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On the expressive power of Abstract Categorial

Grammars: Representing context-free formalisms

Philippe de Groote and Sylvain Pogodalla
INRIA Lorraine, 615 rue du Jardin Botanique, B.P. 101, 54602 Villers-lès-Nancy
Cedex, France

Abstract. We show how to encode context-free string grammars, linear context-
free tree grammars, and linear context-free rewriting systems as Abstract Categorial
Grammars. These three encodings share the same constructs, the only difference
being the interpretation of the composition of the production rules. It is interpreted
as a first-order operation in the case of context-free string grammars, as a second-
order operation in the case of linear context-free tree grammars, and as a third-
order operation in the case of linear context-free rewriting systems. This suggest the
possibility of defining an Abstract Categorial Hierarchy.

1. Introduction

Abstract Categorial Grammars (ACGs) (de Groote, 2001) are a new
categorial formalism based on Girard linear logic (Girard, 1987). This
formalism, which sticks to the spirit of current type-logical grammars
(Carpenter, 1996; Moortgat, 1997; Morrill, 1994; Oehrle, 1994), offers
the following features:

− Every ACG generates two languages, an abstract language and
an object language. The abstract language may be seen as a set
of abstract grammatical structures, and of the object language as
the set of concrete forms generated from these abstract structures.
Consequently, one has a direct control on the parse structures of
the grammar.

− The langages generated by the ACGs are sets of linear λ-terms,
which generalizes both string-langages and tree-langages.

− ACGs are based on a small set of mathematical primitives that
combine via simple composition rules. Consequently, ACGs offer a
rather flexible framework.

Abstract Categorial Grammars are not intended to be yet another
grammatical formalism that would compete with other well-established
formalisms. They should rather be seen as the kernel of a grammatical
framework — in the spirit of (Ranta, 2004) — in which other exist-
ing grammatical models may be encoded. In this paper, we illustrate
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2 Ph. de Groote and S. Pogodalla

this fact by exploring the expressive power of ACGs. We show how
to encode three context-free formalisms (namely, context-free string
grammars, linear context-free tree grammars, and linear context-free
rewriting systems) as ACGs.

The paper is organized as follows. In the next section, we introduce
the notion of Abstract Categorial Grammar. Section 3 gives a natural
encoding of strings as linear λ-terms. In Section 4, we remind the reader
of the definitions of a context-free string grammar, a linear context-free
tree grammar, and a linear context-free rewritng system. In Section
5, we explain how to encode context-free derivations. Then, Section
6, 7 and 8 give the encodings of context-free string grammars, linear
context-free tree grammars, and linear context-free rewriting systems,
respectively. Finally, we conclude in Section 9.

2. Abstract Categorial Grammars

This section gives the definition of an Abstract Categorial Grammar,
which is based on the notions of linear implicative types, higher-order
linear signature, and linear λ-terms built upon a higher-order linear
signature.

Let A be a set of atomic types. The set T (A) of linear implicative
types built upon A is inductively defined as follows:

1. if a ∈ A, then a ∈ T (A);

2. if α, β ∈ T (A), then (α−◦ β) ∈ T (A).

We use the usual convention of right association of the parentheses,
i.e., we write α−◦ β −◦ γ −◦ δ for (α−◦ (β −◦ (γ −◦ δ))). We also write
αn −◦ β for

α−◦ · · · −◦ α︸ ︷︷ ︸
n×

−◦β.

A higher-order linear signature consists of a triple Σ = 〈A,C, τ〉,
where:

1. A is a finite set of atomic types;

2. C is a finite set of constants;

3. τ : C → T (A) is a function that assigns to each constant in C a
linear implicative type in T (A).

Let X be a infinite countable set of λ-variables. The set Λ(Σ) of linear
λ-terms built upon a higher-order linear signature Σ = 〈A,C, τ〉 is
inductively defined as follows:

jolli-final.tex; 10/11/2006; 11:46; p.2



On the expressive power of Abstract Categorial Grammars 3

1. if c ∈ C, then c ∈ Λ(Σ);

2. if x ∈ X, then x ∈ Λ(Σ);

3. if x ∈ X, t ∈ Λ(Σ), and x occurs free in t exactly once, then
(λx. t) ∈ Λ(Σ);

4. if t, u ∈ Λ(Σ), and the sets of free variables of t and u are disjoint,
then (t u) ∈ Λ(Σ).

Λ(Σ) is provided with the usual notion of capture avoiding substitution,
and the relations of α-conversion, β-reduction, β-conversion, and βη-
conversion (Barendregt, 1984), this latter relation being used as the
notion of equality between λ-terms. We use the usual conventions when
writing λ-terms: t u1 u2 · · ·un will stand for (· · · ((t u1) u2) · · ·un), and
λx1 . . . xn. t for λx1 . . . . λxn. t. Moreover, when x denotes a sequence of
λ-variables x1, . . . , xn, we write λx. t for λx1 . . . xn. t.

