) + β̆h(u+)

= (1 − β̆)(h0 + η0) + β̆(h+ + η+)

= h0 + β̆(h+ − h0) + (1 − β̆)η0 + β̆η+ ,

where we have used (3). Inspection of (13) shows that h0 + β̆(h+ − h0) 6 0 in either case, so the result follows. 2

Thus, possible infeasibility of ŭ is controlled in the same way as the oracle’s inaccuracy. In particular, ŭ is feasible in
the case of an exact oracle.

Now let us assume for the moment that û is feasible in (8) – this is the case with an exact oracle. Then the predicted
decrease v := f(û) − f(u+) is positive (the case v = 0, i.e., u+ = û, is uninteresting; and §2.2 below will explain how
to enforce positivity of v in the noisy case). As a result, the following strategy makes sense:
– Improve the current stability center if f(ŭ) is “definitely smaller” than f(û). More precisely, fix a coefficient κ ∈ ]0, 1[

and set û+ := ŭ if f(û) − f(ŭ) > κv; this is a descent step.
– If such is not the case, make a null step: û+ := û.
– In either case, update ȟ(·) and t and proceed to the next iteration.

The above interpolation idea is reminiscent of versions of the cutting-plane algorithm which also use points like u0 and
ŭ; see [38] and the references therein. In these versions, however, the oracle is called at ŭ, while our variant disregards
ŭ for the oracle, which is called at u+ only. However, §3.2 below will show that both appraches become closer in an
important special case.

Except for the two recent filter methods [9, 15], the existing bundle methods for constrained optimization require a
merit function: exact penalty (f(u) + π max{0, h(u)}, as in SQP) or “F -distance” (max {f(u) − f(û), h(u)}, as in the
method of centers) for example. The earliest feasible-point methods of [32] and [18, Ch. 5] converge slowly, because their
method-of-centers subproblems prevent approaching the constraint boundary fast. No feasible starting point is needed by
the phase I/phase II methods of [18, Ch. 5.7], but they can also be quite slow, as confirmed for the recent variant of [35].
The penalty function methods of [19, 20] tend to perform better; still, they require additionally that C be bounded, and
may converge slowly when their penalty parameter estimates are too high. Finally, the level method of [29] (also see [24]
and [2]) has good efficiency estimates when the set C is bounded, even if a Slater point does not exist; not suprisingly,
therefore, it cannot benefit from the knowledge of a Slater point.

2.2 Coping with the noise

Suppose t := tk = +∞ in (8): there is no stabilizing term and (8) becomes a relaxation of (1), thanks to (7). If, in
addition, we take Jk = {1 : k}, we obtain the pure cutting-plane algorithm3 [5, 16] used for standard column generation,
see §3 below. This algorithm is little affected by inaccuracies: it just requires the oracle to provide linearizations satisfying
(6). Accumulating linearizations eventually drives h+ to 0; insofar as h+ is close to h(u+) (depending on the noise in the
oracle), a small h+ implies that u+ is approximately feasible, and therefore approximately optimal for (1).

This observation indicates that the noise can disturb our bundle algorithm only via the stabilizing term in (8). In fact,
the new stability center û+ is constructed so as to be feasible in the current problem (8) (see Fig. 1). Nevertheless, h(û+)
may be positive and the property (6) need not guarantee û+ to stay feasible in all subsequent problems (8). When the

3When t = +∞, (8) may have no solution; we skip this difficulty here.
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6 Krzysztof C. Kiwiel , Claude Lemaréchal

stability center is not feasible, the predicted decrease may be negative: the algorithm is so much fooled that it seeks points
worse than the stability center.

Our previous remark immediately suggests the cure, already proposed in [26]: just increase t in (8) in order to lessen
the influence of the stabilizing term; do this until
– either v gives a safe descent test,
– or t is deemed large enough so that the whole algorithm can stop, just as the pure cutting-plane method would do.

Remark 2 We will see (end of §4) that more accurate answers from the oracle are required only at descent steps: large
errors h(uj) − hj at null steps do not deteriorate the final answer of the algorithm. 2

To give a safe descent test, v should be “substantially” positive. Technically, it is convenient to require a decrease of
the whole objective function in (8) from û to u+: descent is tested only when

f(û) − f(u+) − 1
2t
|u+ − û|2 > 0 i.e. v > 1

2t
|u+ − û|2 ; (14)

otherwise t is simply increased and (8) is solved again, with the same û and ȟ(·).

Remark 3 (Bounding the objective) Let us mention here that no feasible û need ever be produced when the oracle is
noisy; it may not be straightforward to bound from above the optimal value f ∗ of (1).

It is known that f(u) + π max {0, h(u)} > f ∗ for any u ∈ C if π is large enough (larger than an optimal multiplier
µ∗). Yet, such bounds assume some information about µ∗ – and are corrupted by noise anyway.

However, assume that the oracle is also able to answer upper bounds, say h̃j > h(uj). They can be inserted in
the above exact penalty function, but better bounds can be obtained. In fact, introduce analogously to (13) the upper
interpolated point

ũ := u0 + β̃(u+ − u0) with β̃ :=







1 if h̃+ 6 0 ,
−h̃0

h̃+ − h̃0
otherwise

and assume h̃0 < 0. Then β̃ ∈ [0, 1] and h(ũ) 6 0 by convexity, as in Lemma 2. This construction can be useful in
applications, see Remark 6 below. 2

Our algorithmic constructions and analysis of inaccuracies in the oracle extend to the constrained case the inexact
linearization framework of [26, 27]; for earlier related developments, see [13, 17, 22, 33, 37].

2.3 Managing the constraint model: the aggregate linearization

The management of ȟ(·) should guarantee convergence in spite of possible nonsmoothness of h(·). To this aim the
standard idea, which is used in the pure cutting-plane algorithm, is to accumulate information coming from the oracle (the
“bundling” process): with the new linearization h̄+(u) := h+ + (u − u+)a+ – recall notation (5) – one sets ȟ+(·) :=
max {ȟ(·), h̄+(·)}, i.e., J+ := J ∪ {+}. This results in storing all the (γj , aj) in (10), which may become inconvenient
or impossible when the iteration index k grows; the question is therefore: Which linearizations should ȟ+(·) be made
from? To answer it, (7) should be kept in mind.

