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Intégrateurs sympletiques en géométrie sous-riemannienne:le problème de MartinetRésumé : On ompare les performanes d'intégrateurs sympletiques et non sympletiques pour le alul degéodésiques normales et de points onjugués dans un exemple sous-riemannien, le problème de Martinet. Onétudie le problème d'abord ave une métrique plate, puis ave une perturbation à un paramètre onduisant àdes géodésiques non intégrables. De ette étude, on déduit que prohe des diretions anormales, une méthodesympletique est bien plus e�ae pour e problème de ontr�le optimal. L'expliation repose sur la théorie del'analyse rétrograde en intégration numérique géométrique.Mots-lés : géométrie sous-riemannienne, Martinet, geodésique anormale, intégrateur sympletique, analyserétrograde



Sympleti integrators in sub-Riemannian geometry: the Martinet ase 3IntrodutionThis paper is a follow-up to a series of artiles that were published in the past deades, see [1, 2℄ and thereferenes therein. There, the authors provide an analyti study of the singularity of the sub-Riemanniansphere in the Martinet ase. They omplement their analysis with numerial omputations to represent thegeodesis and the sphere, and to loate the onjugate points. The integrator used for these omputations is anexpliit Runge-Kutta method of order 5(4). The goal of the present paper is to ompare the performanes ofa sympleti integrator versus a non-sympleti one for this optimal ontrol problem. To be more preise, let
(U, ∆, g) be a sub-Riemannian struture where U is an open neighborhood of R3, ∆ a distribution of onstantrank 2 and g a Riemannian metri. When ∆ is a ontat distribution, there are no abnormal geodesis, anda non-sympleti integrator is as e�ient as a sympleti one. However, when the distribution is taken as thekernel of the Martinet one-form, we show that a sympleti integrator is muh more e�ient for the omputationof the normal geodesis and their onjugate points near the abnormal diretions.Both problems, the Martinet �at ase and a non integrable perturbation, are introdued in Set. 1 togetherwith the orresponding di�erential equations. Numerial experiments with an expliit Runge�Kutta methodand with the sympleti Störmer�Verlet method are presented in Set. 2 and illustrated with �gures. Close toabnormal geodesis, the results are quite spetaular. For a relatively large step size, the sympleti integratorprovides a solution with the orret qualitative behavior and a satisfatory auray, while for the same stepsize the non-sympleti integrator gives a ompletely wrong numerial solution with an inorret behavior,partiularly for the non integrable ase. The explanation relies on the theory of bakward error analysis(Set. 3). It is related to the geometri struture of the problem and its solutions.1 A Martinet type sub-Riemannian strutureIn this setion, we brie�y reall some results of [1℄ for a sub-Riemannian struture (U, ∆, g). Here, U is anopen neighborhood of the origin in R3 with oordinates q = (x, y, z), and g is a Riemannian metri for whih agraduated normal form, at order 0, is g = (1 + αy)dx2 + (1 + βx + γy)dy2. The distribution ∆ is generated bythe two vetor �elds F1 = ∂

∂x + y2

2

∂
∂z and F2 = ∂

∂y whih orrespond to ∆ = kerω where ω = dz − y2

2
dx is theMartinet anonial one-form. To this distribution we assoiate the a�ne ontrol system

q̇ = u1(t)F1(q) + u2(t)F2(q),where u1(t), u2(t) are measurable bounded funtions whih at as ontrols.We onsider two ases, the Martinet �at ase g = dx2 + dy2, an integrable situation, and a one parameterperturbation g = dx2 + (1 + βx)2dy2 for whih the set of geodesis is non integrable.1.1 GeodesisIt follows from the Pontryagin maximum priniple, see [1, 2℄, that the normal geodesis orresponding to
g = dx2 + (1 + βx)2dy2 are solutions of an Hamiltonian system

q̇ =
∂H

∂p
(q, p), ṗ = −∂H

∂q
(q, p), (1)where q = (x, y, z) is the state, p = (px, py, pz) is the adjoint state, and the Hamiltonian is

H(q, p) =
1

2

((
px + pz

y2

2

)2

+
p2

y

(1 + βx)2

)
.In other words, the normal geodesis are solutions of the following equations:

ẋ = px + pz
y2

2

ẏ =
py

(1 + βx)2

ż =
(
px + pz

y2

2

)y2

2

ṗx =
β p2

y

(1 + βx)3

ṗy = −
(
px + pz

y2

2

)
pzy

ṗz = 0.