Given a higher-order linear signature Σ = 〈A,C, τ〉, each linear
λ-term in Λ(Σ) may be assigned a linear implicative type in T (A).
This type assignment obeys an inference system whose judgements are
sequents of the following form:

Γ −Σ t : α

where:

1. Γ is a finite set of λ-variable typing declarations of the form ‘x : β’
(with x ∈ X and β ∈ T (A)), such that any λ-variable is declared
at most once;

2. t ∈ Λ(Σ);

3. α ∈ T (A).

The axioms and inference rules are the following:

−Σ c : τ(c) (cons)

x : α −Σ x : α (var)

Γ, x : α −Σ t : β
(abs)

Γ −Σ (λx. t) : (α−◦ β)

Γ −Σ t : (α−◦ β) ∆ −Σ u : α
(app)

Γ,∆ −Σ (t u) : β
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4 Ph. de Groote and S. Pogodalla

Given two higher-order linear signatures Σ1 and Σ2, we define a
lexicon L : Σ1 → Σ2 to be a realization of Σ1 into Σ2, i.e., an interpre-
tation of the atomic types of Σ1 as types built upon Σ2 together with
an interpretation of the constants of Σ1 as linear λ-terms built upon
Σ2. These two interpretations must be such that their homomorphic
extensions commute with the typing relations. This is spelled out in
the next definition.

DEFINITION 1. Let Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 be two
higher-order linear signatures. A lexicon L from Σ1 to Σ2 is defined
to be a pair L = 〈F,G〉 such that:

1. F : A1 → T (A2) is a function that interprets the atomic types of
Σ1 as linear implicative types built upon A2;

2. G : C1 → Λ(Σ2) is a function that interprets the constants of Σ1

as linear λ-terms built upon Σ2;

3. the interpretation functions are compatible with the typing relation,
i.e., for any c ∈ C1, the following typing judgement is derivable:

−Σ2 G(c) : F̂ (τ1(c)),

where F̂ is the unique homomorphic extension of F .

In the sequel, given such a lexicon L = 〈F,G〉, L (a) will stand for
either F̂ (a) or Ĝ(a), according to the context.

We are now in a position of defining the notion of Abstract Catego-
rial Grammar.

DEFINITION 2. An Abstract Categorial Grammar is a quadruple G =
〈Σ1,Σ2,L , s〉 where:

1. Σ1 and Σ2 are two higher-order linear signatures; they are called
the abstract vocabulary and the object vocabulary, respectively;

2. L : Σ1 → Σ2 is a lexicon from the abstract vocabulary to the object
vocabulary;

3. s is an atomic type of the abstract vocabulary; it is called the dis-
tinguished type of the grammar.

Every ACG G generates two languages: an abstract language, A(G ),
and an object language O(G ).

The abstract language, which may be seen as a set of abstract parse
structures, is the set of closed linear λ-terms built upon the abstract
vocabulary and whose type is the distinguished type of the grammar.
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On the expressive power of Abstract Categorial Grammars 5

DEFINITION 3. Let G = 〈Σ1,Σ2,L , s〉 be an Abstract Categorial
Grammar. The abstract language A(G ), generated by G is defined as
follows:

A(G ) = {t ∈ Λ(Σ1) | −Σ1 t : s is derivable}

On the other hand, the object language, which may be seen as the
set of concrete forms generated by the grammar, is defined to be the
image of the abstract language by the term homomorphism induced by
the lexicon.

DEFINITION 4. Let G = 〈Σ1,Σ2,L , s〉 be an Abstract Categorial
Grammar. The object language O(G ), generated by G is defined as
follows:

O(G ) = {t ∈ Λ(Σ2) | ∃u ∈ A(G ). t = L (u)}

3. Strings as linear λ-terms

We are concerned, in this paper, with the representation of gram-
matical formalisms that generate strings. We must, therefore, specify
a higher-order linear signature that allows strings to be defined and
manipulated. This signature will serve as the object vocabulary of the
several ACGs we will define.

There is, in fact, a canonical way of representing strings as linear
λ-terms. It consists of encoding a string of symbols as a composition
of functions. Consider, for instance, a string such as ‘abbac’. It may be
represented by the linear λ-term:

λx. a (b (b (a (c x)))),

where the atomic strings ‘a’, ‘b’, and ‘c’ are declared to be constants of
functional type.

More formally, the higher-order linear signature corresponding to an
alphabet obeys the following definition.

DEFINITION 5. let T = {a1, . . . , an} be an alphabet. The higher-order
linear signature, ΣT = 〈A,C, τ〉, is defined as follows:

1. A = {σ};

2. C = {a1, . . . , an};

3. τ(ai) = (σ −◦ σ), for all 1 ≤ i ≤ n.
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6 Ph. de Groote and S. Pogodalla

Given such a signature, the empty word (ε) is represented by the
identity function (λx. x), and concatenation is defined to be functional
composition (λf. λg. λx. f (g x)), which is indeed an associative opera-
tor that admits the identity function as a unit.

