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Why Simulation-Based Approachs with Combined
Fitness are a Good Approach for Mining Spaces of

Turing-equivalent Functions
O. Teytaud

Abstract— We show negative results about the automatic
generation of programs within bounded-time. Combining re-
cursion theory and statistics, we contrast these negative results
with positive computability results for iterative approachs
like genetic programming, provided that the fitness combines
e.g. fastness and size. We then show that simulation-based
approachs (approachs evaluating only by simulation the quality
of programs) like GP are not too far from the minimal time
required for evaluating these combined fitnesses.

I. I NTRODUCTION
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Inspired by the genetic programming (GP) paradigm [9],
[13], [15], we investigate conditions under which the auto-
matic generation of programs is possible. Precisely, we study
programs aimed at generating programs for a given target-
task, where the target-task might be provided by the user
to the automatic generator as a black-box or as a Turing-
machine number. In this spirit, we compare results derived
from recursion theory applied to finite-time computations,
and results on iterative algorithms derived from statistics and
optimization in a spirit close to GP:

• we show universal lower bounds on the possible ef-
ficiency of (possibly randomized) programs aimed at
optimizing in finite time i) the size, ii) the time com-
plexity or iii) the space complexity. These results hold
even within arbitrary large tolerance functions allowing
strong sub-optimality. The uncomputability results are
in particular stronger for the size of programs (i.e. they
remain in the iterative case also, what does not happen
for speed), what is related to the phenomenon of bloat
(see below), which is an important issue in GP.

• we then turn our attention to ”blind” algorithms, that use
only the target-task as a black box, and converge itera-
tively as in GP. Whenever previous negative results hold
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for bounded-time algorithms, we show positive results
in an iterative convergence sense classical in optimiza-
tion. Moreover, the positive results are proved thanks
to population-based methods (keeping in memory a
population of programs with their associated fitnesses)
very related to GP methods. We then show lower bounds
on the time complexity of iterative automatic program
building, that are close to the simulation cost, thanks to
a modified version of Kolmogorov’s complexity ; this
shows that the computational cost of simulation cannot
be avoided ;

• we then show drawbacks that hold for fitnesses taking
into account size alone or speed alone, and that do not
hold for combined fitnesses using both ([29], [33], [17],
[19]).

We will need the following concepts in the paper:

• programming-programs are programs that output pro-
grams.

• finite-time algorithms take something as input, and
after a finite-time (depending upon the entry), give an
output. This is usually what we call an ”algorithm”.
The opposite concept isiterative algorithms, which
take something as input, and during an infinite time
provide outputs, that are e.g. converging to the solu-
tion of an equation. Of course, the set of functions
that are computable in finite time is included in (and
different from) the set of functions that are the limit
of iterative algorithms (see also [24]). The (time or
space) complexity of iterative algorithms is the (time
or space) complexity ofone computationof the infinite
loop with one entry and one output. Therefore, there
are two questions quantifying the overall complexity:
the convergence rate of the outputs to a nice solution,
and the computation time for each run through the loop.

• generalization is the process by which a function,
calibrated in order to work on some entries, work also
on other entries. The study of generalization is the main
topic of statistical learning. A survey can be found in
[10], [32], [18].

• genetic-programming([9]) is the research of a program
realizing a given target-task roughly as follows:

1) generate (at random) an initial population of algo-
rithms ;

2) select the ones that, after simulation, look the most



relevant for the target-task (this is dependent of a
distance between the results of the simulation and
the expected results, that is called thefitness) ;

3) create new programs by randomly combining and
randomly mutating the ones that remain in the
population ;

4) go back to step 2.

• bloat is the unexpected increase of the size of automat-
ically generated programs. Bloat is an important issue
in GP [11], [1], [14], [25], [22], [30], [2], [12].

• the absolute Kolmogorov complexity ([27], [28], [8])
of x is the size of the shortest program outputtingx on
the entry0. We study in this paper a modified version,
inspired by [3], [6], [26], which is the size of the shortest
program that outputsx on entry0 and that works in time
≤ T . This modified version is computable, and we show
lower bounds on its complexity.

