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Abstract size. On the other hand, a control application is spec-
ified by a so called "function blocks network”.

This paper proposes a static scheduling of an ap- A control application has classically to respect end
plication designed using the IEC 61499 standard. Ito end bounds [13] according to specifications. These
this standard, a function block (FB) is an event trigbounds represent the maximum duration between the
gered component and an application is a FBs networkeceive of stimulus from sensors and the activation of
According to specifications, we propose temporal corthe corresponding actuators.
straints on the application behavior. To verify these According to the standard, the application blocks
constraints, we propose to transform the applicatiomre distributed on containers of devices called re-
blocks into a particular tasks system with precedencsurces. A resource is a logic execution unit corre-
constraints. The purpose is to exploit previous worksponding to time slots of the processing unit.
on scheduling. In addition, we propose a schedulabil- In a resource, the application blocks may share
ity analysis generating an accessibility graph of thelata and also interactions with physical processes.
application. This graph allows the construction of aThe standard imposes a non-preemptive execution be-
static scheduling to use by a sequencer at run-time. tween them. Due to this restriction, a mutual exclu-
sion on these interactions does not have to be explic-
itly handled. We note that a FB execution can be pre-
empted by another FB belonging to another resource.

In this paper, we synthesize the static scheduling

Nowadays, several component based approacH¥s? centralized IEC 61499 application. The resource
have been proposed to develop safe control applicé@ncept is not relevant to take into account in this
tions. They allow to model applications at design tim&ork. We suppose as assumption an application lo-
[4]. Nevertheless, it is difficult to evaluate real-timecated in only one resource of a device. We have to
behavior without modelling the execution support an@Pply a non-preemptive policy to perform such syn-
its distribution. thesis.

The IEC 61499 standard [9] is one of the most To validate the temporal behavior of a control ap-
known component-based methodology in the induglication, we propose to transform its FBs network
trial field [4]. It allows to model applications as wellinto a particular tasks system with precedence con-
as the execution support. A component (called Funétraints. The purpose is to exploit the previous re-
tion Block and denoted by FB) is a reusable functiongearches in this field. This system is different from
unit of software owning data. all those proposed in other researches. It allows the

A function block interacts with its environmentrepresentation of all execution scenarios.
thanks to event and data inputs and outputs. Event To avoid any events loss, we propose to compute
inputs trigger the function block activation while datadeadlines for the different application tasks. A dead-
inputs provide algorithms parameters. According tbne defines the latest completion date of a task exe-
[8, 9], we allows events buffering in blocks. We sup-<ution [19]. This computation must take into account
pose a buffer of sizen (m > 1) in each application the end to end bounds according to specifications.
block. In this case, events loss depends on the buffer To check the application feasibility, We propose

1 Introduction
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a schedulability analysis based on a graph construc- svents T oL

tion. If all deadlines are met, we generate an off-line I m‘{ ojn{ —
scheduling [24] to use by a sequencer at run time. This iE“V;f;f/_ I T _\fu‘iﬁﬂi

off-line scheduling specifies all the execution scenar- — . iyReiname

ios inside the resource. It is a direct acyclic graph Datafiow | | Dataflow

(DAG) where each trajectory represents a possible |interna|data

blocks scheduling. iaif:/_ ’ '\uou;:;aut

In the section 2, we present the IEC 61499 stan-
dard. Then we briefly present in the section 3 a be- (e S communlcLiling an T nracess.mappiil]

havioral characterization of a FB and a control appli-
cation. In the section 4, we present the transformation
approach of a FBs network into a particular tasks sys- ~ Figure 1. An IEC 61499 Function Block
tem. Then, we presentin the section 5 the computation
of blocks deadlines. In the section 6, we present the

schedulability analysis of an IEC 61499 control appli- l Theref let
cation. Finally, we present in the section 7 a metho vent O\t/_vs. b t\?vre ore, wet sugr:joste f‘ell c\j\?mp elte syn
generating priorities of events inside blocks. chronizafion between event and data flows.