Naturally, the new couple (h+, a+) must appear in the new model: J+ ⊃ {+}. As for information accumulation, it
uses the set

Ĵ := {j ∈ J : u+aj − γj = ȟ(u+)} (15)

of active linearizations at u+. From standard convex analysis (see [14, § VI.4.4 or Ex. VI.3.4] for example), the subdiffer-
ential of ȟ(·) at u+ is the convex hull of the corresponding slopes:

∂ȟ(u+) =
{

∑

j∈Ĵ

αjaj : αj
> 0,

∑

j∈Ĵ

αj = 1
}

. (16)

By the definition of subgradient, the function `(u) := ȟ(u+) + (u − u+)a satisfies `(·) 6 ȟ(·) if a ∈ ∂ȟ(u+). With
reference to (9), this `(·) can be put in the form `(u) = ua − γ and its constant term γ is easy to compute:

Lemma 3 With a ∈ ∂ȟ(u+), the above function `(·) has
(

γ
a

)

=
∑

j∈Ĵ

αj

(

γj

aj

)

for some α > 0 with
∑

j∈Ĵ

αj = 1 . (17)

INRIA
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Proof. Because u+aj − γj = ȟ(u+) = `(u+) = u+a − γ for all j ∈ Ĵ , we obtain for any set α of convex multipliers

u+
(

∑

i∈Ĵ

αjaj
)

−
∑

i∈Ĵ

αjγj = ȟ(u+) = `(u+) = u+a − γ .

This holds in particular for the α making up a – see (16). 2

Then the bundling process distinguishes three cases:

(i) A descent step is made. Then the descent property is strong enough to imply convergence, even if J+ is reduced to
the singleton {+}.

(ii) The constraint is not active in (8); more precisely, µ = 0. Again, we may set J+ = {+} without impairing
convergence.

(iii) A null step is made and µ > 0. Then Lemma 1 reveals the aggregate linearization

u 7→ h̄−(u) = h̄−k(u) := ȟk(uk+1) + (u − uk+1)âk , (18)

which satisfies h̄−(·) 6 ȟ(·). Indeed, h̄−(·) somehow gathers the whole information contained in the current bundle,
entailing the memorization effect crucial for convergence; this is explained in [6, §4] for example.

Altogether we have max {h̄−(u), h̄+(u)} 6 h(u) for all u, which reveals a piecewise linear function satisfying
(7): it is a valid candidate for the next model ȟ+(·). Taking this candidate as ȟ+(·) corresponds to the “minimal” set
{−, +} for J+. A “maximal” J+ would be {1 : k + 1}, as in the pure cutting-plane algorithm. We therefore see
that the new index set just has to satisfy

{−k, k + 1} ⊂ Jk+1 ⊂ {−k, k + 1} ∪ Jk . (19)

No matter how J+ is chosen as above, the result is a new model function satisfying – recall the notation (18), (5):

max{h̄−k(u), h̄k+1(u)} 6 ȟk+1(u) 6 h(u) , for all u ∈ C . (20)

We conclude this section with a few remarks:
– A consequence of (17) is that the {−}-linearization is useless if J+ already contains the whole of Ĵ . When m is not

too large, a reasonable choice is J+ = Ĵ ∪ {+}. An even more sensible choice reduces Ĵ to the set of those j such that
λj > 0 in Lemma 1; this is linearization selection, in which each Jk can be forced to have at most m + 1 elements; see
[18, 27].

– In case (iii), the software solving (10) usually provides the multiplier vector λ of (12), so â is readily available: just take
αj := λj/µ in (17).

– Reducing J+ to {+} in cases (i), (ii) is not recommended: the next iteration will be (close to) steepest descent, well
known for its numerical inefficiency. Even when ȟ(u+) < 0 (in which case µ = 0), bundling is probably worthwhile.

– This latter point suggests that aggregation might be desirable even if µ = 0. For this, we can take any linearization of
the form (18), where â is any convex combination of active aj’s at u+.

2.4 Convergence analysis

For later use, we return in this section to the full k-notation. We start with elementary relations: the properties bk ∈
∂f(uk+1), âk ∈ ∂ȟ(uk+1), νk ∈ NC(uk+1) in Lemma 1, and (7) give for all u ∈ C

f(u) > f(uk+1) + (u − uk+1)bk , (21)

h(u) > ȟ(u) > ȟ(uk+1) + (u − uk+1)âk , (22)

0 > (u − uk+1)νk . (23)

Multiply (22) by µk > 0, use complementarity slackness and sum up to obtain

∀u ∈ C, f(u) + µkh(u) > f(u) + µkȟk(u) > f(uk+1) + (u − uk+1)ĝk . (24)

In a bundle method, convergence of the “natural iterates” u+ is not a relevant property: the actual candidates to solving
(1) are rather the stability centers. This is why the optimality conditions of (8) or (10) are traditionally translated to û:

RR n° 6011



8 Krzysztof C. Kiwiel , Claude Lemaréchal

Theorem 1 With the notation of Lemma 1, set

ε̂k := f(ûk) − f(uk+1) − (ûk − uk+1)ĝk ,

δ̂k := ε̂k + ûkĝk .
(25)

Then
ε̂k
> −µkh(ûk) . (26)

Besides, for all u feasible in (8) (e.g., feasible in (1)):

f(u) > f(ûk) − ε̂k + (u − ûk)ĝk , (27)

or equivalently
f(u) > f(ûk) − δ̂k + uĝk . (28)

Proof. We use (24). First take u = û and arrange terms to obtain ε̂ > −µȟ(û) > −µh(û). Then take u feasible in (8):
ȟ(u) 6 0 and f(u) > f(u+) + (u− u+)ĝ. Straightforward manipulations then give (27) and (28). Note that the feasible
set of (8) contains the feasible set of (1) thanks to (7). 2

Note that ε̂ may be negative if û is not feasible in (8). In connection with §2.1 and §2.2, use (11) and (25): the
predicted decrease is

vk := f(ûk) − f(uk+1) = ε̂k + tk|ĝk|2 . (29)

As explained in §2.2, it is “substantially” positive when (14) holds, which has several equivalent expressions obtained by
suitable manipulations based on (29):

vk
>

1

2tk
|uk+1 − ûk|2 , vk

> −ε̂k , ε̂k
> −

tk

2
|ĝk|2 . (30)

When this holds, the descent test is
f(ûk) − f(ŭk) > κvk (31)

with ŭk given by (13) and κ ∈ ]0, 1[.
Traditional convergence analyses of bundle methods consist in showing that 0 is a cluster point of the sequence

{ε̂k, ĝk} ⊂ R × R
m; then (27) implies that f(ûk) is “asymptotically good”. Here we use a slightly different argument,

namely:
The sequence {(δ̂k, ĝk)} has a cluster point (δ̂, 0), with δ̂ 6 0 , (32)

i.e., lim infk→+∞ max {δ̂k, |ĝk|} = 0.

Remark 4 This argument goes back to [26] and has an interesting background in convex analysis. Call φ(·) the actual
objective function of (1) (φ(u) = f(u) if u is feasible, +∞ otherwise) and admit that every ûk is feasible. Then write
(28) as uĝk − φ(u) 6 δ̂k − φ(ûk) for all u ∈ R

m and take the supremum over u: φ∗(ĝk) 6 δ̂k − φ(ûk) where φ∗(·) is
the convex conjugate of φ(·). Finally take a subsequence stipulated by (32): knowing that φ∗(·) is lower semicontinuous
and that φ(ûk) has a limit (φ(ûk) = f(ûk) is monotone),

φ∗(0) 6 lim inf φ∗(ĝk) 6 lim sup φ∗(ĝk) 6 δ̂ − lim φ(ûk) 6 − lim φ(ûk) .