II. DEFINITIONS & NOTATIONS

For the sake of clarity and without loss of generality, we
consider Turing-machines [31], [23] (TM) with one (read-
only) input tape, where the head moves right if and only if
the bit under the reading head has been read, one internal
tape (read and write, without any restriction on the allowed
moves), one (write-only) output tape, which moves of one
and only one step to the right at each written bit. The
restrictions on the moves of the heads on the input and on
the output tapes do not modify the expressive power of the
TMs as they can simply copy the input tape on the internal
tape, work on the internal tape and copy the result on the
output tape. The space complexity is with respect to the
internal tape (number of visited elements of the tape)plusthe
size of the program. All tapes’ alphabets are binary. These
Turing-machines can work on rational numbers, encoded as
2-uples of integers. Thanks to the existence of Universal
Turing Machine, we identify TM and natural numbers in
a computable way (one can simulate the behavior of the
TM of a given number on a given entry in a computable
manner). We use capital letters for programming-programs,
i.e. programs that are aimed at working on programs. Ifx
is a program ande an entry, thenx(e) is the output of the
application ofx to the entrye. x(e) =⊥ is the notation
for the fact thatx does not halt on entrye. We also note
⊥ a program such that∀e;⊥ (e) =⊥. A program p is a
total computable function if∀e ∈ N; p(e) 6=⊥. A decider
is a total computable function with values in{0, 1}. We
note D the set of all deciders. We say that a functionf
recognizes a setF among deciders if and only if∀e; (e ∈
F ∩ D → f(e) = 1 ande ∈ D \ F → f(e) = 0) (whatever
may be the behavior, possiblyf(e) =⊥, for e 6∈ D).
We say that two programsx and y are equivalent if and
only if ∀e ∈ N; x(e) = y(e). We note thisx ≡ y. We
note ≡y= {x; x ≡ y}. We note1 = {p; ∀e, p(e) = 1}.
The definition of the size|x| of a programx is any usual
definition such that the number of states is upper-bounded
by an increasing computable function of the size. We note

(with a small abuse of notation as it depends onf and x
and not only onf(x)) time(f(x)) (resp.space(f(x))) the
computation time (resp. the space complexity) of programf
on entryx. We note< x1, . . . , xn > a n-uple encoded as a
unique number thanks to a given recursive encoding.

E is the expectation operator.Proba(.) is the probability
operator ; by abuse, depending on the context, it is sometimes
with respect to(x, y) and sometimes with respect to a sample
(x1, x2, . . . , xm, y1, y2, . . . , ym). Iid is a short notation for
”independent identically distributed”.

Overview of the paper
Section III presents uncomputability results for finite-time

algorithms. Section IV presents mainly computability results
for the specialization on finite samples ; this section provides
building blocks for section V which shows positive results
for GP-like iterative algorithms. Section VI concludes.

III. F INITE TIME ALGORITHMS

We consider the existence of programsP (.) such that:
• the user providesx, which is a Turing-computable

function ;
• P (x) = y, wherey ≡ x andy is not too far from being

optimal (for size, space or time).
Theorem 1 shows that for reasonable formalizations of

this problem, such programs do not exist. This result is
an extension of classical uncomputability examples (the
classical case isC(a) = a).

Theorem 1 (Undecidability):Whatever may be the func-
tion C(.) in N

N, there does not existP such that for any
total functionx, P (x) is equivalent tox andP (x) has size
|P (x)| ≤ C(infy≡x |y|).

Moreover, for anyC(.), for any such non-computable
P (.), there exists a Turing-machine usingP (.) as oracle, that
solves a problem in0′, the jump of the set of computable
functions.

Proof: Assume, in order to get a contradiction, that such
a P (.) exists.

Step 1: we study the behavior ofP (.) on 1.
Then, definey as the shortest program such thaty(e) = 1

for any entrye, andY = {z; z ≡ y and |z| ≤ C(|y|)}. Y is
finite.

Then, consider a programx that always halts. Necessarily,
P (x) ∈ Y if and only if x ≡ y.

Step 2: show that thanks toP (if it exists), we can decide
1 (the class of programs that always reply1) among deciders
(indeed, more generally among computable total functions).

As Y is recursive (as it is finite), there exists a program
Q such thatQ(e) = 1 if e ∈ Y andQ(e) = 0 otherwise.

Therefore, thanks to step 1,R = Q ◦ P has the fol-
lowing property for any x that always halts:R(x) =
1 wheneverx ≡ y andR(x) = 0 in other cases

Step 3: we now show that recognizing1 among programs
that always halt is as difficult as the domain-emptyness
problem (that is known undecidable since Turing’s funda-
mental paper [31]). Formally, we show that with an oracle
recognizing1 among deciders, there exists a Turing-machine
only feeding the oracle with deciders that recognizes≡⊥.



Consider the following programS working on entry<
x, < a, b >>:

• simulatea steps ofx on entryb ;
• if it halts during this simulation then reply0.
• if it does not halt, reply1.
This programS always halts.
Then consider the following program working on entryx,

using an oracleR(.). It recognizes1 among deciders:
• if R(k 7→ S(x, k)) = 1, then reply1.
• otherwise, reply0.
This program replies1 if and only if x never halts on

any entry. Therefore, this program solves the emptyness of
the domain of a Turing-machine (it recognizes≡⊥). This
is known as an uncomputable task, and more precisely
it is in 0′ (the jump of the set of Turing-computable
problems). Therefore, we have shown that no computable
R(.) recognizing1 among deciders can exist. As step 2
shows that the existence of a suitable computableP (.)
implies the existence of such a computableR(.), such a
computableP (.) does not exist. �

We now show that using a random generator does not
change the result.

Corollary 2 (No size optimization):Whatever may be the
functionC(.), there does not exist any programP , even pos-
sibly using a random oracle providing independent random
values uniformly distributed in{0, 1} such that for any total
functionx, with probability at least2/3, P (x) is equivalent
to x andP (x) has size|P (x)| ≤ C(infy≡x |y|).