In the standard, a function blocks network defines
a functional architecture of a control application. Each
2 The IEC 61499 standard event input (resp. output) is linked to an event output
(resp. input) by a channel. If not, it corresponds to a
We present the main concepts of the IEC 6149§lobal input (resp. output) of the network. Data inputs
Function Blocks standard [9, 8]. This standard is aand outputs follow the same rules.
extension of the IEC 61131.3 [7] for the Program- According to the standard, a device (industrial con-
mable Logic Controllers (PLC). We can divide its detrol system) is composed of one processing unit and
scription into two parts: the architecture descriptiointerfaces (for sensors, actuators and the communica-
and the block temporal behavior through the eventon network). Moreover, it contains one or more con-

selection mechanism. tainers called resources.
A resource contains application FBs interacting
2.1 Architecture description with physical processes. It definéthe important

boundary that exists between what is within the scope

An application function block (FB) (figure 1) is a of the IEC 61499 model and what is device and system
functional unit of software supporting some functionspecific functionality. Issues such as operating system
alities of an application. Itis composed by an interfacand communications protocols are outside the scope
and an implementation. of the standard” [18]

The interface contains data/event inputs and out- The resource can be viewed as a logic execution
puts supporting the interaction with the environmentnit corresponding to time slots of the processing unit.
Events are responsible for the activation of the block provides a scheduling function, for its local FBs,
while data contain valued information. applying a non-preemptive policy.

The implementation consists of a body and a head. In this paper, we are interested in the validation of
The body is composed of internal data and algorithiithe temporal behavior inside a resource. We suppose
implementing the block functionalities. Each algothen an application located in only one resource of a
rithm gets values in the input data channels and praevice. This assumption, representing the simple case,
duces values in the output data ones. They are speisiwell required to validate thereafter the temporal be-
fied in structured text (ST) language [7]. havior of a distributed application on several resources

The block head is connected to events flow. It sesf devices.

lects the sequence of algorithms to execute with re- Running Example. For all the continuation, we
gard to an occurrence of an input event. The selecensider a simple toy example of an IEC 61499 ! (fig-
tion mechanism of an event occurrence is encoded ime 2) to explain the proposed approach.
a state machine called the Execution Control Chart This application is composed by four FBs. Each
(ECC). At the end of the algorithms execution, thé-B implements elementary functionalities (one for
ECC sends the corresponding output event occugach input event). The application receives two ex-
rences. ternal input events (i.ee; andies) and can send five

Regarding that we are interested in the temporalutput ones (i.epes, oes, oeg, oeg andoeo).
behavior of the application, we will only focus on  According to specifications, the application has to



ecuted when the corresponding input events occur. We

I ied nedl . . .
— note that the selection mechanism is performed thanks
- to state variables 'a’ and 'b’ of"B;.
When theECC selects arte; occurrence, it asks
» = M o2 oet (fex_fb) the processor to perform the corresponding
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'a’, the ECC sendsoe; to F'Bs or simultaneously
oes and oes to respectivelyt’ Bs and F' Bo.

When theEC'C selects arnies occurrence, it waits
also the processor to execute the corresponding algo-
rithms sequencellgs. When it is finished, it sends

e oer 10 F B3 or oeg to F' B, depending on the internal
-_——— = variable 'b’ (figure 3).

FB1

FB3
Ressource : r

Figure 2. A control application  fbn

loe,
respect end to end bounds between the receive of these
external input events and the sent of output ones. C)
S?
loe,

2.2 Temporal behavior of a FB

Let us turn to the internal behavior of a function
block. The standard supposes that only algorithms ex-
ecution spends time. In a given function block, the
ECC is said idle if there is no algorithm to execute.
Otherwise, the ECC is busy.

According to the standard [9], the FB contains a Figure 3. The ECC behavior of F'B;
limited buffer (sizen > 1) for input occurrences. The
ECC behavior is devised into three steps :

* First, it selects one occurrence of an input event
according to priority rules defined in the resource.

* |t activates the algorithms sequence correspongl; Behavior formalization
ing to the selected event. Then, it waits for the re-
source scheduler to execute this sequence. ) . )