We define string to be the type (σ−◦σ), and λ-terms of type string,
such as λx. a (b (b (a (c x)))), will be written /abbac/. Finally, the infix
operator + will denote the composition (i.e., the concatenation) of such
λ-terms.

4. Three context-free formalisms

In this section, we remind the reader of the definitions of the grammat-
ical formalisms we intend to encode as ACGs.

4.1. Context-free string grammars

A context-free string grammar is a quadruple G = 〈N,T, P, s〉 where:

1. N is a finite set of symbols called the alphabet of non-terminal
symbols;

2. T is a finite set of symbols, disjoined from N , called the alphabet
of terminal symbols;

3. P is a finite set of production rules of the form a → α, where a ∈ N ,
and α ∈ (N ∪ T )∗;

4. s ∈ N is called the start symbol of the grammar.

Given two words α, β ∈ (N∪T )∗, one says that β is directly derivable
from α if and only if there exist β1, β2, β3 ∈ (N ∪ T )∗ and a ∈ N such
that:

1. a → β2 is a production rule of P ;

2. α = β1aβ3;

3. β = β1β2β3.

This relation of direct derivability is written α ⇒ β and, as usual,
⇒∗ denotes the reflexive, transitive closure of ⇒. Finally, the language
generated by G is defined to be the set of terminal words α ∈ T ∗ such
that s ⇒∗ α.
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On the expressive power of Abstract Categorial Grammars 7

4.2. Linear context-free tree grammars

A ranked alphabet is defined to be a pair Σ = 〈FΣ, rΣ〉 such that FΣ

is a finite set of symbols, and rΣ : FΣ → N is a function that assigns
to each symbol a natural number called its rank. By a slight abuse of
notation, we will write a ∈ Σ for a ∈ FΣ

Given such a ranked alphabet Σ, and a possibly inifinite countable
set of variables X, the set of trees TΣ(X) is inductively defined as
follows:

1. X ⊂ TΣ(X);

2. if f ∈ Σ and rΣ(f) = 0 then f ∈ TΣ(X);

3. if f ∈ Σ, rΣ(f) = n, and t1, . . . , tn ∈ TΣ(X) then f(t1, . . . , tn) ∈
TΣ(X).

In case X is the empty set, the set of trees TΣ(∅) is simply written TΣ.
Let Xn = {x1, . . . , xn} be a finite set of variables. A tree t ∈ TΣ(Xn)
that contains exactly one occurrence of each variable xi (1 ≤ i ≤ n) is
called a n-context. Let t be such a n-context, and let u1, . . . , un ∈ TΣ.
We write t[u1, . . . , un] to denote the tree obtained from t by replacing
x1, . . . , xn by u1, . . . , un, respectively. The set of n-contexts built upon
a given ranked alphabet Σ, will be written CΣ(n). Strictly speaking,
the notion of n-context should not depend on the choice of the set Xn.
Nevertheless, in the sequel, we will use the following convention: if t is
a n-context then t and t[x1, . . . , xn] denote the same tree.

Let X be a set of variables, let Σ be a ranked alphabet, and let Σ0 be
the set of symbols a ∈ Σ such that rΣ(a) = 0. To each tree t ∈ TΣ(X),
one associates its yield t, which is a string over Σ0, inductively defined
as follows:

1. x = x, for x ∈ X;

2. a = a, for a ∈ Σ0;

3. f(t1, . . . , tn) = t1 . . . tn.

A linear context-free tree grammar is a quadruple G = 〈N,T, P, s〉
where:

1. N is a ranked alphabet of non-terminal symbols;

2. T is a ranked alphabet of terminal symbols, disjoined from N ;

3. P is a finite set of production rules of the form a(x1, . . . , xn) →
t[x1, . . . , xn], where a ∈ N , rN (a) = n, the variable x1, . . . , xn are
all distinct, and t ∈ CN∪T (n).
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8 Ph. de Groote and S. Pogodalla

4. the start symbol s ∈ N is such that rN (s) = 0.

Let u, v ∈ TN∪T . v is directly derivable from u (u ⇒ v) if and only
if there exist c ∈ CN∪T (1), a ∈ N with rN (a) = n, t ∈ CN∪T (n), and
u1, . . . , un ∈ TN∪T such that:

1. a(x1, . . . , xn) → t[x1, . . . , xn] is a production rule of P ;

2. u = c[a(u1, . . . , un)];

3. v = c[t[u1, . . . , un]].

The tree language generated by G is then defined to be the set
of terminal trees t ∈ TT such that s ⇒∗ t, where ⇒∗ stands for the
reflexive, transitive closure of ⇒.

Note that the tree language generated by a linear context-free tree
grammar is not sensitive to the derivation mode. This is due to the
linearity condition which derives from the fact that the right-hand
side of a production rule is restricted to be a context rather than an
arbitrary tree. Consequently, the usual distinction between outside-in
and inside-out tree languages does not apply in the present case.