Proof: We only simulate all the possible runs and modify
the decision method in step 2 of the previous proof.

In the new second step, we simulate on a Turing machine,
simultaneously1, all the possible behaviors ofP until we
reach a total probability> 1

2 of halting with P (x) ∈ Y
or a probability> 1

2 of halting with P (x) 6∈ Y . One of
these two cases must necessarily occur by definition ofP . �

The extension from size of programs to time complexity
of programs requires a more tricky formulation than a simple
total order relation ”is faster than” ; a program can be faster
than another for some entries and slower for some others.
A natural requirement is that a program that suitably works
provides a (at least nearly) Pareto-optimal program [20], i.e. a
programf such that there’s no program that is as fast asf for
all entries, and better thanf for some specific entry, at least
within a tolerance functionC(.). The precise formulation
that we propose is somewhat tricky but indeed very general:

Corollary 3 (Time complexity):Whatever may be the
functionC(.), there does not exist any programP , even pos-
sibly using a random oracle providing independent random
values uniformly distributed in{0, 1}, such that for any total
functionx, with probability at least2/3,

P (x) ≡ x and there’s noy ≡ x such thaty Pareto-
dominatesP (x) (in time complexity) within C(.), i.e. 6

1By ”simultaneously” we mean that we simulate all the possible runs
simultaneously, in a breadth-first manner.

∃y ∈≡x and

∀z; time(P (x)(z)) ≥ C(time(y(z)))

and∃z; time(P (x)(z)) > C(time(y(z)))

The result is also true when restricted tox such that a Pareto-
optimal function exist.

Proof: The proof is very similar to the previous proof.
The only Pareto-optimal time complexity for1 is a constant
K (the time required to output1 in the chosen encoding).

Therefore, for any entryx ∈ 1, P must generate a program
in Y , whereY is the class of programs always outputing1
and halting within time complexity≤ C(K).

Y is not finite, but is recursive (lemma below). Within
this modification, steps 2 and 3 of the proof of theorem 1
still hold. �

We now prove the following lemma, useful in the proof
above.

Lemma 4 (Computability for bounded-time):For any
(k, C) ∈ N, the set of computable functionsf such that
∀x; time(f(x)) ≤ k and∀x; f(x) = C is computable.

Proof: Consider the program that works as follows on a
programp:

• write the tree of all the possible runs within thek first
steps.

• if at least one of these runs does not halt withint thek
steps, then reply ”no”.

• if at least one of these runs replies something else than
C, then reply ”no”.

• otherwise else, reply ”yes”. �

After size (corollary 2) and time (corollary 3), we now
consider space complexity (5):

Corollary 5 (Space complexity):Whatever may be the
functionC(.), there does not exist any programP , even pos-
sibly using a random oracle providing independent random
values uniformly distributed in{0, 1}, such that for any total
function x, with probability at least2/3,

P (x) ≡ x and there’s noy ≡ x such thaty dominates
P (x) (in space complexity) withinC(.), i.e., 6 ∃y, y ≡ x and

∀z; space(P (x)(z)) ≥ C(space(y(z)))

and∃z; space(P (x)(z)) > C(space(y(z)))
Proof: The proof is very similar to the two previous ones.
We consider the same target-task (i.e. always writing1 on
the output tape). This can be performed within constant
space complexityS. If such aP exists, then it must write,
with probability at least2/3, a program inY , whereY is the
class of programs writing1 within space complexityC(S).
This class is computable (lemma below), so steps 2 and 3
of the proof of theorem 1 hold within this modification.�

Remark 6 (Other fitnesses):We have proved the non-
computability result for speed, size and space. Other fitnesses
(in particular, mixing these three fitnesses) lead to the same



result. The key of the proofs above (th. 1, corollaries 2, 3,
5) is the recursive nature of sets of functions optimal for the
given fitness, which is a very stable feature.

We now prove the following lemma, useful in the proof
of the previous corollary 5.

Lemma 7 (Computability for bounded space):For any
(k, C) ∈ N, the setS of computable functionsf such that
∀x; space(f(x)) ≤ k and∀x; f(x) = C is computable.

Proof:
• we recall that our definition of space complexity in-

cludes the size of the program. Therefore, TMs with
a bounded space complexity have a bounded number
of configurations2 ; they are finite automata in which
some nodes have an output (recall that our TMs have
restrictions on the possibility of moves of heads on
the input and output tapes). NoteAf such a finite
automaton, associated to aTM f .

• note Q = {q1, q2, . . . , qN} the finite set of states of
Af , some of them being halting states and some of
them outputing1, some of them outputing0, some of
them not outputing anything, some of them reading the
bit under the input head and some others not. Assume
without loss of generality thatq1 is the initial state.

• define a new automatonA′
f on the set of statesQ ×

∪k
l=0({0, 1}l) wherek is the length ofC.