*When the execution ends, it emits occurrences of To characterize the ‘temporal behavior ofafunctlgn
corresponding output events. These occurrences il} ck, we have to take into account the execution of its

sent simultaneously or in exclusion. The emission deECC' Indeed, theECC selects not only algorithms
pends on state variables of the FB. to execute but also _the output _e_vent; tq send. Nev-
We note that an algorithms sequence of a FB grtheless, the sglectlon of transﬂyons inside HEC
atomic. The generation of events priorities is not speg-]a_y depend on internal state variables. We propose to
ified in the standard. Therefore, itis up to the designéjr_Eflne Sets pf output events corresponding to all pos-
to fix such priorities [11]. We define at the end of thi§Ible executions.
paper a method generating events priorities in a FB. ~ On the other hand, we classically define end to end
On the other hand, the ECC is specified by a stakPunds on the application behavior. These bounds
machine where each trajectory is conditioned by thH@present the maximum duration between the receive
reception of an input event, then the execution of a@f stimulus from sensors and the activation of the cor-
algorithms sequence and finally the sent of the corréesponding actuators. They are deduced from specifi-

sponding output events. cations.
Running Example. We present théC'C' behav- In this section, we first present an abstraction of the
ior of the function block' B1 (figure 3). function block behavior. Then we propose a formal-

We distinguish two algorithms sequences to exé&ation of end to end bounds. For all the continuation,
cute : Alg; and Algs. These sequences have to be exve denote byfbn a function blocks network.



3.1 Function block behavior inputs = {ie € IE / cause(ie)¢ OE}

We propose an abstraction of the function block ~ ““/Puts ={oc € OF / ef fect (oe)¢ IE}

behavior. The problem is to identify the possible out-

put occurrences corresponding to an input one. Su .
association is specified in thEC'C state machine. We are based on the model propos_ed in [19] t(.) char
acterize such events by a release time r, a period p, a

Nevertheless, firing a transition in t can de- . . . )
' 9 Hecc itter j (the maximum deviation of the period) and a

pend on internal variables of the block and also on irf" tant deadline d
put data. Therefore, we propose to identify the supe?—OnS ant deadiine d.
Running example. In the example, we have the

sets of output occurrences that occur simultaneousl¥. lowi )
For each trajectory of th&/C'C' automaton (i.e. ollowing sets :
each possible execution), we associate a superset gath-
ering all the output events occurring successively.
Let considerl E (respOE ) the set of input (out-

put) events offbn. In the same way, let consider e propose the functiobound encoding all the

IErp (respOErp ) the set of input (resp output) eng to end bounds ofbn. bounde,oe) denotes the
events of a function block’B. In addition, lettr be a  aximum duration between the release time ofan

In this paper, we suppose periodic eventsplits

inputs={ ie1,ies }
outputs={ oeq,0es,0€e6,0€9,0€10 }

trajectory ECCECCF 5. we denote by, occurrenceig € inputs) and the sent of ane one pe

* 1E(tr) the input event occurring ity € outputs). Itis directly deduced from the application

* OE(tr) the set of output events occurringtin specifications.

We propose a functiofollow associating to an in- Running Example. In the treated example,
putevente € I Er , the sets of simultaneous outputyounde; 0e,) specifies the maximum duration that
events. can take the treatment ofig; and Alg,.

We suppose the following constraints deduced from

follow(F"Bie) = the specifications :

{OE(tr)/ ie=IE(tr), tr € ECCrp}

Running example. In the example, we associate * boundge,0e4) = boundges,0es) = 20,

for ie5 two sets of output events. These sets corre-

. : - e bound(e1,0es)= bound(es,oei10) = 25,
spond to the trajectories of theC'C' starting from

the transition triggered byies. e bound(es,oeg) = 23,
follow(fb1, ie1)= {{oei1}, {oez2,0e3}}
follow(fb1, ies)= {{oer}, {oes}} 4 Transformation into a Task Model

follow(fb4, ie4)= {{ oea}}
In this part, we propose to transforifbn into a
3.2 fbn temporal constraint tasks system S with precedence constraints [2]. This
. o . .. system is different from all those proposed in other

According to specifications, a real time applicationagearches.
must often respect temporal constraints as end to end e first define a task as an execution of a FB. Then
bounds. We associate, in this paper, such bounds t1Qa yefine a trace as a sequence of tasks.
F Bs network.