In this paper, we are interested in string languages rather than
in tree languages. Consequently, we will focus on the yield language
generated by a linear context-free tree grammar, i.e., the set of strings
α such that α = t for some tree t ∈ TT such that s ⇒∗ t. In the
general case, the class of yield languages generated by the context-free
tree grammars corresponds to the class of indexed languages. In our
case, because of the linearity constraint, the class of yield languages
we consider is much more restrictive. To the best of our knowledge,
whether this class corresponds to a class of languages definable by some
other well-established formalism is an open question. Nevertheless, it is
worth noting that it contains Joshi’s Tree Adjoining Languages (Joshi
and Schabes, 1997) as a proper subclass (Mönnich, 1997).

4.3. Linear context-free rewriting systems

Linear Context-free rewriting systems (Vijay-Shanker et al., 1987; Weir,
1988) may be defined as a proper subclass of multiple context-free
grammars (Seki et al., 1991), which are themeselves a particular case
of generalized context-free grammars (Pollard, 1984). We do not follow
this general approach here, but give a direct tailor-made definition,
which is indeed equivalent to Weir’s.

Let T be an alphabet, and consider a function f : (T ∗)m → (T ∗)n

that acts on tuples of strings. Such a function is called a linear transform
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On the expressive power of Abstract Categorial Grammars 9

if and only if there exist

α10, α11, . . . , α1p1 , . . . , αn0, αn1, . . . , αnpn ∈ T ∗

such that:

f〈x1, . . . , xm〉 = 〈α10x11α11 . . . x1p1α1p1 , . . . , αn0xn1αn1 . . . xnpnαnpn〉

where
⋃m

i=1{xi} =
⋃n

i=1
pi

j=1{xij}, and xij 6= xkl, whenever i 6= k or
j 6= l.

In the sequel, we work modulo the associativity of the cartesian
product, i.e., we identify (T ∗)n × (T ∗)m with (T ∗)n+m and, conse-
quently, 〈〈α1, . . . , αn〉, 〈β1, . . . , βm〉〉 with 〈α1, . . . , αn, β1, . . . , βm〉.

A linear context-free rewriting system is defined to be a quadruple
G = 〈N,T, P, s〉 where:

1. N is a ranked alphabet of non-terminal symbols;

2. T is an alphabet of terminal symbols, disjoined from N ;

3. P is a finite set of production rules of the form 〈f, a → α〉, where:

a) a ∈ N ,

b) α = a1 . . . an ∈ N∗,

c) f is a linear transform from (T ∗)
Pn

i=1 rN (ai) into (T ∗)rN (a);

4. the start symbol s ∈ N is such that rN (s) = 1.

In Clause 3, the non-terminal word α is possibly empty, in which case
the linear transform f degenerates into a constant tuple f〈〉.

To each non-terminal symbol a ∈ N , one associates a set L(a) ⊂
(T ∗)rN (a), inductively defined as follows:

1. for each production rule 〈f, a → ε〉, where ε stands for the empty
word, one has f〈〉 ∈ L(a);

2. If t1 ∈ L(a1), . . . , tn ∈ L(an), and 〈f, a → a1 . . . an〉 is a production
rule of P , then f〈t1, . . . , tn〉 ∈ L(a).

The language generated by G is then defined to be the set L(s). Observe
that this set is indeed a set of strings because rN (s) = 1.
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10 Ph. de Groote and S. Pogodalla

5. Specifying context-free derivations

In order to encode a formalism as an ACG, we have to give an abstract
vocabulary, an object vocabulary, and a lexicon. The three formalisms
of Section 4 generate string languages. Consequently, their object vo-
cabulary will obey the construct of Definition 5. They will also share
the same kind of abstract vocabulary, whose construction is explained
in the present section.

Let a → α be a production rule of a context-free string grammar.
We define the skeleton of this rule to be the pair 〈a, dαe〉, where dαe is
a word of non-terminal symbols inductively defined as follows:

1. dbe = ε, if b is a terminal symbol;

2. dbe = b, if b is a non-terminal symbol;

3. dbβe = dβe, if b is a terminal symbol;

4. dbβe = bdβe, if b is a non-terminal symbol.

Similarly, let a(x1, . . . , xn) → t be a production rule of a context-
free tree grammar. Its skeleton is defined to be the pair 〈a, dte〉, where
dte is inductively defined as follows:

1. dxie = ε, for xi a variable;

2. dfe = ε, if f is a terminal symbol of rank 0;

3. dfe = f , if f is a non-terminal symbol of rank 0;

4. df(t1, . . . , tn)e = dt1e . . . dtne, if f is a terminal symbol;

5. df(t1, . . . , tn)e = fdt1e . . . dtne, if f is a non-terminal symbol.

finally, let 〈f, a → α〉 be a production rule of a linear context-free
rewriting system. Its skeleton is defined to be the pair 〈a, α〉.

To summarize, in the three cases, the skeleton of a production rule
is a pair 〈a, α〉, where a is the non-terminal symbol occurring in the
left-hand side of the rule, and α is a word consisting of the non-terminal
symbols occurring in its right-hand side.

