
HAL Id: inria-00113460
https://hal.inria.fr/inria-00113460

Submitted on 13 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component based deployment of industrial control
systems: a hybrid scheduling approach

Mohamed Khalgui, Xavier Rebeuf, Françoise Simonot-Lion

To cite this version:
Mohamed Khalgui, Xavier Rebeuf, Françoise Simonot-Lion. Component based deployment of indus-
trial control systems: a hybrid scheduling approach. 11th IEEE International Conference on emerging
Technologies and Factory Automation, Sep 2006, Prague, République Tchèque. �inria-00113460�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50415131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00113460
https://hal.archives-ouvertes.fr

Component based deployment of industrial control systems :
a hybrid scheduling approach

Mohamed Khalgui Xavier Rebeuf
Françoise Simonot-Lion

Nancy Université - LORIA (UMR CNRS 7503)
Campus Scientifique B.P. 239 54506 Vandoeuvre-lés-Nancy cedex. France.

khalgui, rebeuf, simonot@loria.fr

Abstract

This paper deals with the IEC 61499 standard. A func-
tion block (FB) is an event triggered component and an
application is a distributed FBs network on several de-
vices. We consider these devices as multi-tasking PLCs.
To validate the temporal behavior inside a device, we
propose a hybrid scheduling approach combining off-line
and on-line policies. This approach transforms applica-
tion blocks into tasks thanks to the off-line policy. Then,
it checks their required on-line feasibility. On the other
hand, we propose also a temporal charcaterization of ex-
changed messages between devices to check also their on-
line feasibility.

Keywords. Component, Function Blocks, PLCs, Real
Time, Scheduling.

1 Introduction

Nowadays, the development of safety control appli-
cations becomes more and more complex. Indeed, they
have to be certified with regard to functional and extra-
functional properties [1]. Since they control critical
processes, one of the most important property deals with
Real Time behavior.

In addition, the ”Time to market” delay between the ap-
plication design and its commercialization is often shorter
[2].

A way to address these constraints can be the reuse of
existing components. The application is viewed then as a
composition of components.

Several component based approaches have been pro-
posed to model the components composition and also the
execution support [2, 3]. Among these approaches, the
IEC 61499 standard is the most known one in the indus-
try [4, 5]. It provides wide librairies of existing software
components called Function Blocks (FBs) [6].

The Function Block is an event triggered component.
It is a functional unit of software owning data. A con-
trol application is a FBs network specifying dependencies
between these blocks at run-time [5].

The execution support is a network of devices [6]. A
device contains logical execution units called resources.
A resource gathers application blocks interacting with one
or more physical processes. The standard imposes a non-
preemptive execution between these blocks. Due to this
restriction, a mutual exclusion on such interactions does
not have to be explicitely handled.

The application deployment is then a FBs distribution
on several resources of devices. According to specifica-
tions, these blocks have to verify end to end response time
bounds (denoted by eertb). These bounds are between the
receive of stimulus from sensors and the activation of the
corresponding actuators [7].

Several works have been proposed to validate the tem-
poral behavior of a FBs network [8, 9]. Nevertheless, they
don’t take into account characteristics of the execution
support.

In previous works, we considered the application de-
ployment on a usual industrial equipment: the mono-
tasking Programmable Logic Controller. This execution
support cannot handle preemption. Therefore, we can
model this execution support as a mono-resource device.

In [10, 11], we proposed a method constructing a sta-
tic scheduling of FBs satifying the eertb constraints. Such
scheduling is a Direct acyclic Graph (DAG) where each
node is a FB execution (with its own activation date and
its own deadline) and each edge is a control flow. In this
DAG, a fork corresponds to a condition according to the
global state of the resource. Note that this scheduling cor-
responds to an idling policy.

Nowadays, a new generation of a multi-tasking PLC
is available. Its main feature is the on-line preemptive
scheduling of tasks. Therefore, we can model this exe-
cution support as a multi-resources device. In this case,
we propose to associate one task to one resource.