We formalize in this section the dependance be- .
tween function blocks. We propose a functianse 4.1 Task definition
that specifies causalities between an event input of a Anp application task T corresponds to the execution
FB and the corresponding output of another one resf 4 function block activated by an occurrence of an

garding thel"Bs network. Note that f fect specifies  input eventie. This task implements the correspond-
the OppOSIte function aSSOCIatIng to an Output eVer]hg a|gorithms sequence.

the input event target of the sent occurrences. We define the functiogenerate(iejssociating for
Running example. From the link betweed'B1 4 jnput event ie the corresponding task T. Note that
and F'B4, one can deduce : is_ generatedby(T)is the opposite function of gener-
causefes)=oe1; effectper)=ies aste(le). In addition, we denote Awaskthe tasks set of
On the other hand, we define fitn the setnputs Let setor be a set of output events. We define

(resp,outputs ) of input (resp, output) events such aghe functiontarget(seto ) associating foseto g the
each event is not linked to another one. following set of tasks,



targetbetor) = 4.2 Trace definition
{T € Task / J oe € setog,

oe = cause(is_generated_by(T))} To specify causalities between tasks, we define in

S atrace tr as a tasks sequence,

tas\liv_c? propose, the following characterization of a r=To Ty oo Tos

such as,
T={r,j,p.d, WCET, BCET, pred, succ}
o Ty € first, T—1 € last
such as,
e Vie]|ln—1],Ti—1 =pred(T;)

e 1 (release time), j (jitter), p (period), d (deadline) define th . . d
: Temporal parameters according to the model We define the trace concept to just spec!fy end to
C(_and bounds. A trace represents then a possible execu-

tion part of the application when an event belonging
to inputs occurs.

e WCET (resp BCET) * the worst (resp best) case We denote bﬂ-‘TCLCES.the traces set in S. We de-
execution time of the algorithms sequence cofote also by startt) the first task of the trace-.
responding tde. It can be evaluated using the To avoid any functional problem, we suppose non

code and the characteristics of the execution sufgentry traces [14, 20] : the execution of the- th
port [23]. instance of a trace must not start before the execution

end of the(k — 1) —th one. More precisely, the period

e pred : the task that must be executed in fbn besf the first task is higher than the corresponding end to
fore the execution of T . It corresponds to theend bound.
execution of the FB producing cause(iég € In a closed control loop, a new reading from a sen-
is_generatedby(T)). sor cannot be done before the activation of the corre-

sponding actuators.

e succ : a set of tasks sets. Each tasks set corre- Running Example. In the example, we distinguish
sponds to a possible execution scenario (ie. onfiye traces. Each trace specifies a possible application
one tasks set between all ones is performedyehavior.

The tasks of a set are to be executed once the
execution of T is finished. They belong to FBs tri=Th, Ts; tro=Th, Ts; tr3=T1, T4,
activated once thée treatment finishes. tra=Ts, Ts; trs=T5, T7

proposed in [19]. We propose, in the next se
tion, a method processing these parameters.

Finally, we define in the system S an operatipn
as the set of traces having the same first task It
specifies all possible executions fifn whenT; is ac-
tivated.

suce(T) = {setr C Task/
I setor € follow(fb,is_generated_by(T)),
setr = target(setor)}

Running example. In the proposed example, we
distinguish seven tasks; corresponding tae; (i €
[1, 7]). The taskT: corresponds to the algorithms — a; run-time, some tasks a@fp; have to be executed
sequencellg,. The predecessor dfy and the suc- gach timeT; is activated. Some others have to be ex-
cessors off; are as follows, ecuted depending on the execution of their predeces-
sors. We characterize the execution of a task as fol-
lows,

Definition. Let T" be a task of an operatiosp;.

When theT, execution is finished, two scenarioswe say that the task T igrincipal if it is executed

are possible : Either we execud andT; or we exe- ©ach timel:is executed.
cuteTy. More precisely, the task is principal if it is di-

We definefirst (resplast) as the set of tasks with rectly executed when its predecessors are completely

op;={tr € Traces / start(tr)=T;}

pred(Ty) = Th
succ(Tr)= {{T>,15}; {Ta}}

no predecessors (resp successors). Thérsefresp €Xecuted.
last) corresponds tonputs (respoutputs), VT’ € pred*(T), cardinalityGucc(T")) = 1
first ={T € Task / pred(T) ¢ Task} Running example.In the example, we distinguish

last = {T € Task/ succ(T)= 0} two operations)p; andops (figure 4),



o To respect the end to end bounds of all traces con-
tainingT;, the deadlinel; has to respect the following
condition

()
0 G 0 9 0 VT € 8, d; <dbound,

Arll ibl Arl' ible A = ibl Arl. ibl Running example. We suppose the following
application application  application  application . . .
S R S T R worst case and best case execution times of the dif-

ferent tasks,

Figure 4. The application operations

Task | T, I L, I, | T, T|T| T

WCET| 4 | 4 | 5] 4]3]6]5

BCET| 3 |2 ]4]|3]|]2]4])2

op1 = {tr1, tra}; ops = {trs, tra, trs}.