This notion of skeleton of a production rule allows us to define
the higher-order linear signature associated to a given context-free
string grammar, linear context-free tree grammar, or linear context-free
rewriting system.

DEFINITION 6. Let G = 〈N,T, P, s〉 be a context-free string gram-
mar, a linear context-free tree grammar, or a linear context-free rewrit-
ing system. The higher-order linear signature ΣG = 〈A,C, τ〉, associ-
ated to G, is defined as follows:

jolli-final.tex; 10/11/2006; 11:46; p.10



On the expressive power of Abstract Categorial Grammars 11

1. A = N ;

2. to each p ∈ P , one associates a constant cp, and C =
⋃

p∈P {cp};

3. τ(cp) = a1 −◦ · · · an −◦ a, where 〈a, a1 . . . an〉 is the skeleton of rule
p.

It is not difficult to see that the closed λ-terms of atomic type built
upon the above signature are regular trees that correspond to context-
free parse trees.

6. Composition as first-order susbtitution

In order to define ACGs representing the formalisms of Section 4, it
remains to specify appropriate lexicons. This section explains the con-
struction of such lexicons in the case of context-free string grammars.

Let G = 〈N,T, P, s〉 be a context-free string grammar, and let p ∈ P
be the following production rule:

a → α0a1α1 . . . anαn

where a, a1, . . . , an ∈ N and α0, α1, . . . , αn ∈ T ∗. The linear λ-term [[p]]
is defined to be:

λy1 . . . yn. /α0/ + y1 + /α1/ + · · ·+ yn + /αn/

We now define the ACG corresponding to a given context-free string
grammar.

DEFINITION 7. Let G = 〈N,T, P, s〉 be a context-free string gram-
mar. The Abstract Categorial Grammar GG = 〈ΣG,ΣT ,LG, s〉 is de-
fined as follows:

1. the abstract vocabulary ΣG is constructed according to Definition 6;

2. the object vocabulary ΣT is constructed according to Definition 5;

3. the lexicon LG : ΣG → ΣT is such that:

a) LG(a) = string, for all a ∈ N

b) LG(cp) = [[p]], for all p ∈ P ;

4. the distinguished type s is identical to the start symbol of G.
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12 Ph. de Groote and S. Pogodalla

It remains to prove that the ACG constructed according to the
above definition is indeed a correct representation of the correspond-
ing context-free string grammar. This is established by the next two
propositions.

PROPOSITION 1. Let G = 〈N,T, P, s〉 be a context-free string gram-
mar, and let GG = 〈ΣG,ΣT ,LG, s〉 be the Abstract Categorial Grammar
constructed from G according to Definition 7.

For all a ∈ N and all α ∈ T ∗, if a ⇒∗ α then there exists a closed
λ-term t ∈ Λ(ΣG) such that −ΣG

t : a and LG(t) = /α/.
Proof. We proceed by induction on the length of the derivation a ⇒∗

α.
If a ⇒∗ α because of a production rule a → α, there must exist an

abstract constant c corresponding to this production rule, which is of
type a and such that LG(c) = /α/.

Now, suppose that the first rule of the derivation is

a → α0a1α1 . . . anαn (1)

Consequently, there exists β1, . . . , βn ∈ T ∗ such that ai ⇒∗ βi and
α = α0β1α1 . . . βnαn. Then, by induction hypothesis, there must ex-
ist closed λ-terms t1, . . . , tn of type a1, . . . , an, respectively, such that
LG(ti) = /βi/. On the other hand, there exists an abstract constant c
corresponding to (1), whose type is a1 −◦ · · · an −◦ a and such that

LG(c) = λy1 . . . yn. /α0/ + y1 + /α1/ + · · ·+ yn + /αn/.

Consequently, we have that

LG(c t1 · · · tn) = /α0/ + /β1/ + /α1/ + · · ·+ /βn/ + /αn/ = /α/.

PROPOSITION 2. Let GG = 〈ΣG,ΣT ,LG, s〉 be the Abstract Cate-
gorial Grammar constructed from a given context-free string grammar
G = 〈N,T, P, s〉, according to Definition 7.

For all a ∈ N , and all closed λ-term t ∈ Λ(ΣG) such that −ΣG
t : a,

there exists α ∈ T ∗ such that LG(t) = /α/, and a ⇒∗ α.
Proof. We proceed by induction on the structure of t. Note that,

t being a closed term of atomic type, it is either a constant or an
application.

If t is a constant then t = cp for some p ∈ P whose skeleton is
〈a, ε〉. Then, by definition of GG, p must be of the form a → α with
LG(cp) = /α/.

If t is an application then t = cp t1 · · · tn for some p ∈ P whose
skeleton is 〈a, a1 . . . an〉. In this case, each λ-term ti must be a closed
λ-term of type ai, and p must be of the form

a → α0a1α1 . . . anαn
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On the expressive power of Abstract Categorial Grammars 13

where α0, α1, . . . , αn ∈ T ∗, and

LG(cp) = λy1 . . . yn. /α0/ + y1 + /α1/ + · · ·+ yn + /αn/.