To validate the temporal behavior of a distributed ap-
plication, we have to check the feasibility in each device
and also on the network connecting them.

To validate the temporal behavior inside each device,
we propose a hybrid approach combining off-line and on-
line policies.

This approach has first to transform blocks of each re-

EX1

EXn

EXO1

EXOn

Algorithms

Internal data

Type Name

Events flow

Data flow

Events flow

Data flow

Instance Name

Resources capabilities.
(scheduling, communications and process mapping)

Event input

Data input Data output

Event output

Figure 1. A function Block.

source into a task. It applies, in particular, the proposed
approach that constructs their static scheduling [10, 11].
This scheduling can be viewed as a pre-scheduling [12].
To encode the resource task, we propose to exploit the re-
curring real-time task model [13]. A recurring task is a
DAG allowing the representation of conditional real-time
codes.

Once all the resources of the device are correctly trans-
fomed into recurring tasks, we have to check their on-line
feasibility. We propose to apply the schedulability condi-
tion in [13].

To check the on-line feasibility on the network, we pro-
pose a temporal characterization of exchanged messages
between devices. This characterization is based on the ex-
ecution of the application blocks. It allows to apply any
schedulability condition according to the fixed scheduling
policy on the network [14, 15].

In the next section, we present the standard, the pro-
posed extensions and the considered assumptions. Then,
we present a characterization of an IEC 61499 applica-
tion. The section 4 presents the hybrid approach to apply
in each device. Finally, the section 5 presents the temporal
validation in a network of devices.

2 The IEC 61499 standard

We present the main concepts of the IEC 61499 Func-
tion Blocks standard [4, 5]. To validate the temporal be-
havior of the application, we propose some extensions and
assumptions to take into account in all the continuation.

2.1 Concepts
A function block (FB) (figure 1) is a unit of software

providing functionalities of an IEC 61499 application [5].
It is composed by an interface and an implementation.

The interface contains data/event inputs and outputs
supporting interactions with the environment. Events are
responsible for the activation of the FB while data contain
valued information [5].

The implementation of the block contains algorithms
to execute when the corresponding events occur [5].

The selection of an algorithm to execute is performed
by a state machine called the execution control chart
(ECC). The ECC is also responsible for sending output
events at the end of the algorithm execution. In [10, 11],
we describe in detail the FB behavior.

In the standard, a control application is specified by a
FBs network. In this network, each FB event input (resp.
output) is linked to an event output (resp. input) by a chan-
nel. Otherwise, it corresponds to a global input (resp. out-
put). Data inputs and outputs follow the same rules [5].

The execution support architecture is defined by a de-
vices network. A device is composed of one processing
unit and interfaces (with sensors, actuators and the net-
work). Moreover, it is characterized by logical execution
unit(s) called resource(s).

A resource contains and serves application FBs : it de-
fines ”the important boundary existing between what is
within the scope of the IEC 61499 model and what is de-
vice (ie. OS) and networks (ie. communications proto-
cols)” [6].

2.2 Extensions and assumptions
To analyze the behavior of a FB, we characterize the

corresponding algorithms by worst (resp, Best) case exe-
cution times WCET (resp, BCET). Moreover, we consider
that output events can be sent (by the ECC) simultane-
ously or in exclusion according to specifications.

To validate the temporal behavior of the application,
we only focus on the events flow. We suppose, in all the
continuation, a complete synchronization between events
and data flows. Indeed, when an event occurs in the cor-
responding input, all the associated data occur at the same
time in the corresponding inputs.

In this paper, we consider periodic global input events.
According to [16], we characterize them by a release time
r , a period p and a jitter j (the maximum deviation of the
period).

In this paper, we consider a distributed appli-
cation on D devices connected by a network :
device0...., deviceD−1 . we suppose ri resources in each
device devicei, i ∈ [0, D − 1].