• set the initial state ofA′
f at (q1, #) where # is the

empty string.
• define the transitions ofA′

f as follows: there is a
transition from state(qi, Si′) (where Si′ is a binary
string) to (qj , Sj′), with Sj′ = Si′ .b (where . denotes
the concatenation operator) when reading entrye on the
input tape (possiblye is the empty string ifAf does not
read the input tape at stateqj), if and only if Af has a
transition fromqi to qj when readinge andAf outputs
b (possibly the empty character if there’s no output) in
this case. note thatA′

f is a finite automaton without any
writing hability.

• set the initial state at(q1, S0) whereS0 is the empty
string.

• then,f is in S if and only:
– f can be consistently translated toA′

f as explained
above, and

– A′
f halts inQ × {C} on any entry.

both these statements are decidable, thereforeS is
decidable. �

IV. SPECIALIZATION ON A FINITE SAMPLE

We now turn our attention to the specialization on a finite
sample. Results below will be used as building blocks for
theorems of section V about iterative algorithms.

Theorem 8 (Specialization on a finite sample):a) There
exists a programP such that∀m ∈ N, ∀i ∈ [[1, m]], P (<
x1, . . . , xm, y1, . . . , ym >)(xi) = yi andP (< x1, . . . , ym >

2Here, a configuration is the current state plus the state of the internal
tapes.

) has optimal average (on thexi) time complexity (resp.
space complexity) , i.e.1

n

∑n

i=1 time(P (< x1, . . . , ym >
)(xi)) (resp. 1

n

∑n

i=1 space(P (< x1, . . . , ym >)(xi))) min-
imal.

b) There does not exist a programP such that∀m ∈
N, ∀i ∈ [[1, m]], P (< x1, . . . , xm, y1, . . . , ym >)(xi) =
yi and P (< x1, . . . , ym >) has optimal size (i.e.|P (<
x1, . . . , ym >)| minimal).

(we assume for consistency thatxi = xj implies yi = yj

; we consider that the programP is right provided that it
works in this safe case, whatever may be its behavior in
other cases)

c) For any (c1, c2, c3) 7→ c(c1, c2, c3), non-decreasing
computable function with limit+∞ as a function ofc1 or as
a function ofc2, there exists a programP such that∀m ∈
N, ∀i ∈ [[1, m]], P (< x1, . . . , xm, y1, . . . , ym >)(xi) = yi

and P has optimal average (oni) cost, where the cost of
programp on entrye is c(time(p(e)), space(p(e)), |p|).

Remark 9 (Fast programs do not generalize well):Note
that a) in the case of time complexity is only of theoretical
importance as Turing-machines optimal for time complexity
on a finite set of cases are essentially very big Turing
machines outputting theyi as soon asxi is recognized
through a full-branching reading process. These machines
work on the(xi, yi)i≤m but not necessarily on unseen(x, y)
(no generalizationability). The adaptation to c) is more
concrete, as shown by theorems 10 and 11 below.

Proof of the theorem:
a) is realized by the following program in the case of time

complexity:

• compute the maximal time complexityT of the naive
program comparing an inpute to each of thexi, and
replying yi if e = xi and replying0 in other cases.

• consider the programs of time complexity bounded by
this time complexity. Simulate all of them withinT
steps ; there are infinitely many such functions, but we
only have to take into accound theK states that can
be reached withinT steps, whereK is the maximal
number of states that can be visited by a program of time
complexity ≤ T (for our Turing-machine formalism,
K ≤ 4T with binary tapes, as2 binary values are read
(one on the input tape and one on the internal tape).

• simulate all of them until stepT on all entries.
• select one of them which is optimal from the point of

view of the average time complexity.

The case of space complexity is similar.
b) can be proved by the following reduction:

• assume that such aP exists ;
• consider the programe 7→ |P (empty string, e)| ;
• this programs computes the absolute Kolmogorov

complexity[27], [28], [8], [4], [5], what is not possible.

c) is derived as a) ; the properties ofc(., ., .) ensures that
a finite set of functions can be considered (either the set of
functions with bounded time complexity ifc(., 0, 0) → ∞,
which is finite is we restrict our attention to the finitely many
possible time steps of simulation as in part a) of this proof,or



functions with bounded space complexity ifc(0, ., 0) → ∞).
�

Note that we have not ensured that the resulting program
halts within the same time (resp. space) complexity on other
entries than thexi, yi for i ∈ [[1, m]]. We now have to prove
that working on a sample might be efficient in generalization
(ensuring thatP (< x1, . . . , ym >) halts on anyx and gives
the right answer with probability1, at least ifm is sufficiently
large). This is a problem ofstatistical learning(see e.g. [32],
[10]). The usual general framework of statistical learningis
as follows:

• Consider(x1, y1), (x2, y2), . . . , a sequence of iid (in-
dependent identically distributed) elements ofN

2, with
common lawP . (xi, yi) is called an example. Restrict-
ing our attention to the case in which we work on
consistent examples of a deterministic relation, we here
consider thatP (.) is such that for some total computable
function f , P (f(x) = y) = 1.

• Consider g, a function taking as input
< x1, y1, . . . , xm, ym > and where g(<
x1, y1, . . . , xm, ym >) is itself a Turing machine.