Then, by induction hypothesis, there exist β1, . . . , βn ∈ T ∗ such that
LG(ti) = /βi/ and ai ⇒∗ βi. This implies that

LG(t) = /α0/ + /β1/ + /α1/ + · · ·+ /βn/ + /αn/,

and that a ⇒∗ α0β1α1 . . . βnαn.

7. Composition as second-order susbtitution

In order to adapt the construction of the previous section to the case
of linear context-free tree grammars, we will interpret the atomic types
of the abstract vocabulary as second-order types over strings.

Let G = 〈N,T, P, s〉 be a linear context-free tree grammar, and
let p ∈ P be a production rule a(x1, . . . , xn) → t whose skeleton is
〈a, a1 . . . am〉. The linear λ-term [[p]] is defined to be:

λy1 . . . ym. λx1 . . . xn. |t|

where |t| is inductively defined as follows:

1. |xi| = xi;

2. |f | = /f/, if f is a terminal symbol of rank 0;

3. |ai| = yi, if the non-terminal ai is of rank 0;

4. |f(t1, . . . , tk)| = |t1|+ · · ·+ |tk|, if f is a terminal symbol;

5. |ai(t1, . . . , tk)| = yi |t1| · · · |tn|.

Adapting Definition 7 to the case of linear context-free tree gram-
mars is then straightforward.

DEFINITION 8. Let G = 〈N,T, P, s〉 be a linear context-free tree
grammar. The Abstract Categorial Grammar GG = 〈ΣG,ΣT ,LG, s〉 is
defined as follows:

1. the abstract vocabulary ΣG is constructed according to Definition 6;

2. the object vocabulary ΣT is constructed according to Definition 5;

3. the lexicon LG : ΣG → ΣT is such that:
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14 Ph. de Groote and S. Pogodalla

a) LG(a) = stringrN (a) −◦ string, for all a ∈ N

b) LG(cp) = [[p]], for all p ∈ P ;

4. the distinguished type s is identical to the start symbol of G.

In order to establish the correctness of the above construction, we
first state two technical lemmas concerning the operator | · | used in the
definition of [[p]]. Their proofs, which consist of simple inductions, are
left to the reader.

LEMMA 1. Let G = 〈N,T, P, s〉 be a linear context-free tree grammar.
For all terminal tree t ∈ TT , |t| = /t/.

LEMMA 2. Let G = 〈N,T, P, s〉 be a linear context-free tree grammar.
Let u, u1, . . . , un ∈ TN∪T , c ∈ CN∪T (1), a1, . . . , am ∈ N , and t ∈ CT (n)
be such that:

1. a1, . . . , am is the sequence of occurrences of non-terminal symbols
in u;

2. rN (a1) = n;

3. u = c[a1(u1, . . . , un)];

Then, (λy1 . . . ym. |u|) (λx1 . . . xn. |t|) = λy2 . . . ym. |c[t[u1, . . . , un]]|.

PROPOSITION 3. Let G = 〈N,T, P, s〉 be a linear context-free tree
grammar, and let GG = 〈ΣG,ΣT ,LG, s〉 be the Abstract Categorial
Grammar constructed from G according to Definition 8.

For all a ∈ N such that rN (a) = n, all v ∈ CT (n), and all u1, . . . ,
un ∈ TT , if a(u1, . . . , un) ⇒∗ v[u1, . . . , un] then there exists a closed
λ-term t ∈ Λ(ΣG) such that −ΣG

t : a and LG(t) /u1/ · · · /un/ =
/v[u1, . . . , un]/.

Proof. We proceed by induction on the length of the derivation
a(u1, . . . , un) ⇒∗ v[u1, . . . , un].

If a(u1, . . . , un) ⇒∗ v[u1, . . . , un] because of a production rule
a(x1, . . . , xn) → v[x1, . . . , xn], there exists an abstract constant cor-
responding to this rule, and we are done by taking t to be this abstract
constant.

Now suppose that the first rule of the derivation is the production
rule p, a(x1, . . . , xn) → w[x1, . . . , xn], whose skeleton is 〈a, a1 . . . am〉.
Then, for all ai there exist c ∈ CN∪T (1), wi1, . . . , wirN (ai) ∈ TN∪T ,
c′ ∈ CT (1), w′

i1, . . . , w
′
irN (ai)

∈ TT , and vi ∈ CT (rN (ai)) such that

1. w(u1, . . . , un) = c[ai(wi1, . . . , wirN (ai))];
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2. v(u1, . . . , un) = c′[vi(w′
i1, . . . , w

′
irN (ai)

)];

3. c[s] ⇒∗ c′[s], for all s ∈ TN∪T ;

4. ai(s1, . . . , srN (ai)) ⇒∗ vi(s1, . . . , srN (ai)), for all s1, . . . , srN (ai) ∈
TN∪T ;

5. wij ⇒∗ w′
ij .