Remembering that −φ∗(0) is the infimum of φ(·), this establishes that ûk is a minimizing sequence for (1).
With the traditional approach, the term ûkĝk in (27) brings trouble if ûk is unbounded. 2

Thus, f -values of the stability centers are assessed by (27) or (28). Their h-values are assessed by Lemma 2. Suppos-
ing that the latest descent step occurred at iteration K (i.e., after the K +1st oracle’s call), feasibility of û depends on η̆K ,
i.e., on η0 and ηK+1; for example, h(û) 6 ηK+1 if hK+1 6 0.

INRIA
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3 Motivation: column generation

Consider the following primal-dual pair of LP problems (c is an n-row, b is an m-column)

min cλ , Aλ + b > 0 , λ ∈ R
n
+ , (33)

max −ub , uA 6 c , u ∈ R
m
+ , (34)

where n is a huge number: then column generation is a method of choice. For i ∈ {1 : n}, let Ai denote column i of A.
Setting C := R

m
+ , f(u) := ub and

h(u) := max
i=1,...,n

(uAi − ci) (35)

clearly puts (34) in the form (1).
The possibility of an inaccurate oracle is useful in this framework. In fact (keeping Remark 2 in mind), the oracle in

charge of solving (35) is allowed to compute an arbitrary i = ij :

Proposition 1 For given uj ∈ R
m and ij ∈ {1 : n}, set hj := ujAij − cij and aj := Aij . Then

ηj := h(uj) − hj
> 0 and aj ∈ ∂ηj h(uj) .

Proof. The property ηj > 0 is obvious from the definition (35) of h(uj). Now consider the definition of ∂ηj h(uj) in (4):
for all u

h(uj) − ηj + (u − uj)aj = hj + (u − uj)Aij = ujAij − cij + (u − uj)Aij ;

the last term is just uAij − cij , which is not larger than h(u). 2

As for the availability of a Slater point, it is application dependent; note that we may take u0 = 0 in (2) if c > 0. A
particularly interesting situation will be seen in §3.2 below.

In this section, we explain how our bundle method for the dual problem (34) can solve the primal problem (33). Again
we drop the index k whenever possible.

3.1 Primal recovery

We proceed to show that the multiplier vector λ of Lemma 1 provides a good candidate for solving (33), once properly
embedded in R

n. In fact, the (γj , aj)’s in (9) or (10) connote the (ci, Ai)’s in (35) or (34). The λj ’s of (12) define µâ as
well as

µγ̂ :=
∑

j∈J

γjλj ; (36)

then µ(γ̂, â) connotes (cλ, Aλ) in (33).
A primal-dual optimal pair for (33), (34) is a (λ̂, û) ∈ R

n
+ × R

m
+ satisfying

ûA 6 c , Aλ̂ + b > 0 , cλ̂ + ûb 6 0 , (37)

where the last 6-sign could just be replaced by = (weak duality). In the construction of an optimal pair by our bundle
method (remember from §2.4 that the candidate to dual optimality is the stability center û), the next result deals with the
second and third inequalities:

Lemma 4 With (36), (25) and the notation of Lemma 1, there holds

µγ̂ + ûb = δ̂ . (38)

µâ + b > ĝ , (39)

Proof. By the definition of normal cone, ν in (11) is in complementarity with u+: 0 6 u+ ⊥ (−ν) > 0, hence

b + µâ − ĝ > 0 and u+(b + µâ − ĝ) = 0 ,

which gives (39) and u+(µâ) = u+ĝ − u+b. Besides, complementarity slackness in (10) guarantees that u+aj = γj if
λj > 0, hence u+(µâ) = µγ̂; this gives µγ̂ = u+ĝ − u+b. Since δ̂ = (û − u+)b + u+ĝ by (25), (38) follows. 2
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10 Krzysztof C. Kiwiel , Claude Lemaréchal

The role of the convergence property (32) for primal recovery is now clear: together with the constraint ȟ(u) 6 0,
it aims at satisfying the three inequalities in (37). Assume for the moment that J ⊂ {1 : n}. Extending the λj ’s by
zero gives λ̂ ∈ R

n, which satisfies approximately the optimality conditions when the algorithm is close to convergence.
Actually, J can be slightly more general:

Theorem 2 Assume in (9) that the (γj , aj)’s are linear combinations of the (ci, Ai)’s in (33):

(

γj

aj

)

=

n
∑

i=1

αj
i

(

ci

Ai

)

for each j ∈ J . (40)

With λ of Lemma 1, define λ̂ ∈ R
n by

λ̂i :=
∑

j∈J

λjαj
i for i ∈ {1 : n} . (41)

Then there holds
cλ̂ + ûb = δ̂ , Aλ̂ + b > ĝ .

Proof. Using successively the definition (41) of λ̂, (40) and the definitions (12), (36) of (γ̂, â), we have

(

cλ̂

Aλ̂

)

=

n
∑

i=1

λ̂i

(

ci

Ai

)

=
∑

j∈J

λj

n
∑

i=1

αj
i

(

ci

Ai

)

=
∑

j∈J

λj

(

γj

aj

)

= µ

(

γ̂
â

)

.

The result is then just Lemma 4. 2

Naturally, α should be nonnegative to guarantee λ̂ > 0. In our framework, the α’s actually form convex multipliers,
coming into play when aggregating: in (19), â ∈ ∂ȟ(u+) is a convex combination of the aj’s making up ȟ(·) – see (16).
The above result is therefore useful to deal with a bundle with negative indices. This will be seen more precisely in §6.

3.2 The positively homogeneous case

The main innovative feature of our method is the interpolation technique outlined in §2.1; arguably, its efficiency relies
heavily on the choice of the Slater point: for example, would it not be a good idea to improve u0 whenever a strictly better
feasible point is found? Our technique, however, seems convenient in the particular instances of (33), (34) where c is the
vector of all ones in Rn. Then the constraint in (1) has the form

h(u) = σ(u) − 1 , where σ(u) := max
i=1,...,n

uAi . (42)

Here come a few key observations:

(i) The above σ(·) is a positively homogeneous function of u: σ(βu) = βσ(u) for all β > 0.
(ii) An obvious Slater point is u0 = 0, for which h0 := h(u0) = −1 is readily available.

(iii) Assume h+ = h(u+) > 0 in (13) and use positive homogeneity (η0 = η+ = 0 and h(·) is affine with respect to β in
Fig. 1, σ(·) is linear):

σ(ŭ) = σ(u0) + β̆
(

σ(u+) − σ(u0)
)

=
1

σ(u+)
σ(u+) = 1 .