On the other hand, we don’t restrict our researches to a
particular network. For sake of simplicity, we suppose a
bus network connecting the different devices. We denote
by M the set of messages to exchange on such network.
We apply a non-preemptive policy to schedule them.

Running Example. For all the continuation, we use
the following toy example to explain the proposed ap-
proach.

We consider a distributed control application on sev-
eral devices connected by a network. We show in the fig-
ure 2 a part of this application in a device of the execution
support.

This device is composed of two resources containing
applications blocks. These blocks interact with physical
processes and also with other blocks located in other de-
vices.

We consider ie11 and ie41 as global input events of the
application. In addition, the input events ie22 and ie32

correspond respectively to oe91 and oe10,1.
We particularly present the behavior of the function

blocks FB11 and FB12 .
When the ECC of FB11 selects an ie11 (resp, ie41) oc-

curence, it asks the processor to perform the correspond-
ing algorithm. When the scheduler signals the execution
end, the ECC sends oe11 and oe21 (resp, oe51 or oe61).

When the ECC of FB12 selects an ie32 occurence, it
asks the processor to perform the corresponding algo-
rithm. When the execution ends, the ECC sends oe52 and
oe62.

We simplify the problem by supposing that WCET =
3 and BCET = 1 of all algorithms. In addition, we
suppose the following temporal characterizations, ie11 :
(r = 3, j = 1, p = 50) and ie41 : (r = 6, j = 1, p = 50).

3 Characterization of an IEC 61499 appli-
cation

To validate the temporal behavior, we proposed (in [10,
11] to transform a FBs network into a particular actions
system with precedence constraints [14]. The purpose is
to exploit classical results on the scheduling of real-time
tasks.

This system is different from all those proposed in
other researches. It allows to specify all the possible exe-
cution scenarios of the application.

3.1 Action
An application action, denoted by act, corresponds to

a FB algorithm activated by an input event ie. It is char-
acterized by:

• WCET (act) (resp, BCET (act)) : the Worst (resp,
Best) Case Execution Time of the algorithm corre-
sponding to ie.

• pred(act) : the action to execute before act.
pred(act) belongs to the FB producing the output
event corresponding to ie.

• succ(act) : a set of actions sets. Each actions set cor-
responds to a possible execution scenario (ie. only
one actions set between all ones is performed). The
actions of a set have to be executed once the execu-
tion of act is finished. These actions belong to FBs
activated once the treatment corresponding to ie fin-
ishes. Note that succ(act) is constructed thanks to a
static analysis of the ECC.

• (r, j, p, d) : The three first parameters characterize
the activation of act [16]. They should be processed
while taking into account the execution of pred(act)
[17]. The deadline d defines the latest completion
date of the execution. To respect eertb constraints,
it should be processed while taking into account the
deadlines of the successors of act [17].

succ(act11)

{act21, act31}

succ(act32)

{act52, act72}

succ(act41)

{{act51}, {act61}}

Running example. Based on the blocks behavior pre-
sented above, we present the successors of the following
actions. At the end of act11 execution (resp act41) , the
actions act21 and act31 (resp act51 or act61) are acti-
vated.

For all the continuation, we denote by actji the j-th in-
stance of the action acti. Let Σ be the set of the appli-
cation actions. We denote by σ a subset of Σ. Note that
this subset corresponds to a resource R of a device. We
denote by first(σ) (resp last(σ)) the set of actions with no
predecessors (resp successors) in σ.

To validate the temporal behavior of the application,
we propose to temporally characterize its actions. Nev-
ertheless, the execution of some of them is not statically
foreseeable. Indeed, it depends on the execution of their
predecessors. In this case, we say that these actions are
not principal.

An action act∈ Σ is principal if it is periodically ex-
ecuted : the set of the successors of all its predecessors
contains only one actions set.