Therefore, by induction hypothesis, there exist closed λ-terms t1, . . . ,
tm ∈ Λ(ΣG) such that −ΣG

ti : ai and

LG(ti) /s1/ · · · /srN (ai)/ = /vi[s1, . . . , srN (ai)]/

for all s1, . . . , srN (ai) ∈ TN∪T . This implies that

LG(ti) = λx1 . . . xrN (ai). /vi/.

Then we take
t = cp t1 · · · tm,

and the result follows by iterating Lemma 2.

PROPOSITION 4. Let GG = 〈ΣG,ΣT ,LG, s〉 be the Abstract Cate-
gorial Grammar constructed from a given context-free tree grammar
G = 〈N,T, P, s〉, according to Definition 8.

For all a ∈ N such that rN (a) = n, and all closed λ-term t ∈
Λ(ΣG) such that −ΣG

t : a, there exists a context v ∈ CT (n) such
that, for all u1, . . . , un ∈ TT , LG(t) /u1/ · · · /un/ = /v[u1, . . . , un]/,
and a(u1, . . . , un) ⇒∗ v[u1, . . . , un].

Proof. We proceed by induction on the structure of t.
If t is a constant then t = cp for some p ∈ P whose skeleton is 〈a, ε〉.

Consequently, p must be of the form a(x1, . . . , xn) → w[x1, . . . , xn] with
w ∈ CT (n). On the one hand, we have that

a(u1, . . . , un) ⇒ w[u1, . . . , un].

On the other hand, by Lemma 1,

LG(cp) = λx1 . . . xn. /w/,

which implies that

LG(cp) /u1/ · · · /un/ = /w[u1, . . . , un]/.

If t is an application then t = cp t1 · · · tm for some p ∈ P whose
skeleton is 〈a, a1 . . . am〉, and each λ-term ti must be a closed λ-term
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16 Ph. de Groote and S. Pogodalla

of type ai. Consequently, by induction hypothesis, there exist contexts
v1, . . . , vm such that vi ∈ CT (rN (ai)) and, for all all u1, . . . , urN (ai) ∈
TT ,

LG(ti) /u1/ · · · /urN (ai)/ = /vi[u1, . . . , urN (ai)]/,

and
a(u1, . . . , urN (ai)) ⇒

∗ vi[u1, . . . , urN (ai)].

This implies that

LG(ti) = λx1 . . . xrN (ai). vi[x1, . . . , xrN (ai)],

and the result follows by iterating Lemma 2 and applying Lemma 1.

8. Composition as third-order substitution

Finally, in this section, we define the ACG corresponding to a linear
context-free rewriting system. To this end, we interpret the atomic
types of the abstract vocabulary as third-order types over strings.

Let G = 〈N,T, P, s〉 be a linear context-free rewriting system, and let
p ∈ P be a production rule 〈f, a → a1a2 . . . al〉, whose linear transform
obeys the following equation:

f〈x1, . . . , xm〉 = 〈α10x11α11 . . . x1p1α1p1 , . . . , αn0xn1αn1 . . . xnpnαnpn〉.

We define the λ-terms u1, . . . , un as follows:

ui = /αi0/ + xi1 + /αi1/ + · · ·+ xipi + /αipi/

The linear λ-term [[p]] is then defined to be:

λy1 y2 . . . yl. λz. y1 (λx1. y2 (λx2. · · · yl (λxl. z u1 · · ·un)))

where x1 is the sequence of λ-variables x1, . . . , xrN (a1), x2 is the se-
quence of λ-variables xrN (a1)+1, . . . , xrN (a1)+rN (a2), etc.

Then, the ACG corresponding to a given linear context-free rewrit-
ing system is defined as follows.

DEFINITION 9. Let G = 〈N,T, P, s〉 be a linear context-free rewriting
system. The Abstract Categorial Grammar GG = 〈ΣG,ΣT ,LG, s〉 is
defined as follows:

1. the abstract vocabulary ΣG is constructed according to Definition 6;

2. the object vocabulary ΣT is constructed according to Definition 5;
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3. the lexicon LG : ΣG → ΣT is such that:

a) LG(a) = (stringrN (a) −◦ string)−◦ string, for all a ∈ N

b) LG(cp) = [[p]], for all p ∈ P ;

4. the distinguished type s is identical to the start symbol of G.

In order to prove the correctness of the above construction, we start
by stating a technichal lemma, whose proof is left to the reader.