(2)
RR n° 6017



4 Chyba & Hairer & VilmartNotie that the variables z and pz do not in�uene the other equations (exept via the initial value pz(0)), sothat we are atually onfronted with a Hamiltonian system in dimension four. For the Martinet �at ase (β = 0),the interesting dynamis takes plae in the two-dimensional spae of oordinates (y, py). The Hamiltonian is
H(y, py) =

p2
y

2
+

1

2

(
px + pz

y2

2

)2

,where px and pz have to be onsidered as onstants. This is a one-degree of freedom mehanial system with aquarti potential. For px < 0 < pz, the Hamiltonian H(y, py) has two loal minima at (y=±
√
−2px/pz, py =0),whih orrespond to stationary points of the vetor �eld. In this ase, the origin (y=0, py =0) is a saddle point.Whereas normal geodesis orrespond to osillating motion, it is shown in [1, 2℄ that the abnormal geodesisare the lines z = z0 ontained in the plane y = 0. For the onsidered metris, the abnormal geodesis an beobtained as projetions of normal geodesis, we say that they are not stritly abnormal. In [2℄, the authorsintrodue a geometri framework to analyze the singularities of the sphere in the abnormal diretion when

β 6= 0. See also [3, 4℄ for a preise desription of the role of the abnormal geodesis in sub-Riemannian geometryin the general non-integrable ase, i.e., when the abnormal geodesis an be strit. The major result of thesepapers is the proof that the sub-Riemannian sphere is not sub-analyti beause of the abnormal geodesis.Interesting phenomena arise when the normal geodesis are lose to the separatries onneting the saddlepoint. Therefore, we shall onsider in Set. 2 the omputation of normal geodesis with y(0) = 0 and py(0) > 0but small.1.2 Conjugate pointsFor the Hamiltonian system (1) we onsider the exponential mapping
expq0,t : p0 7−→ q(t, q0, p0)whih, for �xed q0 ∈ R3, is the projetion q(t, q0, p0) onto the state spae of the solution of (1) starting at

t = 0 from (q0, p0). Following the de�nition in [1℄ we say that the point q1 is onjugate to q0 along q(t) if thereexists (p0, t1), t1 > 0, suh that q(t) = expq0,t(p0) with q1 = expq0,t1(p0), and the mapping expq0,t1 is not animmersion at p0. We say that q1 is the �rst onjugate point if t1 is minimal. First onjugate points play amajor role when studying optimal ontrol problems sine it is a well known result that a geodesi is not optimalbeyond the �rst onjugate point.For the numerial omputation of the �rst onjugate point, we ompute the solution of the Hamiltoniansystem (1) together with its variational equation,
ẏ = J−1∇H(y), Ψ̇ = J−1∇2H(y)Ψ. (3)Here, y = (q, p) and J is the anonial matrix for Hamiltonian systems. It an be shown that for Runge-Kuttamethods, the derivative of the numerial solution with respet to the initial value, Ψn = ∂yn/∂y0, is the resultof the same numerial integrator applied to the augmented system (3), see [5, Lemma VI.4.1℄. Here, the matrix

Ψ =

(
∂q/∂q0 ∂q/∂p0

∂p/∂q0 ∂p/∂p0

)has dimension 6 × 6. The onjugate points are obtained when ∂q/∂p0 beomes singular, i.e., det(∂q/∂p0) = 0.2 Comparison of sympleti and non-sympleti integratorsFor the numerial integration of the Hamiltonian system (1), where we rewrite ∂H
∂q (q, p) = Hq(q, p) and

∂H
∂p (q, p) = Hp(q, p), we onsider two integrators of the same order 2:

• a non-sympleti, expliit Runge�Kutta disretization, denoted rk2 (see [5, Set. II.1.1℄),
qn+1/2 = qn +

h

2
Hp(qn, pn)

qn+1 = qn + hHp(qn+1/2, pn+1/2)

pn+1/2 = pn − h

2
Hq(qn, pn)

pn+1 = pn − hHq(qn+1/2, pn+1/2)

(4)INRIA



Sympleti integrators in sub-Riemannian geometry: the Martinet ase 5
• the sympleti Störmer�Verlet sheme (see e.g. [5, Set. VI.3℄),

pn+1/2 = pn − h

2
Hq(qn, pn+1/2)

qn+1 = qn +
h

2

(
Hp(qn, pn+1/2) + Hp(qn+1, pn+1/2)