• Then, the so-called error rate ofg after m examples
(x1, y1), . . . , (xm, ym) is the probability for P (x, y)
of g(< x1, y1, x2, y2, . . . , xm, ym >)(x) 6= y. It is a
random variable, as it depends on them first examples.
Statistical learning theory is the study of properties of
various functionsg, depending (or not) upon properties
of P .

Many tools exist for studying such problems. The main
question is a problem of generalization: finding a function
that works on(xi, yi)i≤m is easy (i.e. it is easy to designg
such that∀i < m, g(< x1, y1 >, . . . , < xm, ym >)(xi) =
yi), but does this function generalizes well toP ? A direct
proof is possible in the current framework:

Theorem 10 (Learning from deterministic examples):
Assume thaty = f(x) with probability 1, where f
is a computable function that always halts. Then, if
(x1, y1), . . . , (xm, ym) is an iid sample with the same law
as (x, y), then

Proba(P (< x1, . . . , xm, y1, . . . , ym >)(x) 6= y) = 0

for m sufficiently large, almost surely in the se-
quence (x1, y1), . . . , (xm, ym), . . . , wheneverf = P (<
x1, . . . , ym >) is the first (for any enumeration of functions)
computable function such that∀i ∈ [[1, m]]; f(xi) = yi.

In this theorem we do not here assume (and do not
conclude) thatP (.) is computable. This will be done in the
next section after a slight modification of the paradigm. Note
that the use of an order independent of the target-task has
been investigated in GP (lexicographic order, see [17]).

Proof: Consider f the first function such that
Proba(f(x) 6= y) = 0.

For any g < f , Proba(g(x) 6= y) > 0. Therefore, for
any g < f , almost surely, there existsig < ∞ such that
g(xig

) 6= yig
.

As the set{g; g < f} is finite, the previous sentence can be
rewritten: almost surely, for anyg < f , there existsig < ∞
such thatg(xig

) 6= yig
.

For m > supg<f ig, the property Proba(P (<
x1, . . . , xm, y1, . . . , ym >)(x) 6= y) = 0 holds. �

The previous theorem holds for anyP (.) verifying the
required properties. Indeed, even if the order is computable,
P (.) is not necessarily computable (e.g. it is not for an
ordering by size). On the other hand, as stated in theorem
8, P (.) is computable if the order is the average time.
Unfortunately, this is not in the scope of theorem 10, as the
order depends on the examples whereas we need in theorem
10 an order that is not dependent on the data. Fortunately, the
following theorem combines the advantages of both theorems
8 and 10: it provides a fitness such thatP (.) is computable
and generalization holds.

V. I TERATIVE ALGORITHMS

We have shown in section III that finite-time algorithms
have deep limits. We have shown in section IV that iterative
paradigms could converge to nice solutions (i.e. solutions
that generalize well). We now have to proof that that iterative
paradigms can be implemented on a Turing machine.

So, we now show in theorem 11 that the limit behavior
of iterative paradigms can be reached by Turing-computable
iterative algorithms. Theorem 12 is a refinement from the
point of view of complexity.

The following theorem deals with learning deterministic
computable relations from examples.

Theorem 11:Assume thaty = f(x) where f is com-
putable andProba(f(x) =⊥) = 0 andEtime(f(x)) < ∞.
Then, if (x1, y1), . . . , (xm, ym) is an iid sample with the
same law as(x, y), then

Proba(P (< x1, . . . , xm, y1, . . . , ym >)(x) 6= y) = 0

for m sufficiently large, almost surely. wheneverfm =
P (< x1, . . . , xm, y1, . . . , ym >) is a computable function
fm such that∀i; fm(xi) = yi, minimal for the criterion
c(ACTm(fm), |fm|), whereACTm(g) is the average com-
putation time ofg on thexi and c(a, b) is any computable
function, continuous and increasing as a function ofa (which
is rational) and increasing as a function ofb, such that
lima→∞ c(a, 0) = limb→∞ c(0, b) = ∞.

Moreover,c(Etime(fm(x)), |fm|) converges to the opti-
mal limit:

c(Etime(fm(x)), |fm|)

→ inf
f ;Proba(f(x) 6=y)=0

c(Etime(fm(x)), |f |)

andfm is computable from< x1, y1, . . . , xm, ym >.
Proof: 1. Notef∗ an unknown computable function such

that Proba(f∗(x) 6= y) = 0, with Etimef∗(x) minimal.
2. The average computation time off∗ on thexi converges

almost surely (by the strong law of large numbers). Its limit
is dependent of the problem ; it is the expected computation
time of f∗ on x.



3. By definition of fm and by step 2,fm = P (<
x1, . . . , xm, y1, . . . , ym >) is such thatc(ACTm(fm), |fm|)
is upper bounded byc(ACTm(f∗), |f∗|), which is itself
almost surely bounded above as it converges almost surely
(Kolmogorov’s strong law of large numbers [7]).