∀actj ∈ pred∗(acti), cardinality(succ(actj)) = 1
Note that the function pred∗() denotes the transitive

closure.
Running example. In the example, the actions act21

and act31 are principal because they have to be executed
each time act11 is executed. The actions act51 and act61
are not principal because their execution is not foresee-
able : it depends on the execution of act41.

In several cases, we say that application actions acth
and actk of first(σ) are disjoined if they have to be exe-
cuted in exclusion.

∃acti ∈ Σ/∀s ∈ succ(acti)

s �⊂ pred∗(acth) ∩ pred∗(actk)

We note that two disjoined actions are obviously not
principal. To optimize the static scheduling of σ , we pro-
pose to construct a new virtual action actnull as a prede-
cessor of acth and actk such as,

• succ(actnull) = {{acth}, {actk}}
• WCET (actnull) = 0

The new action actnull is then principal. It is activated
periodically.

Running example. In the resource R2, the actions
act22 and act32 are disjoined. Indeed, their execution de-
pends on that of act41. To optimize the static scheduling
of R2 , we construct a new action actnull as depicted in
figure 3.

Communication Network
Communication interface : CI

Process interface : PI

ie12

ie32

ie42

ie52

 ie82

 ie92

ie62

ie72

 ie10,2

 ie11,2

FB12

FB22

FB32

FB42

FB52

oe12

oe22

oe32

oe42

oe52
oe62

oe72

oe82

Scheduling Function : SF2

Ressource : R2

ie22
ie11

ie41

ie71

 ie91

ie31

ie61

 ie81

 ie10,1

FB11

FB31

FB41

FB51

oe11
oe21
oe51
oe61

oe71

oe81

Scheduling Function : SF1

Ressource : R1

ie21

ie51

oe31

oe41

FB21

oe91

oe10,1

Figure 2. A function Block.

T222

T322

Tnull

T522

T722 T11,22

T922

Figure 3. The fusion of two resource opera-
tions.

3.2 Actions trace
Considering the precedence constraints between ac-

tions, we define a trace tr of σ the following sequence,

tr = act0, act1...., actn−1

such as,

• ∀acti ∈]1, n − 1], acti−1 = pred(acti).

• act0 ∈ first(σ) and actn−1 ∈ last(σ).

The trace tr represents a possible execution of σ. It
corresponds to an eertb constraint according to specifica-
tions [17].

We denote by first(tr) (resp last(tr)) the first (resp
last) action of tr. In this paper, we suppose non reentry
traces [18] : the execution of the k-th instance cannot be
done before the execution end of the (k-1)-th one.

Running example. Let us take as example the resource
R1. We distinguish four traces as follows,

tr1 = act11, act21, act71
tr2 = act11, act31, act81
tr3 = act41, act51, act91
tr4 = act41, act61, act10,1

4 Hybrid validation of a device

In this section, we are interested to validate the tempo-
ral behavior of application blocks in only one device.

According to the standard instructions [4], we have to
apply a non-preemptive policy to schedule actions inside
resources. Nevertheless, an on-line and preemptive policy
is often required by RTOSs of devices [19].

To meet these requirements and to remain also adapt-
able to the standard, we propose a hybrid approach com-
bining off-line and on-line policies.

The off-line policy (i.e non-preemptive) allows to val-
idate the temporal behavior in each resource. If it is un-
feasible, then we conclude as soon as possible that the
application is also unfeasible. Otherwise, we generate a
pre-scheduling [12] encoding all possible execution sce-
narios.

Considering its conditional structure, we transform
each pre-scheduling into an OS task [19]. The application
is considered then as a set of OS tasks in the device. We
exploit an existing schedulability condition [13] checking
their on-line feasibility.

This approach remains compliant with the standard
while allowing a preemptive scheduling between re-
sources. Moreover, it reduces the context switching dur-
ing execution. Such reduction is often needed by several
RTOS considering their restriction in the number of tasks
to schedule [19].