) (5)
pn+1 = pn+1/2 −

h

2
Hq(qn+1, pn+1/2)where qn = (xn, yn, zn) and pn = (px,n, py,n, pz,n). Here, qn ≈ q(nh), pn ≈ p(nh) and h is the step size.For the omputation of the onjugate points, we apply the numerial methods to the variational equation (3).Notie that only the partial derivatives with respet to p0 have to be omputed. Conjugate points are thendeteted when det(∂qn/∂p0) hanges sign. We approximate them by linear interpolation whih introdues anerror of size O(h2). This is omparable to the auray of the hosen integrators whih are both of seond order.Remark 2.1 The Störmer�Verlet sheme (5) is impliit in general. A few �xed point iterations yield thenumerial solution with the desired auray. Notie however that the method beomes expliit in the Martinet�at ase β = 0. One simply has to ompute the omponents in a suitable order, for instane px,n+1, pz,n+1,

py,n+1/2, yn+1, xn+1, zn+1, py,n+1.2.1 Martinet �at aseWe onsider �rst the �at ase β = 0 in the Hamiltonian system (2). As initial values we hoose (f. [1℄)
x(0) = y(0) = z(0) = 0, px(0) = cos θ0, py(0) = sin θ0, pz(0) = 10, where θ0 = π − 10−3, (6)
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Figure 1: Trajetories in the (x, y)-plane for the �at ase β = 0.RR n° 6017



6 Chyba & Hairer & Vilmartso that we start lose to an abnormal geodesis, and we integrate the system over the interval [0, 9].Figure 1 displays the projetion onto the (x, y)-plane of the numerial solution obtained with di�erent stepsizes h by the two integrators. The initial value is at the origin, and the �nal state is indiated by a triangle. Theirles represent the �rst onjugate point deteted along the numerial solution, while the stars give the positionof the �rst onjugate point on the exat solution of the problem. There is an enormous di�erene between the twonumerial integrators. The sympleti (Störmer�Verlet) method (5) provides a qualitatively orret solutionalready with a large step size h = 0.1, and it gives an exellent approximation for step sizes smaller than
h = 0.05. On the other hand, the non-sympleti, expliit Runge�Kutta method (4) gives ompletely wrongresults, and step sizes smaller than 10−3 are needed to provide an aeptable solution. An explanation of thedi�erent behavior of the two integrators will be given in Set. 3 below.
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Figure 2: Phase portraits in the (y, py)-plane for the �at ase β = 0.As notied in Set. 1, the normal geodesis in the �at ase are determined by a one-degree of freedomHamiltonian system in the variables y and py. We therefore show in Figure 2 the projetion onto the (y, py)-spae of the solutions previously omputed with step size h = 0.05. The exat solution starts at (0, sin θ0)above the saddle point, turns around the positive stationary point, rosses the py-axis at (0,− sin θ0), turnsaround the negative stationary point, and then ontinues periodially. The numerial approximation by thenon-sympleti method overs more than one and a half periods, whereas the Störmer�Verlet and the exatsolution over less than one period for the time interval [0, 9]. Sine the onjugate point is not very sensible withrespet to perturbations in the initial value for py, the (y, py) oordinates of the onjugate point obtained bythe non-sympleti integrator are rather aurate, but the orresponding integration time is ompletely wrong.Table 1 lists the onjugate time obtained with the two integrators using various step sizes. There is asigni�ant di�erene between the two methods. We an see that with the Störmer�Verlet method (5) a stepsize of order h = 10−2 provides a solution with 4 orret digits. A step size a 100 times smaller is needed to getthe same preision with the non-sympleti method.2.2 Non integrable perturbationFor our next numerial experiment we hoose the perturbation parameter β = −10−4 in the di�erential equation(2). We onsider the same initial values and the same integration interval as in Set. 2.1. The exat solutionis no longer periodi and, due to the fat that β is hosen negative, its projetion onto the (y, py)-spae slowlyspirals inwards around the positive stationary point (see right piture in Figure 4).Figures 3 and 4 and Table 1 display the numerial results obtained by the two integrators for the di�erentialequation (2) with β = −10−4. The interpretation of the symbols (triangles, irles, and stars) is the sameas before. The exellent behavior of the sympleti integrator is even more spetaular than in the �at ase,and the pitures obtained for the Störmer�Verlet method agree extremely well with the exat solution. TheTable 1: Auray for the �rst onjugate time.Martinet �at ase
h rk2 Verlet

10−1 4.504945 8.504716
10−2 6.748262 8.416622
10−3 8.360340 8.416412
10−4 8.416349 8.416410exat solution: t1 ≈ 8.416409

Non integrable situation
h rk2 Verlet

10−1 4.511294 4.883832
10−2 7.380322 4.877056
10−3 4.877183 4.876998
10−4 4.876997 4.876997exat solution: t1 ≈ 4.876997 INRIA



Sympleti integrators in sub-Riemannian geometry: the Martinet ase 7
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Figure 4: Phase portraits in the (y, py)-plane for the non integrable ase β = −10−4.non-sympleti method gives qualitatively wrong solutions for step sizes larger than h = 0.01. In the (y, py)-spae it alternatively spirals around the right and left stationary points whereas the exat solution spirals onlyaround the positive stationary point. In ontrast to the Martinet �at ase, the onjugate point obtained by thenon-sympleti method is here wrong also in the (y, py)-spae.2.3 An asymptoti formula on the �rst onjugate time in the Martinet �at aseNow that we have shown the e�ieny of sympleti integrators, we an make more preise the asymptotibehaviour studied in [1℄. For the initial values of (6) and β = 0, onsider the ratio
R =

t1
√

pz

3K(k)
,where t1 is the �rst onjugate time for the normal geodesi, and K(k) is an ellipti integral of the �rst kind,