4. Therefore, fm, for m sufficiently large, lives in
a finite space of computable functions{f ; c(0, |f |) ≤
c(supi ACTi(f

∗), |f∗|)}.
5. Considerg1, . . . , gk this finite family of computable

functions.
6. Almost surely, for any i ∈ [[1, k]] such that

Proba(gi(x) 6= y) > 0, there existsmi such thatgi(xmi
) 6=

ymi
. These events occur simultaneously as a finite intersec-

tion of almost sure events is almost sure ; so, almost surely,
thesemi all exist.

7. Thanks to step 6, almost surely, form > supi mi,
Proba(fm(x) 6= y) = 0.

8. Combining 5 and 7, we see thatfm ∈
argminG c(ACTm(g), |g|) where G = {gi; i ∈
[[1, k]] andProba(gi(x) 6= y) = 0}.

9. c(ACTm(gi), |gi|) → c(Etime(gi(x)), |gi|) almost
surely for any i ∈ [[1, k]] ∩ {i; Etime(gi(x)) < ∞ as
[[1, k]] asc(., .) is continuous with respect to the first variable
(Kolmogorov’s strong law of large numbers). As this set of
indexesi is finite, this convergence is uniform ini.

10. c(ACTm(gi), |gi|) → ∞ uniformly in i such that
Etime(gi(x)) = ∞ as this set is finite.

10. Thanks to steps 8 and 9,c(Etime(fm(x)), |fm|) →
infg;Proba(g(x) 6=y)=0 c(Etime(g(x)), |g|). �

We now turn our attention to a slightly modified definition
of fm, which has the advantage of being more quickly
computable. For the sake of clarity, the complexity below is
with respect to a stronger form of machines, that can simulate
n steps of machinex on entrye in time O(n), and computes
×, +, /, − in O(1).

The following theorem deals with the complexity of learn-
ing Turing computable relations from examples.

Theorem 12:Assume thatProba(g(x) 6= y) = 0 for
some computableg, and thatEtime(g(x)) is finite.

Consider a Turing machine that works with an oracle tape
providing a new examplexm, ym at each request, and outputs
fm on the output tape. The Turing machine works in-line,
i.e. provides a newfm at each request on the oracle.

Then, within logarithmic factors or computational costs
associated to the computation of a finite number of calls
to c(., .), the following algorithm works with asymptotic
time complexityO(L(m)) where L(.) is a non-decreasing
computable function such thattime(L(m)) = O(L(m))
(e.g. log2(.).

Define ∆0 = 1. Define t(f, 0) =
0 and for m ≥ 1 t(f, m) =
1
m

((m − 1) × t(f, m − 1) + min(time(f(xm)), L(m))).
Define Pop0 the empty population. Definef0 a function
that just outputs1 and halts. Define∀x; fit0(x) = 0. At
each new examplexm, ym (m ≥ 1):

• set Popm = {f ; c(0, |f |) ≤
min(∆m, f itm−1(fm−1))} ∪ Popm−1.

• for f ∈ Popm, definefitm(f) = c(t(f, m), |f |).
• for functionsf ∈ Popm which finish in time≤ L(m)

and reply somef(xm) 6= ym, then setfitm(f) = ∞.
• definefm ∈ arg minPopm

fitm
• if fitm(fm) > ∆m−1, then set∆m = ∆m−1 + 1 ;

otherwise,∆m = ∆m−1.

Then L(fm) → inff≡g L(f) with L(f) =
c(Etime(f(x)), |f |), and almost surely the time complexity
per value ofm is O(L(m)).

An interesting point is that the proof involves an algorithm
with a population of functions with their fitnesses in memory,
what is very close to genetic programming.Proof: The steps
of the proof are as follows:

• definef∗ = arg min{f ;f≡g} L(f).
• defineF = ∪m∈NPopm.
• Assume, in order to get a contradiction, H1:F does not

contain anyf such that i)Proba(f(x) = y) = 1 and
ii) f has finite expectation time.

• Then F is finite, otherwise else∆m → ∞ and
infF fitm → ∞ and thereforef∗ is in F .

• Then, allf ∈ F havefitm(f) → ∞. Proof: for each
f ∈ F ,

– either there existsa, b such thatP (x = a, y = b) >
0 and f(a) 6= b, anda, b will be drawn infinitely
often, and in particular at some value ofm for
which L(m) ≥ time(f(a)) ; in this case,fitm(f)
reaches infinity.

– or f does not have a finite expectation time, and
fitm(f) → ∞ by the lemma below (case 2).

• therefore, all fitnesses inF run to infinity. This leads
to ∆m → ∞. This implies thatf∗ ∈ F ; this is a
contradiction with H1. Therefore, H1 does not hold ;
for m sufficiently large (saym ≥ m0), some f ∈
Popm verifies Proba(f(x) = y) = 1 and f has finite
expectation time.

• then, form ≥ m0, fitm(f) ≤ fitm(f∗) ≤ K for some
K > 0 as fitm(f∗) converges (cf lemma below, case
1).