4.1 Pre-scheduling step
To validate the temporal behavior of σ (a set corre-

sponding to a resource R), we apply a schedulability
analysis based on the EDF policy [10, 11]. This analy-
sis constructs an accessibility graph in a hyper period hp.

Let lcm be the least common multiple of the periods of
actions in first(σ). Let actmax = {rmax, jmax, pmax}
and actmin = {rmin, jmin, pmin} be two actions of
first(σ) such as,

∀acti ∈ first(σ)

rmin + jmin ≤ ri + ji ≤ rmax + jmax

Based on the work proposed in [20], the analysis is
done in hp = [rmin + jmin, rmax + jmax + 2.lcm]. In
this hyper period, we distinguish two behavioral modes :
the stationary mode and the non − stationary one.

The non − stationary mode corresponds to the re-
source behavior during [rmin + jmin; rmax + jmax].
The stationary one corresponds to the behavior during
[rmax + jmax; rmax + jmax + 2.lcm]. This behavior is
performed periodically.

If the system σ is feasible, then we generate a static
scheduling SR to use by a sequencer at run time.

To process the problem complexity, we suppose that
the biggest number of trajectories in the accessibility
graph is n. We suppose moreover that all trajectories con-
tains n tasks states. The complexity of the problem is then
O(n2).

The static scheduling is a direct acyclic graph (DAG)
where each trajectory specifies a possible execution sce-
nario. A state of the graph specifies the execution start
time of an action instance [10, 11].

We denote by stat succ(actji) (resp stat pred(actji))
the set of instances following (resp preceding) the instance
actji in SR.

In this paper, we consider a static scheduling as a pre-
scheduling [12]. Indeed, the execution of a pre-scheduling
may be preempted to execute a pre-scheduling of another
resource.

Running example. We take as example the resource
R1.

Applying the algorithm proposed in [10], we check the
feasibility of the corresponding set σ1. We generate a pre-
scheduling depicted in the figure 4. This pre-scheduling
is a DAG where each state represents an instance of an
action to execute.

4.2 Transformation into OS Tasks
We propose in this section a method transforming the

generated pre-schedulings into OS tasks.
considering the conditional structure of these pre-

schedulings, we exploit the recurring task model to rep-
resent them [13]. This model was introduced to represent
conditional real time codes. The application is considered
then as a set of OS tasks distributed on different devices.

A recurring task Γ is characterized by a task graph
G(Γ) and a period P (Γ). The task graph G(Γ) is a direct
acyclic graph (DAG) with a unique source vertex (denoted
by τ0) and a unique sink vertex.

Each vertex of this DAG represents a subtask (denoted
by τ) and each edge represents a possible flow of control.

A vertex of Γ is characterized by a WCET and a dead-
line d. An edge (τ , τ ′) is characterized by a real number
p(τ, τ ′) denoting the minimum amount of time that must
elapse after vertex τ is triggered (t(τ)) and before vertex
τ ′ can be triggered (t(τ ′)).

For sake of clarity, we encode the graph structure using
the following functions,

• pred(τ) : a set of subtasks in Γ such as only one
subtask has to be executed before τ .

• succ(τ) : a set of subtasks in Γ such as only one sub-
task has to be executed once the τ execution finishes.

We propose to transform the pre-scheduling SR into
two recurring tasks Γ and Γ′. The task Γ implements the
stationary behavior whereas the task Γ′ implements the
non-stationary one. considering that the stationary behav-
ior is periodic, the corresponding recurring task Γ is also
periodic with the same period.

A possible transformation is to associate each subtask
to an instance of an action. Nevertheless, this transforma-
tion produces recurring tasks with a lot subtasks.

This solution increases the complexity of the schedu-
lability analysis [13]. Therefore, we propose to merge a
sequence of instances of actions into a unique subtask.