The operatiorop; specifies two possible applica-
tion executions. According to the execution of the task
T, we execute_elthéfg andTs or T_4. _ o dieund = gbound = hoyund(tri) = bound(trs) =

The taskTl} is executed periodically. It is then a 20
principal task. The execution of the tasks 73 and
T, depends on the state variable 'a’ BtB;. Theyare o d5°%"? = bound(trs) = 25
not principal tasks.

We process the tasks deadlines as follows,

o dioud = man{d{° " —T,. WCET, d5*™? —

. . T,.WCET — T5.WCET} = 11
5 Deadlines computation ’ ’ }

i ) . dge ™ = bound(trs) = 23
To validate the temporal behavior of the applica-

tion, we present in this section an approach to com- o gbound — bound(trs) = 25

pute tasks deadlines. A deadline represents the latest

completion date of a task execution [19]. o A" = min{dg**"* —Ts.WCET, dy**™*—
A deadline computation is based on end to end Tr.WCET} =17

bounds described in specifications. Moreover, it must

avoid any events loss in buffers of blocks. 5.2 Deadlines computation taking into account
buffers size
5.1 deadlines computation basing on end to end

bounds Denoting bym the size of buffers in the applica-

tion blocks, the events loss occurs when the number

Let tr be a tasks trace of. We classically de- of active tasks at a given time is larger than
fine bound(tr) as the end to end bound of the trace To avoid this problem, we first propose to char-
tr. This temporal constraint corresponds to the bouratterize the release time of each application task. We
between the activation gfirst(tr) and the end of the propose then to compute deadlines in the order to keep
last(tr) execution. such number lower tham.

We defined the deadline of a task € tr. We de- Note that this method can also be used to determine
fine d®°*"“ the upper bound deadline to guarantee thiée sizes of buffers if they are not fixed.
end to end bounds of traces containifigd***"? has
to take into account the time for executing all the sugs 2.1 Temporal characterization
cessors belonging teucc(T) before their respective

deadlines. We process this deadline as follows, ~ LetZ; be an application task such&s¢€ first. The
IfT € last, taskT; is periodic regarding the periodicity of read-
ings from sensors.
d*""¢ = bound(tr) We characterize the temporal behavior of an appli-
cation block as follows,
Otherwise, Definition. Let fb be a function block of fon. We

define d’hard activity duration” of fb, a duration dur-
bo’”;dfd ing which all the non principal tasks are periodically
minTiESucc(T) {dz - TJjES'LiLcc(T) T]WCET} activated.



More precisely, the hard activity duration of a tr =To, oo, Ty ooy T

block corresponds to the worst case when all the non

principal tasks are executed as if they are principal.  LetT, i be thek —th instance of the task,, in the
To avoid any events loss in the correspondinfyper period (figure 6). L&t , be the(m + 1) — th

buffer, we must compute tasks deadlines in a such dinstance activated iffib aftert(Ta,x).

ration. To avoid any events loss in the buffer, the execu-
Running example. In the example, we supposetion of T}, » must finish before the activation @t. ;..

T, and Ty (respTs andT%) as principal tasks i" B, Otherwise,m + 1 input events occur during thE, »

(respF B3) to compute their deadlinek andds (resp — execution, whereas the buffer sizenis

ds anddr). We denote byi/’°¢ the deadline bound of the in-
Considering non reentry traces, all the applicatiostancel’, x to avoid any events loss ifb (figure6). It

tasks are periodic. Let- = Ty,....T,,_1 be a trace of corresponds to the earliest activation dat&'gf,.