• therefore,∆m is also bounded above. Hence,F is finite.
• applying again the lemma below, we see thatfitm(f)

converges toL(f) uniformly in f ∈ F with finite
expectation time andProba(f(x) = y) = 1, and
converges to infinity uniformly for otherf ∈ F . This
uniform convergence implies thatL(fm) → L(f∗). �

Lemma 13 (Adapted strong law of large numbers):1.
Define L(m) → ∞ as m → ∞. Assume thatx is a
non-negative random variable with finite expectation. Then
em = 1

m

∑m

i=1 min(xi, L(i)) → Ex, if the xi are an iid
sample with the same law asx.

2. Assume thatx has infinite expectation. Thenem =
1
m

∑m

i=1 min(xi, L(i)) → ∞.
Proof of 1 (2 is similar):



Step 1: upper bound.em ≤ mm = 1
m

∑m

i=1 xi and by the
strong law of large numbers from Kolmogorov the right term
goes toEx.

Step 2: lower bound.mm − em = 1
m

∑m

i=1 max(0, xi −
L(i)). For anym > m0 ≥ 1, the right-hand-term is upper
bounded by

1

m

m0∑

i=1

max(0, xi − L(i))

︸ ︷︷ ︸

→0

+
m − m0

m
︸ ︷︷ ︸

→1

1

m

m∑

i=m0+1

max(0, xi − L(m0))

︸ ︷︷ ︸

→K(m0)

where the right-hand-term convergence is Kolmogorov’s
strong law of large numbers [21], [7], withK(m0) is the
expectationE max(0, x−L(m0)). We now show thatK(m0)
goes to0 asm → ∞:

K(m0) = E max(0, x − L(m0))

=
∑

n∈N

max(0, n − L(m0))Proba(x = n)

which goes to0 by the monotone convergence theorem of
Lebesgue [16].

Step 3: summary. So, for anym0, we can sum up previous
steps by the fact that almost surely

em ≤ mm
︸︷︷︸

→Ex

and

em ≥ mm
︸︷︷︸

→Ex

−(1 + o(1)) ×
1

m

m∑

i=1

max(0, xi − L(i))

︸ ︷︷ ︸

→m→∞K(m0)→m0→∞0

the second inequality holding form sufficiently large.
Step 4: concluding. Therefore, for anyǫ,
• upper bound: form sufficiently large,em ≤ Ex+ǫ (first

inequality in step 3),
• lower bound:

– for m sufficiently large,mm ≥ Ex − ǫ/3,
– with m0 such thatK(m0) < ǫ/3 and form ≥ m0

sufficiently large,(1+o(1))× 1
m

∑m

i=1 max(0, xi−
L(i)) ≥ K(m0) + ǫ/3

and therefore form sufficiently largeem ≥ Ex−ǫ/3. �

We have shown that finite time algorithms could not work
properly (theorem 1, corollaries 2,3,5, remark 6). We have
shown that iterative methods designing programs that are as
fast as possible do not generalize well (remark 9), and that
iterative methods designing programs that are as small as
possible are not Turing-computable (theorem 8). We have
also shown that iterative methods combining size and speed
are Turing-computable and generalize well (theorem 10,
11). The complexity of Turing-computable programs defined
therein is mainly the cost of simulation. We now show that
it is not possible to avoid the complexity of simulation.

We first define a modified version of the complexity of
Kolmogorov. We recall that Kolmogorov’s complexity was
first defined by Solomonov [27] in the field of artificial
intelligence also. Many other works about Kolmogorov’s
complexity exist, in particular adding constraints on re-
sources ([3], [6], [26]); as far as we know, the following
result is different and new (more closely related to the subject
of this paper).

Definition 14 (Kolmogorov’s complexity in bounded time):
An integerx is T ,S-complex if there is no Turing machine
M such thatM(0) = x ∧ |M | ≤ S ∧ time(M(0)) ≤ T .
M is the T -time-reduction ofx if and only if M(0) = x,
time(M(0)) ≤ T , |M | is minimal among possible functions
(and, for the sake of unicity,M is the first in lexicographic
ordering amongM ’s with the same size). Consider an
algorithm A deciding wether an integerx is T , S-complex
or not. DefineC(T, S) the worst-case complexity of this
algorithm (C(T, S) = supx time(A(< x, T, S >))). It is
finite for someA(.), even if there’s no limit on the size
of x as if x is too large, it isTn,Sn-complex whatever
may be its value. We restrict our attention to suchC(., .),
corresponding to algorithms with computation time only
depending uponT andS.

These notions are computable, but we will show that their
complexity is large. The complexity of the optimization of
the fitness in theorem 4 is larger than the complexityC(., .)
of deciding if x is T ,S-complex ; therefore, we will lower
boundC(., .).

Theorem 15 (The complexity of complexness):Consider
now Tn and Sn, computable increasing sequences of
integers computable in timeQ(n) whereQ is polynomial,
and yn the smallest integer that isTn,Sn-complex. Then,
for someSn = O(log(n)),

C(Tn, Sn) > (Tn − Q(n))/P (n).

whereP (n) is a polynomial, and in particular ifTn is Ω(2n),

C(Tn, Sn) >
Tn

P ′(n)

whereP ′(.) is a polynomial, i.e. essentially we can not get
rid of the computation timeTn.