To verify all bounds during the feasibility analysis of
these OS tasks, an instance actnm ∈ SR such as actm ∈
last(σ) must be a last instance of a subtask τ . According
to the EDF policy, the deadline of τ is then the deadline
of actnm .

We implement a subtask τ of Γ as follows,

τ = acte0,actfk−1 such as,

• ∀ i ∈ [0, k − 2], stat succ(acthi) = {actli+1}.

• actk−1 is as follows,

actk−1 ∈ last(σ) or
cardinality(stat succ(actfk−1)) > 1

We denote by first(τ) (resp last(τ)) the first (resp
last) instance of the subtask τ .

Let first sub (Γ) be the set of instances in SR with
no predecessors to execute in the stationary mode. We
propose the following rules to construct the task Γ.

The first rule constructs the first subtask, whereas the
second one is applied recursively to construct the other
subtasks.

Rule 0. First subtask construction.
If cardinality(first sub(Γ)) = 1

Then { τ0 } = first sub(Γ)
Otherwise, we construct in G(Γ) a virtual subtask

τ0 as follows,

• WCET (τ0) = 0.

• For each state actji ∈ first(Γ), we construct a sub-
task τk such as (τ0, τk)∈ G(Γ) and p(τ0, τk) = 0.

We note that t(τ0) = min{r(actji), actji ∈
first sub(Γ)}

Rule 1. Subtasks construction.
Let τi be a subtask of Γ such as actq0 ∈

stat succ(last(τi)).
We denote by τj ∈ succ(τi) a new subtask as follows,

act11
t = 4

act41
t = 7

act31
t = 16

act31
t = 16

act91
t = 13

act10,1
t = 13

act51
t = 10

act61
t = 10

act81
t = 19

act11
t = 54

act21
t = 22

act71
t = 25

act81
t = 19

act21
t =22

act71
t = 25

act41
t = 57

act61
t = 60

act10,1
t = 63

act31
t = 66

act81
t = 69

act21
t = 72

act71
t = 75

act51
t = 60

act91
t = 63

act31
t = 66

act81
t = 69

act21
t = 72

act71
t = 75

act11
t=104

stationarynon-stationary

Figure 4. A pre-scheduling

τj = actq0,, actpk.

This new subtask is temporally characterized as fol-
lows,

• The ready time t(τj) is characterized as follows,

t(τj) =
max{r(actq0);

maxτi∈pred(τj){t(τi) +
∑

actq
p∈τi

BCET (actp)}}
• The minimum amount of time p(τi, τj) is equal to

the difference between the triggering times of τj and
τi : pj = t(τj) − t(τi).

• The deadline dj , corresponds to the deadline dk of
the instance actpk.

• The execution requirement WCET (τj) is the sum
of the WCETs of the actions implementing τj .

We note finally that we follow the same method to con-
struct Γ′.

Running example. In the example, we transform the
pre-scheduling of R1 into a recurring task Γ1 (figure 5).

This task contains trajectories of subtasks specifying
the possible execution scenarios in R1. Each subtask con-
tains instances of SR.

The actions (act611, act10,11); (act311, act811) and
(act211, act711) are respectively transformed into the sub-
tasks τ1,τ2 and τ3 of Γ1. We note that,

t(τ0) = r(act141) = 6
t(τ0) = r(act211) = 54

4.3 Feasibility analysis
The application is considered then as set of OS tasks

in the device. We propose to analyze their preemptive on-
line feasibility. We exploit a schedulability condition to
check such feasibility [13].

According to the last transformation, the scheduling
problem in the device devicei, i ∈ [0,D − 1] is the
scheduling problem of at most 2 ∗ ri OS tasks.

Exploiting the theorem proposed in [13], we check the
feasibility of these tasks in a fixed hyper-period,

hp = [0,
∑

Γ∈S
2.E(Γ)

1−
∑

Γ∈S
ρave(Γ)

] where,

• S : the set of all recurring tasks in the device,.