S. We characterize the temporal behaviorIofe tr

(i€ [1,n—1])as follows. A3 = re 4 h.pe — (ro + k.po)

o ri=ro+ 3,2,  BOET(I}) Considering that there exigt “mast2lem=rs | 4

S k=i—1 1) instances of each tagk € fb in the hyper period,
* Ji=disi = Yo, BORT(TV) we compute the corresponding deadline bodfé*®
® D, =1po as fO"OWS,

The earliest activation date @f occurs when each  d.°°*¢ = min{d\%*°, k € [0, LMH}
previous task in the trace is executed as soon as possi- '
ble 0=, ' BCET(Ty)). The latest activation date  In the same way, we compute the deadlines of tasks
occurs when the previous task ends just in time (i.e. helonging to each block gfbn. We suppose the hyper
its deadline). The difference between the earliest ageriod as a hard activity duration for each one of them.

the latest date corresponds to the jitter (figure 5). Finally, to avoid any events loss in a buffer, the
deadline of each task has to respect the following con-

5.2.2 Evaluating the Hyper Period dition,

To validate the application, we classically verify the VT; €8, d; <doose

respect of deadlines in a hyper-period H [22]. There-
fore, we propose to compute these deadlines in thes peadlines generation method
same hyper-period.

Let lcm be the least common multiple of the In this subsection, we propose a method process-
tasks periods. Lelmar = {Tmaz, Pmaz, jmaz} and NG deadlines for the different tasks of the systsm
Trmin = {Tmin, Dmin, jmin } D€ two tasks offirst These deadlines have to respect

such as, . . .
e d'°°°° bound to avoid any events loss in blocks.

VTZ S f’iT'St, T'min +]mzn S T4 +]’L S Tmax +jmaz
e d°°“™ pound to satisfy end to end bounds.
As we treat non reentry traces, we can exploit the
result on the hyper period proposed for the sched@Gontrary tod'°°*¢, the computation of*°“"¢ is based
lability analysis of asynchronous systems [17]. Byn the successors deadlines of the task. Therefore,
analogy with our case, the analysis may be done Buch deadlines have to take into account the corre-

[Pmin + Jmin, Tmaz + Jmaz + 2.lcm)]. spondingd’°®*¢. We propose a computation method
in two steps.

5.2.3 Deadlines computation of a FB Let¢r be a trace of as follows,

Let fb be a function block containingtasks. To com- tr=Toy ey T

pute the deadlines of its tasks, we suppose the hyper

period as a hard activity duration. All the non princi- first step. We compute the deadlin#°°*¢ of each

pal tasks are then supposed as principal ones in a suabkT; ¢ tr, (i € [0,n — 1]).

period. Second stepWe compute the real deadline thanks
According to the previous temporal characterizao the proposed bound formula,

tion, each taskl, € fb is activated periodically.

Moreover,T, belongs also to a trade of S. o dy_1 = min{dl°°, bound(tr)}



(]
BCET(T ) BCET(T ) WCET(T )

delay(tr)=d_,

Figure 5. Temporal characterization of  tr

T,=first(tr)
/ m+1 instances
activated in fb >
TU‘k Ta.k Te.h
[ +1k Po ? 1 r +1h P - e
t
(] dloosea‘k 1
Figure 6. The scenario of the instances arrivals
e Vie[0,n—2], We Compute for the different tasks the correspond-
ing deadlines according to the proposed method,
o d; = poun First step. To avoid any events loss in
min{ d;°°*¢, d;°“""} F By, F By, F BsandF B4, we compute for each task
. the deadline?'°°*¢ in the hyper period1, 53]. We ob-
with, tain the following values.
dbound =
' d; <dloose Task [T [T ||| ]

mingesuee(rs) { &b - 2n eaucer,) WEET)}H deese | 25 |25 | 25 | 25| 25 [ 25 | 50

To conclude as soon as possible the infeasibility of

_the appl_i(_:ation, we propose the following schedulabil- - second step.Applying the proposed method, we
ity condition, obtain the following real deadlines that avoid any

Proposition. (Schedulability condition) - events loss and guarantee the respect of end to end
Let consider a tasks system S specifying an IEGoynds,

61499 application. The system S is infeasible if

— H loose —
37, €S.d, < WCET, e dy = min{ bound(tr1), d5’°°¢} = 20

— H loose\ —
Running example.In the example, we propose the  * ds = min{ bound(trs), d5***"} = 25

following temporal characteristics of the tasks belong- o , = min{ bound(trs), d°**} = 20

ing to first. We suppose that their jitters are null. We

deduce also the temporal characteristics of the tasks e di = min{ d\°°*¢, min{ d4-WCET(Ty), dg-
7—‘3,]147 Ts andT7. WCET(TQ)- WCET(T3) } } =11

o dg = min{bound(trs), d°%°} = 23

Task | L, | T L LTI T

e d7 = min{ bound(trs), déoose} =25

o ds = min {d¥°*¢, min{ ds - WCET(Ts) -
WCET(T7)}} =17




All the processed deadlines are higher than the corre- e Rule 0. the first tasks state is characterized as
sponding C ET'. Therefore, we use them to perform follows,
the schedulability analysis of the application.