Thus, in the noiseless case, the candidate ŭ for the next stability center lies on the boundary of the feasible domain
in (34).

(iv) Of course, it is σ(·) which is computed by the oracle, and this computation can be inaccurate, as in the general case.

Property (iii) above is very convenient and assesses the choice of u0 = 0 as the interpolation center: first, optimal
solutions of (34) should be sought on the boundary of its feasible domain; second, the stability centers are feasible (if the
oracle is exact), so each −ûb is a lower bound for the primal optimal value. These two features are a definite advantage
of our approach, which is then really “conic”.

Remark 5 Note an interesting consequence of positive homogeneity: suppose the oracle is called at a point βuj , with
β > 0. Then chances are that the oracle will find the same index ij (see Proposition 1) that would be obtained at uj:
calling (σj

β , aj
β) its answer, we will have

σj
β = βσj and aj

β = aj .
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Setting σ̄(·) = h̄(·) + 1 for h̄ given in (5) and using σj = ujaj gives

σ̄j
β(u) = σj

β + (u − βuj)aj
β = βσj + (u − βuj)aj

= σj + βσj + (u − uj)aj − βujaj

= σ̄j(u) + βσj − βσj = σ̄j(u) .

In other words: assuming that the oracle is reasonably deterministic, its answer at u+ or ŭ of (13) produces the same
linearization (5). 2

3.3 Combinatorial applications

Linear programs with a constant cost row may not be so frequent. However, (33) may come from the Dantzig-Wolfe
formulation of various combinatorial problems; λ is then an integer vector, and the constraint λ ∈ N

n is relaxed to λ > 0;
see [42, §11.2]. The case ci ≡ 1 occurs in the classical approach [12] of Gilmore and Gomory to the cutting-stock
problem; §7 below gives an illustration. Then (42) is a knapsack problem, for which the possibility of an inexact oracle
is particularly welcome. The same situation occurs in some relaxations of the graph-coloring problem [31], in which the
oracle computes a maximum stable set. See also [4].

When c is a general positive vector, positive homogeneity can of course be recovered by modelling the constraint
uA 6 c as

h(u) := max
i=1,...,n

(uAi − ci

ci

)

= max
i=1,...,n

(uAi

ci

)

− 1 6 0 ; (43)

see [3, 36]. This, however, implies that the oracle maximizing uAi accommodates scaled columns of A.

Remark 6 Dual feasible points are useful to produce primal lower bounds. From this point of view, the ŭ’s from (13) are
useful if the oracle is exact; actually, f(ŭ) = −ŭb is just Farley’s bound of [8], see also [1, 7, 30, 39, 40] (to realize this,
compare (43) with the equation preceding the theorem in [8]).

If a branch and bound algorithm is used to approximate h(u) in (43), upper bounds h̃ are available and convenient
Farley-type bounds f(ũ) = −ũb can still be produced, via the interpolation mechanism mentioned in Remark 3. 2

More generally, Dantzig-Wolfe formulations of combinatorial problems are

min cλ + dα , Aλ + Bα + b > 0 , λ ∈ N
n , α ∈ {0, 1}p

(see [40]). Their associate auxiliary problems (to maximize the Lagrangian, see [28]) are

min
λ>0

(c − uA)λ + min
06α61

(d − uB)α − bu .

They result in a dual problem of the form (1), but where the objective function

f(u) = ub− min
06α61

(d − uB)α

is given through an oracle, just as the constraint h(·). Then (1) becomes a fully nonsmooth constrained optimization
problem, for which there are a number of possibilities:
– It can be solved by standard versions of constrained bundle methods, as reviewed in §2.1.
– An additional variable can be introduced, say v, and (1) can be formulated as minimizing v, subject to the constraint

max {f(u) − v, h(u)} 6 0.
– Our present variant can be tailored to this situation.

4 The inexact conic proximal bundle method

We now specify the algorithm outlined in §2. In our description, the model ȟk of (7) is abstract. It may have the particular
form ȟk(·) = maxj∈Jk h̄j(·), Jk being managed as described in §2.3; but this level of detail is not necessary in our
description. The management of the stepsize tk is also left vague. However we do describe the management of the
stability center ûk, as specified in §2.1.

The algorithm uses the Slater point u0 of (2), a descent parameter κ ∈ ]0, 1[ and a lower bound tmin > 0 for the
stepsize; K(·) will mark descent iterations (at iteration k, the last descent iteration was the K(k)th one) and the flag NA
will secure the noise-attenuation mechanism of §2.2 (during which a decrease of the stepsize is untimely).
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12 Krzysztof C. Kiwiel , Claude Lemaréchal

Algorithm 1 An initial point u1 ∈ C and an initial stepsize t1 > tmin are given.
STEP 0 (Initiation). Call the oracle at u1 to obtain h1 and a1 of (3). Choose a function ȟ1(·) satisfying (7). Compute ŭ0

by (13) and set û1 = ŭ0. Set NA = 0, K(1) = 0, k = 1.
STEP 1 (Trial point finding). Find uk+1, âk, µk, ĝk as described by Lemma 1. Compute vk of (29), ε̂k and δ̂k of (25).

SUBSTEP 1’ (Stopping criterion). If ĝk = 0 and δ̂k 6 0, stop.
SUBSTEP 1” (Noise attenuation). If (30) does not hold, set tk = 10tk, NA = 1 and loop back to Step 1.

STEP 2 (Oracle call). Call the oracle at uk+1 to obtain hk+1 and ak+1. Compute ŭk of (13).
STEP 3 (Step distribution). Perform the following operations, depending on the descent test (31).

Descent-step: If (31) holds, Null-step: If (31) does not hold,

set ûk+1 = ŭk ; set ûk+1 = ûk ;
set K(k + 1) = k, NA = 0 . set K(k + 1) = K(k) .

Select tk+1 > tmin .
If NA = 1, set tk+1 = tk .
If NA = 0, select tk+1 ∈ [tmin, tk] .

STEP 4 (Model updating). Choose a function ȟk+1(·) satisfying (20).
STEP 5 (Loop). Increase k by 1 and go to Step 1. 2

A few comments on the method are in order.

(i) The initial u1 may be the Slater point itself; in this case, û1 = ŭ0 = u1 = u0.
(ii) The simplest initial model is ȟ1(·) = h̄1(·). However, the algorithm may be hot-started, with a nonempty initial

bundle: J1 in (9) will contain more than one index. Being higher, the model ȟ1(·) will thus be more accurate.
(iii) Similarly, multiple cuts may be used at each iteration: the oracle may answer several values for h and a at a given

u, each of which providing its linearization h̄(·) satisfying (6). The main change in the algorithm is notational; we
will not elaborate on this technique here.