LEMMA 3. Let G = 〈N,T, P, s〉 be a linear context-free rewriting
system, let p ∈ P be the production rule 〈f, a → a1 . . . an〉, and let
αi1, . . . , αirN (ai) ∈ T ∗, for 1 ≤ i ≤ n. Then, there exists α1, . . . , αrN (a) ∈
T ∗ such that

1. f〈α11, . . . , α1rN (a1), . . . , αn1, . . . , αnrN (an)〉 = 〈α1, . . . , αrN (a)〉

2. [[p]] (λz. z /α11/ · · · /α1rN (a1)/) · · · (λz. z /αn1/ · · · /αnrN (an)/)
= λz. z /α1/ · · · /αrN (a)/

PROPOSITION 5. Let G = 〈N,T, P, s〉 be a linear context-free rewrit-
ing system, and let GG = 〈ΣG,ΣT ,LG, s〉 be the Abstract Categorial
Grammar constructed from G according to Definition 9.

For all a ∈ N such that rN (a) = n, and all α1, . . . , αn ∈ T ∗, if
〈α1, . . . , αn〉 ∈ L(a) then there exists a closed λ-term t ∈ Λ(ΣG) such
that −ΣG

t : a and LG(t) = λz. z /α1/ · · · /αn/.
Proof. We proceed by induction on the definition of L(a).
If f〈〉 = 〈α1, . . . , αn〉 ∈ L(a) because there exists a production rule

p of the form 〈f, a → ε〉, there exists an abstract constant cp of type a
such that LG(cp) = λz. z /α1/ · · · /αn/.

Now suppose that 〈α1, . . . , αn〉 ∈ L(a) because there exists a produc-
tion rule 〈f, a → a1 . . . am〉, together with tuples 〈αi1, . . . , αirN (ai)〉 ∈
L(ai), such that

f〈α11, . . . , α1rN (a1), . . . , αm1, . . . , αmrN (am)〉 = 〈α1, . . . , αn〉.

Hence, by induction hypothesis, there exist closed λ-terms t1, . . . , tm ∈
Λ(ΣG) such that −ΣG

ti : ai and LG(ti) = λz. z /αi1/ · · · /αirN (ai)/.
Then, the result follows by Lemma 3.

PROPOSITION 6. Let GG = 〈ΣG,ΣT ,LG, s〉 be the Abstract Cate-
gorial Grammar constructed from a given linear context-free rewriting
system G = 〈N,T, P, s〉, according to Definition 9.

For all a ∈ N such that rN (a) = n, and all closed λ-term t ∈ Λ(ΣG)
such that −ΣG

t : a, there exist α1, . . . , αn ∈ T ∗ such that LG(t) =
λz. z /α1/ · · · /αn/, and 〈α1, . . . , αn〉 ∈ L(a).
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Proof. We proceed by induction on the structure of t.
If t is a constant then t = cp for some p ∈ P whose skeleton is 〈a, ε〉.

Consequently, p must be of the form 〈f, a → ε〉. Then, there exist
α1, . . . , αn ∈ T ∗ such that f〈〉 = 〈α1, . . . , αn〉. Hence, by definition,
LG(cp) = λz. z /α1/ · · · /αn/, and 〈α1, . . . , αn〉 ∈ L(a).

If t is an application then t = cp t1 · · · tm for some p ∈ P whose form
is 〈f, a → a1 . . . am〉, and each λ-term ti must be a closed λ-term of type
ai. Therefore, by induction hypothesis, there exist αi1, . . . , αirN (ai) ∈ T ∗

such that LG(ti) = λz. z /αi1/ · · · /αirN (ai)/, and 〈αi1, . . . , αirN (ai)〉 ∈
L(ai). Then, the result follows by Lemma 3.

Observe that we do not have that α ∈ L(s) if and only if /α/ ∈
O(GG). We have instead that α ∈ L(s) if and only if λz. z /α/ ∈ O(GG).
This possible defect can be easily fixed by changing the distinguished
type of the grammar to be a new abstract atomic type s′, and by adding
a new abstract constant c of type s−◦ s′. The lexicon is then extended
in such a way that LG(s′) = string and LG(c) = λy. y (λx. x).

9. Conclusions

The embeding of context-free string grammars, linear context-free tree
grammars, and linear context-free rewriting systems in Abstract Cat-
egorial Grammars exemplifies some of the features of the ACG frame-
work.

The fact that an ACG generates two languages offer an explicit
control of the parse structure of the grammar. Consequently, the three
encodings we have given are in fact strong equivalences.1.

The fact that the basic objects manipulated by an ACG are linear
λ-terms allows higher-order operations to be defined. Typically, tree-
adjunction is such a higher-order operation (Abrusci et al., 1999; Joshi
and Kulick, 1997; Mönnich, 1997), and we have seen that the possibil-
ity of defining such higher-order operations is the keystone in encod-
ing linear context-free tree grammars and linear context-free rewriting
systems.

Finally, the fact that the embeddings of the three context-free for-
malisms are based, respectively, on first-order, second-order, and third-
order interpretations suggests the existence of an Abstract Categorial

1 In the case of linear context-free tree grammars, this claim might be discussed
because our encoding does not give access to the tree-language generated by the
linear context-free tree grammar. This possible problem may be fixed by defining
the embedding in two stages as it is done in (de Groote, 2002)
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Hierarchy that would allow the expressive power of the ACGs to be
controlled.
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