The proof follows the lines of the proof of the non-
computability of Kolmogorov’s complexity by the so-called
”Berry’s paradox”, but with complexity arguments instead of
computability arguments.

Proof:
Step 1:yn is Tn,Sn-complex, by definition.
Step 2: But it is notQ(n)+yn×C(Tn, Sn), C+D log2(n)-

complex, whereC andD are constants, as it can be computed
by

• computingTn andSn (in time Q(n))
• iteratively testing ifk is Tn, Sn-complex, wherek =

1, 2, 3, . . . , yn (in time yn × C(Tn, Sn).

Step 3:yn ≤ 2Sn , as:

• there are at most2Sn programs of size≤ Sn,



• therefore there are at most2Sn numbers that are not
Tn, Sn-complex.

• therefore, at least one number in[[0, 2Sn ]] is Tn, Sn-
complex.

Step 4: ifSn = C +D log2(n), thenyn is upper bounded
by a polynomialP (n) (thanks to step 3).

Step 5: combining steps 1 and 2,ynC(Tn, Sn) > Tn −
Q(n).

Step 6: using step 4 and 5,C(Tn, Sn) >
(Tn − Q(n))/P (n), hence the expected result. �

VI. CONCLUSION

Let’s now sum up and compare our results.

• in corollaries 2, 3, 5 we have shown that finite-time
programming-programs can not perform the required
task, i.e. finding the most efficient function in a space
of Turing-equivalent functions.

• in theorem 12, we have shown that an iterative
programming-program could asymptotically perform
the required target-task. E.g., GP is such an iterative
method. Theorem 8 also shows that mixed fitnesses
should be used ; this is very related tobloat, a well
known problem in GP: without parsimony pressure, very
long programs appear and the optimization does not
work.

• GP is simulation-based and many GP-applications use
fitnesses as required according to our results, i.e. mixing
both size and precision.

• The main drawback of GP is that GP is slow ; one can
not get rid of the computation time. In theorem 15, using
a modified form of Kolmogorov’s complexity, we have
shown that getting rid of the simulation time is anyway
not possible.

The summary of this paper, which is relevant for the
research of Turing-computable functions realizing a given
mapping, is as follows:

Programming
progs

finite-time
progs

other inf.
time progs ?

iterative
progs

size fitness speed fitness space fitness size fitness speed fitness

uncom
-putable
(cor. 3)

uncom
-putable
(cor. 2)

uncom
-putable
(cor. 5)

generalizes
well (th. 10)

does not
generalize
(remark 9)

uncom-
putable (th.

8.b)

slighly faster
?

much faster
than

simulation
simulation

uncom
-putable (th.

15)

Ie, finite-time programs can not do the job (finding an
optimal function in a space of Turing-equivalent functions)
in the general case (corollaries 1, 2, 3). Iterative programs
can do it, but only with mixed fitnesses (theorem 2b, remark
2). Then, the time-complexity of such fitness-optimization
can not get rid of the simulation time (theorem 6).

In section III, we show negative results for the task
consisting in writing in finite time a program realizing a
given target-task in a neary optimal manner. These results are
true for deterministic programming-programs, randomized
programs, working on an oracle describing the target-task
under the form of a program or a black-box oracle as well.
These results concern time complexity, space complexity, and
program size, and are true even within arbitrary tolerance
functionsC(.).

In section V, we show positive result for the specialization
on a finite sample. Learning on a finite sample with a
pragmatic compromise between length and speed leads to
a function which is equivalent to the real one, and which is



optimal for this compromise.
We can conclude as follows when the ”target” function is

a computable one:

• for various criterions (size, time complexity, space com-
plexity), it is not possible to have a finite-time procedure
that takes as input a program, and automatically gener-
ates an optimal program.

• the size is the most undecidable criterion, as even on a
finite sample it remains undecidable. This is related to
the so-called ”bloat” phenomenon [11], [1], [14], [25],
[22], [30], [2], [12].

• it is also not possible to do it from examples, and to
assert after finitely many examples that the work is done
and that the optimal function is found.

• on the other hand, it is possible toconvergeto a function
that will match all future examples. Moreover, the
resulting function will have its value, for a compromise
between speed and size, optimal.

A remarkable fact is that the positive results occur for
algorithms ignoring the internal structure of the program.
This is a deep argument in favor of genetic programming.
Note that our results also show that optimizing speed alone
is not suitable on a finite sample ofxi, yi, as very big naive
programs are very fast, and that optimizing size alone is not
Turing-computable ; compromises between size and time are
more suitable. This is in favor of coupled fitnesses ([29], [33],
[17], [19]). Another remarkable fact in favor of GP is that
the simulation time is unavoidable for optimizing the relevant
class of fitnesses.

This only concerns the general framework of design-
ing Turing-computable functions. Of course, on restricted
framework, automatic programing e.g. from specifications is
possible.
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