(iv) Step 1 may use the QP method of [21] or [10], which can solve efficiently sequences of subproblems (10) when C
and f are polyhedral. The same method can also handle a quadratic f .

(v) Section 5 below will establish that either f(ûk) → −∞ or the convergence property (32) holds. An additional
stopping criterion could accordingly be inserted in Substep 1’: stop if f(ûk) is deemed small enough.

Along the same lines, tolerances may be inserted in Substep 1’: one can stop when |ĝk| 6 ρ and δ̂k 6 δ̂, with

ρ > 0 and δ̂ > 0. Admitting that f(ûk) is bounded from below, (32) will guarantee that the algorithm stops anyway.

Note that δ̂ is homogeneous to f -values; as for ρ, (39) shows that it is a constraint residual in (33).

(vi) Substep 1” may of course use extrapolation formulae more sophisticated than just multiplying tk by 10. The only
important thing is to drive tk to +∞ in case of an infinite loop within Step 1.

Step 3 may likewise use sophisticated updating formulae. Note that the stepsize may not increase after a null step.
(vii) As mentioned in §2.3, the property ȟk+1(·) > h̄−k(·) in Step 4 is (always recommended but) only necessary when

a null step is made and µk > 0.

It should be clear that (32) is the desirable convergence property. With relation to our comment (v) above, let the
tolerances δ̂ and ρ stop the algorithm at some iteration k, the last descent step having been performed at iteration K :=

K(k). Then (see Lemma 2) ûk is feasible within η̆K 6 max {η0, ηK+1}. As for objective values, assume that (1) has an
optimal solution at finite distance, say |u∗| 6 R. Using the Cauchy-Schwarz inequality in (28), f(ûk) 6 f(u∗)+ δ̂ +Rρ.

5 Convergence

Convergence of a bundle method is usually split into two cases: either there are infinitely many descent steps, or the
stability center stops. Here, the latter case splits in turn into several subcases, due to possible loops within Step 1.

We first establish relations coming from the noise in the oracle.

Lemma 5 Let k be such that (30) does not hold. Then, u0 being the Slater point (2),

−µkh(u0) 6 f(u0) − f(ûk) +
1

2tk
|u0 − ûk|2 , (44)

−µkh(ûk) 6 ε̂k < −
tk

2
|ĝk|2 and |ĝk|2 6 2h(ûk)

µk

tk
. (45)
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Proof. Set u = u0 in (24) and use “not (30)”:

µkh(u0) > µkȟk(u0) > f(uk+1) + (u0 − uk+1)ĝk − f(u0)
= f(ûk) − ε̂k + (u0 − ûk)ĝk − f(u0)

> f(ûk) + tk

2 |ĝ
k|2 + (u0 − ûk)ĝk − f(u0) .

This gives4

µkh(u0) > f(ûk) −
1

2tk
|u0 − ûk|2 − f(u0) ,

which is (44). The first inequality in (45) comes easily from (26) and “not (30)”; the second inequality is a consequence.
2

5.1 Infinite loop within Step 1

This section considers the case where k stops: the algorithm solves (8) repeatedly, without visiting Steps 2 to 5. Then
the model ȟ = ȟk and the stability center û = ûk are fixed, only t = tk varies (increasingly). We therefore drop
the misleading superscript k and use more appropriate notation µt, ĝt, u+

t , etc. It is convenient to introduce the pure
cutting-plane problem

min f(u) , u ∈ C , ȟ(u) 6 0 . (46)

Indeed, (8) amounts to computing the Moreau-Yosida regularization at û ([14, § XV.4.1]) of the actual objective function
in (46) (equal to f(u) if u feasible, +∞ otherwise).

Proposition 2 Suppose the loop within Step 1 is infinite at some iteration k – so that t → +∞; call f̌∗ the optimal value
of the pure cutting-plane problem (46). Then

(i) lim sup δ̂t 6 0 and ĝt → 0;
(ii) f̌∗ > −∞, ȟ(û) > 0 and f(û) 6 f̌∗;

(iii) f(u+
t ) → f̌∗; and if (46) has a nonempty set of optimal solutions, then u+

t tends to the projection of û onto that set.

Proof. With the present notation, (44) reads

µt 6
f(u0) − f(û)

−h(u0)
+

|u0 − û|2

−2th(u0)
,

which is bounded from above since t increases.
Then write (45): −µth(û) 6 ε̂t < − t

2 |ĝt|
2 and |ĝt|

2 6 2h(û)µt

t
; this implies ε̂t < 0 and ĝt → 0. It follows that

δ̂t 6 ε̂t + |û| |ĝt| (see (25)) cannot have a positive cluster point; (i) is proved.
If û were feasible in (8), we could set u = û in (27), entailing the contradiction ε̂t > 0. Next, (28) shows with (i) that

f(û) 6 f(u) for all u feasible in (8), hence in (46); in particular, (46) has a finite optimal value: this proves (ii).
Finally, fix u feasible in (46), hence in (8):

f(u+
t ) +

1

2t
|u+

t − û|2 6 f(u) +
1

2t
|u − û|2 (47)

and pass to the limit: {u+
t } is a minimizing sequence for (46). Besides, set u in (47) to an optimal solution of (46): u is

feasible in (8), f(u+
t ) > f(u) and we can write

1

2t
|u+

t − û|2 6
1

2t
|u − û|2 ;

this completes the proof of (iii). 2

It is known that the sequences {f(u+
t )} and {|u+

t − û|} are actually monotone; see for example [23]. Because f̂∗ is
not larger than the optimal value of (1), (ii) shows that û has a very good f -value – but a blatantly bad h-value, although
the latter is assessed by Lemma 2. During a loop within Step 1, trial points u+

t rely upon the deceiving point û; they
may be driven toward uninteresting regions of C, without even consulting the oracle to check. If f and C (and ȟ) are
polyhedral, u+

t solves (46) for t large enough: see [14, Prop.XV.4.2.5]. This case may be discovered by a parametric QP
method such as [23], which is thus useful to shorten such potentially fruitless loops.

4Just develop the square |
√

tĝ + (u0 − û)/
√

t|2 > 0.
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14 Krzysztof C. Kiwiel , Claude Lemaréchal

5.2 Finitely many descent steps

This section is devoted to the case where the stability center stops, say at iteration k̄; accordingly, we denote by û the
stability center(s) ûk = ûk̄ for k > k̄.

First of all, a rather simple situation, similar to that of the previous section, is when there are infinitely many loops
within Step 1. Then NA = 1 forever, and tk is never decreased in Step 3; in fact, tk → +∞.

Proposition 3 Suppose there are only null steps after iteration k̄. Denote by K the set of k > k̄ for which at least one
loop within Step 1 occurs. If K is an infinite set, then (32) holds: indeed limk∈K ĝk = 0 and lim supk∈K δ̂k 6 0.