Co ={ seto, Tmin, t=Tmin*jmin }

6 Schedulability analysis

In the scheduling theory of real-time systems, two
interests exist : periodic systems [16, 1] and systems
with precedence constraints [15, 3]. Even these two
fields are separately rich in results, there are few res
sults where both aspects are treated together.

Until today, only one work studied the case of sys-
tems with precedence constraints, periodicity and end-  ryle 1.
to-end bounds [5]. Nevertheless, the used task model
is not well expressive to specify all execution scenar-
ios of an application.

We propose then a schedulability analysis [1] of
a tasks systens' based on the proposed task model. e Rule 2. if 3 T} € set; / d; < t; Then the
This analysis validates the temporal behavior accord-  system S is infeasible.
ing to specifications. The schedulability criterion is
then the respect of all tasks deadlines. e Rule 3. if T; ¢ last then Let us suppose that

Based on the method processing these deadlines, succ(Ti) contains k tasks sets.
the analysis applies the EDF policy [25] to verify
all bounds. We propose to construct an accessibility suce(Ty)= {tso,...t8k—1}
graph [22] in the proposed hyper period. The acces-
sibility graph is a set of scheduling trajectories. Each  \ve construct k tasks stat€%,...., Cj,_, target
trajectory represents a possible scheduling of a traces ¢ ¢ as follows,
set. We apply the EDF algorithm during each trajec-
tory construction to verify end to end bounds of the
corresponding traces. A trajectory specifies then a
possible behavior of the application.

When the application is feasible, we generate an
off-line scheduling as a DAG to use by a sequencer at 2. t; =t + WCET(T3)

run-time. This DAG is well required to abstract the ] )
resource behavior at run-time. e Rule 4. if T; € last. Lettr be the trace contain-

ing T; . We construcC; = {set;, T}, t;} target
of C; as follows

Where, set contains all the tasks belonging to
first (seto = first).

We generate then step by step the different tasks
ates in the different G trajectories as follows.
Let C; = { set;, T3, t; } be a state in the graph G

if ti > Tmae + Jmaz + 2.lcm Then
we stop the current trajectory construction. This
trajectory is a possible scheduling of the appli-
cation.

VJ € [071‘77 1]acj = {Setjaijt]'}

1. V] S [O,k—l],set]- :seti\{Ti}Utsj

6.1 Accessibility graph generation

Let G be the accessibility graph constructed dur- 1. S; =8\ {T: } Ufirst(tr)
ing the schedulability analysis &§. We construct >
Lt =1t ET(T;
this graph in the proposed hyper peride,.:» + ts =t + WOBT(T)
Jmin, Tmaz + Jmaz + 2.lcm]. We define a tasks state

C of G as follows : 6.2 Algorithm

We propose the algorithm applying the approach.
This algorithm is based on a recursive functgener-
e setl : atasks set of S to execute ate()(table 1). The application feasibility is concluded
if we successfully generate all the possible trajecto-
e T:aselected task to execute between all the agag.
tive ones ofsct. We apply the EDF policy to  pased on a graph construction, the proposed analy-
perform such selection sis is optimal regarding the optimality of EDF [25].
Therefore, if we conclude the infeasibility of the ap-
plication then no other approach concludes the re-
We propose the following rules to apply during theverse.
graph construction. The first rule allows to construct To calculate the algorithm complexity, we denote
the first tasks stat€. by m the number of all operations to schedule. Let

C={ set, T, t} Where,

e t: the start time of the T execution



Bool generate(C : tasksstate, first : tasksjist,
tasks : tasksist, time: integer)
Begin
Ti : task; C1 : tasksstate; result : bool;
result < true;
if (C.t > time) lltime = 2.lem + Timaz + Jmax
then return¢rue);
for each taskTy € C.S
if deadline _violated (T1)
then return (false);
C.T «— apply - EDF(C.S);
while(ts € C.T' — succ andresult)
create(C, ); C1 .S— C.S\ C.TUts;
Ci.t— C.t+ TQWCET,
result < generate(C1 , first, time)
return result;
End.