• E(Γ) : the maximum possible cumulative execution
requirement on any path from the source node to the
sink node of the task graph G(Γ).

• ρave(Γ) : the quantity E(Γ)/P (Γ).

The theorem indicates that the system S is feasible if
and only if,

∀t ∈ hp , (
∑

Γ∈S Γ.dbf(t) ≤ t))

where, Γ.dbf(t) is a function accepting as argument a
non negative real number t. This function processes the
maximum cumulative execution requirement by jobs of Γ
having both ready times and deadlines within any time
interval of duration t.

Note that in practice, [13] proposes an interesting tech-
nique to compute this function in the hyper period hp.

5 Validation of a devices network

In this section, we treat the general case. We
suppose a distributed application on D devices :
device0....,deviceD−1.

To guarantee the temporal correctness, we have to
check the feasibility inside each device and also on the
network.

We apply the hybrid approach for each device devicei,
i ∈ [0, D − 1] to check the feasibility of the internal ap-
plication blocks.

To validate the temporal behavior on the network, we
have to check the feasibility of the exchanged messages
between devices.

In [15], the authors propose a method checking the
feasibility of exchanged messages on a CAN network.
They suppose a deadline for each message to exchange
on such bus. A non-preemptive EDF policy is applied
to check such feasibility. We precise that they propose

Figure 5. The recurring task Γ1.

a method processing messages ID from the corresponding
deadlines.

In this paper, we don’t restrict our researches to a par-
ticular network. In addition, we suppose this network as a
virtual device.

The exchanged messages between devices have to re-
spect eertb constraints according to specifications. To
guarantee the temporal correctness of the application, we
propose to assign for each message a deadline. This dead-
line is the latest time to reach the target device.

If a message deadline is not respected, then an eertb
constraint cannot be respected. To just check their fea-
sibility, we propose a temporal characterization of these
messages. This characterization is based on our previous
works [17].

Let actk be an action of devicek with successors in
other devices,

∃acth ∈ Σ/actk = pred(acth) ∧ acth /∈ σ(devicek)

We denote by m the message sent from actk to acth.
According to our previous researches in [17], we charac-
terize m as follows,

m = {r, j, d, p, WCTT}

where,

• r = rk + BCETk : the earliest sending date occurs
when the execution of actk finishes as soon as possi-
ble.

• j = dk − BCETk : the latest sending date occurs
when the execution of actk finishes in time. The dif-
ference between the earliest and the latest date corre-
sponds to the jitter.

• The deadline d has to take into account the time
for executing all the successors of actk before their
deadlines.

d =
mins∈succ(actk){minacti∈s∧acti /∈σ(devicek){d(acti)−

∑d(actj)≤d(acti)

actj∈s∧actj /∈σ(devicek) WCET (actj)}}

• p = p(actk) : As we treat non-reentry traces, then
the message m has the period of actk.

• WCTT : the worst case transmission time on the
network. This time depends on the network perfor-
mance.

By considering this characterization, all the exchanged
messages can be supposed as independant tasks. We can
use then an existing schedulability condition to check their
feasibility [14, 15].

6 Conclusion

This paper proposes a temporal validation of a distrib-
uted IEC 61499 control application on a network of de-
vices. These devices are multi-resources. We consider
each resource as an OS task.

To validate the temporal behavior, we have to check the
feasibility in each device and also on the network connect-
ing them.

To check the feasibility in a device, we propose a hy-
brid approach combining off-line and on-line policies.
This approach has first to transform blocks of each re-
source into a pre-scheduling. We propose to exploit the re-
curring real-time task model to encode this pre-scheduling
[13].

Once all the device resources are correctly transfomed
into recurring tasks, we have to check their on-line feasi-
bility using a schedulability condition [13].

To validate the network behavior, we check the feasi-
bility of the exchanged messages between devices. We
propose a temporal characterization of these messages
based on the FBs execution. This characterization al-
lows to apply an existing schedulability condition check-
ing their on-line feasibility [14, 15].