Proof. This is essentially Proposition 2(i): write (44), (45) for k ∈ K and let tk tend to +∞ for k ∈ K. 2

The other situation is when (30) holds for all k large enough. From then on, tk may only decrease (or stay fixed
forever). Besides, (29) implies ε̂k 6 vk; so we clearly have

|ε̂k| 6 vk and tk|ĝk|2 6 2vk if (30) holds . (48)

Introduce the Lagrangian associated with (8)

C 3 u 7→ Lk(u) := f(u) + µkȟk(u) +
1

2tk
|u − û|2 . (49)

We start with properties linking successive null steps, which are crucial for establishing convergence of bundle-type
methods. They explain the importance of the aggregate linearization (18).

Lemma 6 After a null step issued from û, the Lagrangian (49) satisfies

(i) Lk(uk+1) + 1
2tk |u

k+1 − û|2 6 Lk(û).

(ii) Lk(uk+1) + 1
2tk |u

k+2 − uk+1|2 6 Lk+1(uk+2); this relies upon the properties ûk+1 = û and tk+1 6 tk.

Proof. Linearize the non-quadratic part of Lk to obtain the quadratic function

C 3 u 7→ L
k
(u) := f(uk+1) + (u − uk+1)ĝk +

1

2tk
|u − û|2 . (50)

In view of (24), we do have L
k
6 Lk over C.

Developing the square |u − uk+1 + uk+1 − û|2, direct calculations using (11) give

L
k
(u) = L

k
(uk+1) +

1

2tk
|u − uk+1|2 = Lk(uk+1) +

1

2tk
|u − uk+1|2 , (51)

so that

Lk(uk+1) +
1

2tk
|u − uk+1|2 = L̄k(u) 6 Lk(u) for all u ∈ C

and (i) follows by setting u = û.
Now we claim that

f(u) > f(uk+1) + (u − uk+1)ĝk for all u such that ȟk+1(u) 6 0 . (52)

If µk = 0, this is clear from (24), so assume µk > 0: then ȟk(uk+1) = 0 (complementarity slackness). The definitions
(20) and (18) of ȟk+1(·) and h̄−(·) then give

0 > ȟk+1(u) > h̄−(u) = (u − uk+1)âk .

Multiply by µk > 0 and sum up with (21), (23); our claim is proved.
Plug (52) into (50): for all u ∈ C such that ȟk+1(u) 6 0,

L
k
(u) 6 f(u) +

1

2tk
|u − û|2 6 f(u) +

1

2tk+1
|u − û|2 ,

because tk+1 6 tk. Take in particular u = uk+2: because ûk+1 = û and because of complementarity slackness, the

righthand side is Lk+1(uk+2), which is therefore bigger than L
k
(uk+2); (ii) then follows from the expression (51) of

L
k
(uk+2). 2
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It is interesting to mention that the above result is really due to the strong convexity of Lk(·), which is minimized over
C at uk+1; see [14, Thm VI.6.1.2]. We now turn to the situation where trouble due to a noisy oracle eventually ceases.

Proposition 4 Suppose that, after some iteration, only null steps occur and tk never increases (no loop within Step 1
occurs). Suppose also that the oracle inaccuracies ηk are bounded from above.

Then δ̂k, ĝk tend to 0, as well as vk; and uk tends to û.

Proof. First we bound µk. Fix b0 ∈ ∂f(u0) and plug the subgradient inequality into (24) with u = u0:

f(u0) + µkh(u0) > f(u0) + (uk+1 − u0)b0 + (u0 − uk+1)ĝk .

Single out û and use (11):

0 > µkh(u0) > (u0 − û − tkb0)ĝk + tk|ĝk|2 + (û − u0)b0

> 2ĝkwk + tmin|ĝ
k|2 − M ,

where we have set wk := (u0 − û − tkb0)/2 and M is a constant. This implies (see footnote 4, page 13) −µkh(u0) 6
|wk |2/tmin + M ; because tk does not increase, wk is bounded and so is µk; say µk 6 µ̄.

Then Lemma 6(i) and (7) give
Lk(uk+1) 6 f(û) + µ̄ max{h(û), 0} .

Because Lemma 6(ii) implies that the sequence {Lk(uk+1)} is increasing, we see that |uk+1 − û| is bounded: uk is
bounded; and ηk is also bounded by assumption. Knowing that the η-subdifferential of (3) is locally bounded ([14,
Prop.XI.4.1.2]),

the sequence {ak} is bounded . (53)

Besides, Lk(uk+1) has a finite limit, hence

the sequence {|uk+2 − uk+1|} tends to 0 . (54)

Now consider the linearization h̄k+1(·) of (5). Note that hk+1 > 0: otherwise ŭk of (13) would be equal to uk+1

and the descent test (31) would be passed, just by the definition (29) of vk. Note also that ȟk+1(uk+2) 6 0, hence
h̄k+1(uk+2) 6 0 from (20). Then we have by the Cauchy-Schwarz inequality

0 < hk+1 = h̄k+1(uk+1) = h̄k+1(uk+2) + (uk+1 − uk+2)ak+1

6 |uk+1 − uk+2| |ak+1| ,

so that hk+1 → 0 from (53), (54). In (13), β̆k → 1 so β̆k > κ for k large enough. Start from “not (31)”: −κvk <
f(ŭk) − f(ûk) and write

(1 − κ)vk < f(ŭk) − f(uk+1)

6 (1 − β̆k)[f(u0) − f(uk+1)]

= (1 − β̆k)[f(u0) − f(û) + vk] .

[add v = f(û) − f(u+)]

[convexity of f between u0 and u+]

Take k so large that β̆k − κ > 0 and obtain vk 6
f(u0) − f(û)

β̆k − κ
(1 − β̆k); hence vk → 0.

To finish the proof, observe from (48) that ĝk → 0 because tk > tmin, and also ε̂k → 0. So from (25), δ̂k =
ε̂k + ûĝk → 0. Finally observe from (30) that |uk+1 − û| tends to 0 just as vk, since tk does not increase. 2

5.3 Case of infinitely many descent steps

The last situation is when the algorithm “looks like” an ordinary optimization algorithm, consisting of a series of descent
iterations.

Proposition 5 Suppose that the set K ⊂ N of descent iterations is infinite. Either f(ûk) → −∞ or the convergence
property (32) holds in the sense that

lim
k∈K

ĝk = 0 and lim inf
k∈K

δ̂k
6 0 .
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Proof. Assuming that the monotonic sequence {f(ûk)} has a finite limit, let k1 and k2 be two successive indices in K.
Because of (48), vk > 0 for k ∈ K; besides, ûk2 = ûk1+1 and the descent test (31) gives κvk2 6 f(ûk2+1)−f(ûk1+1).