!Ts;t=37| !T7 ; =37]

Table 1. The recursive function generate()

p; be the traces number of the operatign (i € |
0,m — 11]). Letg; be the tasks number of the longest Figure 8. The-schedulability-analysis
op; trace.
The maximum number of tasks states to construct
in the graph isx* 8 where, C . L.
grap 7 Definition of events priorities pol-
o a =1II—o..m—1p; is the trajectories number in icy

the accessibility graph.
Now we have to go back to the FB behavior. The

° g:z;ﬁ:—olqj is the longest trajectory. selection of events occurrences (by the ECC) must be

based on the corresponding tasks deadlines. Indeed,

To process the problem complexity, we suppos@e occurrence to select must correspond to the task
that the biggest number of trajectories in the accethat has the earliest deadline.
sibility graph isn. We suppose moreover that all tra- Regarding that the ECC is unaware of these tempo-
jectories contains: tasks states. The complexity ofral properties, We propose therefore to exploit the pre-
the problem is then G). vious schedulability analysis to generate events prior-

Running example In the example, we perform theities for each block. The scheduler receives then at a
proposed algorithm to validate the temporal behaviogiven time t from anzZC'C' the adequate task to exe-
of the application. cute that has the earliest deadline.

By constructing the accessibility graph in the hy- This proposition allows to guarantee the confor-
per period [1,53] , the algorithm constructs the tra-mity between the internal behavior of a FB and the
jectories specifying the different execution scenarioscheduler behavior inside the resource.

We present a part of such graph (figure 7). As the schedulability analysis is performed in the

Applying the Rule 0, we construct the first taskbyper period fmin + jmin, Tmaztimae+t2lecm] , we
stateCo ={{T1,T5},T1,t = 1}. Then, we apply the propose to generate for each block the order of occur-
proposed rules to construct the remainder states.  rences to select in a such duration.

We successfully construct the graph and we prove Letie; » andie; , be two occurrences to select,
the application feasibility. we note thatie; ., < ie;,,, if the ECC has to select

In addition, we deduce from the accessibility graphe:,~ beforeie; ., .
an off-line scheduling as a DAG. In fact, identical Running Example. According to the generated
branches of the tree are merged. We show in eaeltcessibility graph, we deduce the following events
state of this graph the selected task and the start timgiorities for ECC : ie11 < ies1 < iei2 K ies2
of its execution. This graph, used by a sequencer & ie13 < ies3
run-time, abstracts the resource behavior (figure 8).  The state machin€CC, must select these occur-



Set={T, T }:T,;t=1
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Figure 7. The-accessibility-graph

rences in a such order to guarantee the correct com- We also plan to check the feasibility of a control

position with the scheduler. application distributed on several resources of a de-
vice. According to the standard, an on-line preemptive
policy can be applied to schedule blocks belonging to
different resources. Thanks to this paper contribution,
e plan to consider the off-line scheduling of each re-

cSource as an OS task [26].

The application is viewed then as a set of OS tasks.
plan to apply a schedulability condition checking

8 Conclusion

This paper proposes a contribution to develop
industrial control application according to the IE
61499 standard. This application is located in a sin-

gle resource of a device. We classically suppose e

i 1 on-line preemptive scheduling of these tasks in the

to end bounds as bounds on the application behavi L ice

according to specifications.

We combine the two versions of the standard b
supposing a buffer of sizev > 1 in each block. The
events loss appears in a block when the number of new

In addition, we plan to extend our researches by
upposing a distributed application on several devices.
Such extension imposes to take into account the com-

munication interfaces and the networks bounds.

events is larger than the buffer size.

To exploit the previous researches on scheduling,
we propose to transform the application into a pa
ticular tasks system with precedence constraints. trm
system is different from all those proposed in other
works. It allows to model all the possible execution
scenarios of the application.

To avoid any events loss, we propose a methqgl
processing deadlines for tasks. This method takes also
into account the end to end bounds.

To validate the application behavior, we propose
an optimal schedulability analysis based on the corg]
struction of an accessibility graph. If the application
is feasible, then we generate an off-line scheduling to
use by a sequencer at run-time. [4]

We are currently working to propose a fault tol-
erant schedulability analysis of an IEC 61499 appli-
cation [26, 6]. The purpose is to authorize a limitegs)
number of deadlines to be missed.
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