In our future works, we plan to consider a not deployed
application on devices. Therefore, we have to propose a
method deploying its blocks in resources of devices.

Based on ”placement” heuristics, the deployment has
to take into account functional and temporal constraints
according to specifications. Moreover, the number of re-
sources to construct in a device should not exceed the
number of allowed OS tasks. Finally, we plan to propose a
method configuring these resources to provide better ser-
vices for local blocks.

References

[1] O. Defour, J.-M. Jzquel, and N. Plouzeau, “Extra-
functional contract support in components”, in Interna-
tional Symposium on CBSE7, 2004.

[2] I. Crnkovic and M. Larsson, Building reliable component-
based software systems, Artech House. London, 2002.

[3] B.-P. Douglass, “Real Time UML : Advances in the
UML for Real-Time Systems”, in 3rd Edition, ISBN :
0321160762, Addision : Wesley Professional.

[4] IEC61499, International Standard IEC TC65 WG6, IEC,
2004.

[5] K. Thramboulidis, “IEC61499 in Factory Automaton”, in
International Conference on Industrial Electronics, Tech-
nology and Automaton, 2005.

[6] R. Lewis, Modelling control systems using IEC 61499,
The institution of Electrical Engineers, 2001.

[7] R. Gerber, M. Saksena, and H. Hong, “Guaranteeing
End-to-End Timing Constraints by Calibrating Intermedi-
ateProcesses”, in IEEE Real-Time Systems Symposium,
2004.

[8] M. Stanica and H. Guguen, “A Timed Automata Model
of IEC 61499 Basic Function Blocks Semantic”, in
ECRTS’03, 2003.

[9] V. Vyatkin and H.-M. Hanish, “Modeling of IEC61499
Function Blocks A Clue To Their Verification”, in XI
Workshop on supervising and diagnostics of Machining
Systems. Wroclaw, 2000.

[10] M. Khalgui, X. Rebeuf, and F. Simonot-Lion, “A schedu-
lability analysis of an IEC 61499 control application”, in
Fet. Mexico, 2005.

[11] M. Khalgui, X. Rebeuf, and F. Simonot-Lion, “A degraded
scheduling generation of a component based application”,
in Incom. France, 2006.

[12] W. Wang and A.-K. Mok, Pre-Scheduling: Balancing Be-
tween Static and Dynamic Schedulers, UTCS Technical
Report RTS-TR-02-01.

[13] S. Baruah, Dynamic and static priority scheduling of re-
curring real-time tasks, Real-time Systems. 24 (1), pp.
93-128., 2003.

[14] J. Stankovic, M. Spuri, and K. Ramamritham, Dead-
line Scheduling for Real-Time Systems, Kluwer Academic
Publishers. ISBN : 0792382692.

[15] K.-M. Zuberi and K.-G. Shin, “Non-preemptive schedul-
ing of messages on controller area network for real-time
control applications”, in Real-Time Technology and Appli-
cations Symposium, 1995.

[16] C.-L. Liu and L. Layland, Scheduling Algorithms for Mul-
tiprogramming in Hard Real-Time Environment, Journal
of the ACM 20, 46-61, 1973.

[17] M. Khalgui, X. Rebeuf, and F. Simonot-Lion, “A schedu-
lability condition of an IEC 61499 control application with
limited buffers”, in omer 05. Germany, 2006.

[18] J. Liu, “Real-Time Systems”, in Prentice Hall, 2000.
[19] H. Takada and K. Sakamura, ITRON for Small-Scale Em-

bedded Systems, IEEE MICRO, vol.15, no.6, pp.46-54,
1995.

[20] J. Leung and J. Whitehead, On the complexity of fixed-
priority scheduling of periodic real-time tasks, Perfor-
mance Evaluation 2 (1982), 237250., 1982.