Summing up:
∑

k∈K
vk < +∞; the subsequence {vk}K therefore tends to 0; and remembering tk > tmin:

lim
k∈K

tk|gk|2 = 0 , lim
k∈K

ĝk = 0 , lim
k∈K

ε̂k = 0 . (55)

At the descent iteration k = k2, ûk+1 = ŭk of (13), with |ŭk − u0| 6 |uk+1 − u0|; using (11), we then write

|ûk+1 − u0|2 − |ûk − u0|2 6 |ûk − tkĝk − u0|2 − |ûk − u0|2

= tk(tkĝk + 2(u0 − ûk))ĝk .

Using again the fact that ûk = ûk2 = ûk1+1, we sum these inequalities over K to obtain

−∞ <
∑

k∈K

tk(tkĝk + 2(u0 − ûk))ĝk .

If there existed ε > 0 such that (tkĝk + 2(u0 − ûk))ĝk 6 −ε for all k ∈ K, then we would have
∑

K
tk < +∞, which is

impossible. Therefore, using (55),

0 6 lim sup
k∈K

[tk|ĝk|2 + 2u0ĝk − 2ûkĝk] = lim sup
k∈K

[−2ûkĝk] .

Then plug (55) into (25): lim infk∈K δ̂k 6 0 and the proof is complete. 2

5.4 Synthesis

The above study of the various possible cases clarifies the convergence properties of the algorithm. The present sec-
tion summarizes these properties; it also studies boundedness of the multiplier µ, which is important in the primal-dual
framework of §3.

Recall from the rules of the algorithm that K(k) indexes the last descent iteration prior to k; and an important number
for feasibility is the asymptotic oracle inaccuracy

η̆∞ := lim sup
k→∞

η̆K(k) . (56)

First we fix the case of a bounded objective.

Proposition 6 Let the optimal objective value f ∗ of (1) be finite. Then:

(i) there exists µ∗ > 0 such that infu∈C f(u) + µ∗h(u) = f∗;
(ii) with the notation (56), lim inf f(ûk) > f∗ − µ∗η̆∞, so that {f(ûk)} is bounded from below if η̆∞ < +∞.

Proof. Statement (i) is just [34, Cor. 28.2.1]. To obtain (ii), use Lemma 2 and write f ∗ 6 f(ûk) + µ∗h(ûk) 6 f(ûk) +
µ∗ηK(k) for all k; then pass to the limit. 2

Then convergence of the algorithm is as follows:

Theorem 3 Suppose that Algorithm 1 neither terminates nor loops infinitely in Step 1 (so that k → ∞), and the oracle
inaccuracies ηk are bounded. Call f∗ the optimal value of (1) and f∞ the limit of f(ûk). Then:

(i) The convergence property (32) holds if f ∗ > −∞;
(ii) In this case, let K be an index set such that limk∈K max{δ̂k, |ĝk|} = 0. Then the corresponding subsequence {µk}

is bounded:

lim sup
k∈K

µk
6

f(u0) − f∞

−h(u0)
.

(iii) In any case, f∞ 6 f∗ and lim sup h(ûk) 6 η̆∞ of (56).

Proof. Propositions 3, 4 and 5 guarantee (i).
Now the first relation below is obtained by setting u = u0 in (24); the second is direct from (25):

f(u0) − f(u+) − u0ĝ + u+ĝ > −µh(u0)

f(u+) − u+ĝ = f(û) − δ̂ .

Sum up, divide by −h(u0) > 0 and pass to the limit to prove (ii).
The second statement in (iii) follows directly from Lemma 2. For the first, assume f∞ > −∞ (otherwise the proof is

finished); write (28) with an arbitrary u feasible in (1) and pass to the limit to obtain f ∗ > f∞. 2
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6 Convergence in the primal

When the algorithm is used in the framework of §3, attention must be paid to the primal candidate λ̂ introduced in §3.1.
The model ȟ has the piecewise linear form (9) and several strategies are possible for the management of the bundle. To
be specific, we will assume that Step 4 of Algorithm 1
– arbitrarily destroys indices from Jk,
– appends if necessary the aggregate column defined by (18),
– then appends the new column coming from uk+1,
so that the resulting Jk+1 satisfies (19).

Lemma 7 With this strategy, the columns

(

γj

aj

)

, j ∈ Jk are convex combinations of the columns

(

ci

Ai

)

in (33).

Proof. Two sorts of columns make up the bundle at a given iteration:
– The “natural” columns, which have γj = cij , aj = aij with j > 0, computed at the jth call of the oracle by a (possibly

inaccurate) resolution of (35) for u = uj .
– The aggregate columns, with negative indices; consider the aggregate column −k < 0, constructed at the kth iteration:

· from (16), a−k = âk of Proposition 1 is a convex combination of the aj’s in Jk,
· from Lemma 3, γ−k = uk+1âk − ȟk(uk+1) is the same convex combination of the γj’s.

Thus, the very first aggregation during the algorithm introduces a convex combination of natural columns. The subsequent
aggregations introduce further convex combinations. Now taking convex combinations is a transitive operation, so these
are again convex combinations of the original columns. 2

To construct λ̂k of (41) from λ of (12) is then a matter of computer programming, using appropriately the history of
the successive aggregations. In (40), we have αj

i > 0 and
∑n

i=1 αj
i = 1 for each j; hence

λ̂k
> 0 and

n
∑

i=1

λ̂k
i =

∑

j∈Jk

λj

n
∑

i=1

αj
i =

∑

j∈Jk

λj = µk , (57)

while Theorem 2 gives

cλ̂k + ûkb = δ̂k , (58)

Aλ̂k + b > ĝk . (59)

With these premises, the convergence properties of λ̂k follow naturally from Theorem 3:

Theorem 4 Let the primal problem (33) have a feasible point, so that (33) and (34) have a finite common optimal value
z∗ and (34) has a multiplier µ∗, as stated in Proposition 6.

Suppose that the algorithm neither terminates nor loops infinitely in Step 1 (so that k → ∞), and the oracle inac-
curacies ηk are bounded. Define the asymptotic primal error ε∗ := µ∗η̆∞ from (56) and let K ⊂ N be an index set as
described in Theorem 3(ii). Then:

(i) Each cluster point λ̂∞ of the bounded sequence {λ̂k}k∈K lies in the ε∗-optimal primal solution set

Λε∗ := {λ ∈ R
n
+ : cλ 6 z∗ + ε∗, Aλ + b > 0} . (60)

(ii) The distance d(λ̂k) := minλ∈Λε∗
|λ̂k − λ| from λ̂k to the ε∗-optimal set satisfies limk∈K d(λ̂k) = 0.

Proof. When both (33) and (34) are feasible, their respective optimal solution sets are nonempty and there is no duality
gap. Comparing (34) with (1), their common optimal value z∗ is −f∗ of Theorem 3.

Use Proposition 6(ii) and Theorem 3(iii): −z∗ > f∞ > −z∗−ε∗. Besides, Theorem 3(ii) gives lim supk∈K µk < ∞:
from (57), {λ̂k}k∈K is bounded.

Let λ̂∞ be a cluster point of {λ̂k}k∈K. Write (58) as cλ̂k = δ̂k − ûkb and pass to the limit:

cλ̂∞
6 lim sup

k∈K

δ̂k − f∞
6 0 − f∗ + ε∗ = z∗ + ε∗ .

Pass likewise to the limit in (59): Aλ̂∞ + b > 0. This proves (i); then (ii) follows from the continuity of the distance
function d(·). 2
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7 Numerical illustrations

We conclude this paper with a brief account of our conic variant in practice, on the application that really motivated it:
cutting-stock problems in the formulation of Gilmore-Gomory [12]; see also [30].

7.1 The cutting-stock problem

Recall that the problem is to minimize the number of stock pieces of width W , used to meet demands d1, . . . , dm, for m
items to be cut at their widths w1, . . . , wm.

Hereafter, w ∈ R
m denotes the vector of widths. Consider a vector x ∈ N

m, whose each coordinate is the number of
units of the corresponding item cut in a given roll; such an x characterizes a cut pattern and is feasible if wx 6 W ; let n
be the (huge) number of feasible cut patterns. Then let λi be the number of rolls cut according to pattern i; relaxing the
integrality constraint on λ, we obtain the formulation

min

n
∑

i=1

λi ,

n
∑

i=1

λixi > d ∈ R
m , λ > 0 .

This is (33), where c ∈ R
n is the vector of all ones and the feasible cut patterns make up the columns of A. The dual is to

maximize ud over R
m
+ , subject to the constraint σ(u) := maxn

i=1 uxi 6 1 and the oracle computing σ has to solve the
knapsack problem

max ux , wx 6W , x ∈ N
m . (61)

7.2 Data sets

To save space, we give results only for the following randomly generated instances employed in [25]: the 4000 instances
of Wäscher and Gau [41] and the 3360 instances of Degraeve and Peeters [7].

The instances of [41] are constructed by the CUTGEN1 generator of [11], using the following parameter values:
– Number of items m = 10, 20, 30, 40, 50.
– Width of the wide rolls W = 10 000.
– Interval fraction c = 0.25, 0.5, 0.75, 1; the widths wi are uniformly distributed integers between 1 and cW .

– Average demand d̄ = 10, 50; with uniform random numbers R1, . . . , Rm ∈ (0, 1), the demands are di := b Rimd̄
R1+···+Rm

c

for i < m, and dm := md̄ −
∑

i<m di (in fact slightly more complicated formulas are used by [11]).
Duplicate widths are aggregated by summing their demands. Combining the different values for m, c and d̄ results in 40
classes; in each class, 100 random instances are generated for a total of 4 000.

The small-item-size instances of [7] are generated similarly for m = 10, 20, 30, 40, 50, 75, 100, c = 0.25, 0.5, 0.75, 1
and d̄ = 10, 50, 100, except that R1, . . . , Rm ∈ (0.1, 0.9) for the demand distribution. In the medium-item-size instances
of [7], only d̄ = 50 is used and the widths are uniformly distributed on [wmin, cW ], where wmin = 500, 1000, 1500. Both
cases have 84 data classes, and 20 random instances are generated in each class for a total of 2 × 1 680.

7.3 Implementation

Our testing environment uses a notebook PC (Pentium M 755 2 GHz, 1.5 GB RAM) under MS Windows XP, and Fortran
77.

In order to emphasize the primal-dual aspect of the algorithm, we report on the simultaneous generation of feasible
primal solutions, along with the dual iterates uk. These solutions are obtained by various heuristics, as described in [25].

We use the QP solver of [21] for (10). For the dual algorithm and primal heuristics, the knapsack problems (61) are
solved by Martello–Toth’s procedure MT1R, with an early termination test inserted (see [25, §2.2]): the branch and bound
procedure is terminated when it obtains a feasible knapsack which is optimal within εr = 10−5 of relative accuracy.

A relative accuracy of ε = 10−9 is required from the conic algorithm. More precisely, Algorithm 1 is stopped when
either vk from (29) or |ĝk| + ε̂k from (11), (25) is smaller than ε(1 + ûkd), with (30) holding in the former case.

Besides, “early” termination occurs if the heuristic discovers a primal-optimal solution (this implies that the dual
problem is solved as well, but the algorithm need not know it yet).
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7.4 Results

Tables 1 to 3 give the statistics for the three series of problems in §7.2; in these tables,
· kav and kmx are respectively the average and maximum numbers of iterations for the corresponding series of experi-

ments;
· tav and tmx are likewise running times in wall-clock seconds;
· ne is the number of “early” terminations due to the discovery of an optimal primal solution;
· ng is the number of instances with a nonzero final gap between the incumbent primal value and the dual bound rounded

up to the next integer; we stress that this gap, which is 0 most of the time, never exceeds one unit.

Table 1: Small-item-size instances of Degraeve and Peeters (240 instances per row)

m kav kmx tav tmx ne ng

10 14.92 32 0.00 0.01 108 0
20 32.66 61 0.01 0.04 110 0
30 53.05 97 0.06 10.63 115 1
40 71.61 140 0.04 0.32 124 0
50 93.20 171 0.09 0.68 139 0
75 145.80 259 0.26 1.89 140 1
100 192.05 338 0.46 4.07 147 0

Table 2: Medium-item-size instances of Degraeve and Peeters (240 instances per row)

m kav kmx tav tmx ne ng

10 17.33 27 0.00 0.01 54 0
20 34.92 58 0.01 0.08 63 0
30 53.43 86 0.02 0.14 83 0
40 70.73 123 0.04 0.61 68 0
50 90.10 164 0.07 0.89 69 1
75 139.22 236 0.36 8.28 80 1

100 191.29 300 1.46 59.67 78 0

Table 3: CSP instances of Wäscher and Gau (800 instances per row)

m kav kmx tav tmx ne ng

10 14.24 31 0.00 0.02 425 0
20 31.10 63 0.02 13.13 461 0
30 48.95 110 0.01 0.15 475 0
40 66.34 139 0.04 0.33 513 2
50 86.68 171 0.07 0.58 530 1

These results demonstrate the validity of the method. Actually, they are quite similar to those reported in [25]. The
latter concerns a highly elaborate bundle implementation to solve (34) by exact penalty, with a very smart choice of the
penalty parameter via the FFD heuristic. By contrast, our implemented conic variant is quite exploratory. At present, its
heuristics perform slightly worse on the instances of [7] (on 3 360 runs, 4 nonzero gaps instead of 3); their improvement
is left for future work.
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