K(k) =

∫ π/2

0

1√
1 − k2 sin2 u

du, k = sin(θ0/2).By studying analyti solutions for the normal geodesis, it is proved in [1℄ that this ratio satis�es the inequality
2/3 ≤ R ≤ 1. It follows from a resaling of the equations (2) that R is independent of pz.In Figure 5, we represent the values of 1 − R as a funtion of ε = π − θ0, for various initial values θ0. Thenumerial results indiate that the ratio R depends on θ0, and R −→ 1− slowly for θ0 −→ π−.RR n° 6017



8 Chyba & Hairer & Vilmart

10−6 10−5 10−4 10−3 10−2 10−1 100

10−2

2 · 10−2

1 − R

π − θ0Figure 5: Illustration of the asymptoti behaviour of R (Störmer�Verlet sheme with step size h = 10−4).3 Bakward error analysisThe theory of bakward error analysis is fundamental for the study of geometri integrators and it is treatedin muh detail in the monographs of Sanz-Serna & Calvo [7℄, Hairer, Lubih & Wanner [5, Chap. IX℄, andLeimkuhler & Reih [6℄. It allows us to explain the numerial phenomena enountered in the previous setion.3.1 Bakward error analysis and energy onservationWe brie�y present the main ideas of bakward error analysis for the study of sympleti integrators, see [5,Chap. IX℄. Consider a system of di�erential equations
ẏ = f(y), y(0) = y0 (7)and a numerial integrator yn+1 = Φh(yn) of order p. The idea is to searh for a modi�ed di�erential equationwritten as a formal series in powers of the step size h,

˙̃y = f̃(ỹ) = f(ỹ) + hpfp+1(ỹ) + hp+1fp+2(ỹ) + . . . , (8)suh that yn = ỹ(tn) for tn = nh, n = 0, 1, 2, . . ., in the sense of formal power series. The motivation of thisapproah is that it is often easier to study the modi�ed equation (8) than diretly the numerial solution.What makes bakward error analysis so important for the study of sympleti integrators is the fat that,when applied to a Hamiltonian system ẏ = J−1∇H(y), the modi�ed equation (8) has the same struture
˙̃y = J−1∇H̃(ỹ) with a modi�ed Hamiltonian

H̃(y) = H(y) + hpHp+1(y) + hp+1Hp+2(y) + . . . .However, the series usually diverges, so a trunation at a suitable order N(h) is neessary,
H̃(y) = H(y) + hpHp+1(y) + . . . + hN−1HN (y).This trunation indues an error that an be made exponentially small, by hoosing N(h) ∼ C/h, see [5,Theorem IX.8.1℄. More preisely, we have that for tn = nh and h → 0,

H̃(yn) = H̃(y0) + O(tne−h0/h). (9)as long as the numerial solution {yn} stays in a ompat set. On intervals of length O(eh0/2h), the modi�edHamiltonian H̃(y) is thus exatly onserved up to exponentially small terms.3.2 Bakward error analysis for the Martinet problemSympleti integrators are suessfully applied in the long-time integration of Hamiltonian systems, for instanein astronomy (e.g. the Outer Solar System over 100 million years [5, Set. I.2.4℄), or in moleular dynamis[6, Chap. 11℄. Here the situation is quite di�erent beause we are interested in the numerial integration ofHamiltonian systems on relatively short time intervals. INRIA



Sympleti integrators in sub-Riemannian geometry: the Martinet ase 93.2.1 Martinet �at aseConsider the Martinet problem (2) in the �at ase β = 0. Its interesting dynamis takes plae in the (y, py)plane, and it is not in�uened by the other variables (only by their initial values). We put η = (y, py), andwe denote by f(η) the Hamiltonian vetor �eld omposed by the orresponding two equations of (2). For anumerial integrator of order p = 2, the assoiated modi�ed di�erential equation has the form
˙̃η = f(η̃) + h2f3(η̃) + O(h3). (10)Consider �rst the sympleti Störmer�Verlet method. It follows from Set. 3.1 that its modi�ed di�erentialequation is Hamiltonian, and from (9) that the modi�ed Hamiltonian H̃(η) is preserved up to exponentiallysmall terms along the numerial solution. This implies that the numerial solution remains exponentially loseto a periodi orbit in the (y, py)-spae. The ritial point (y =0, py =0) is a saddle point also for the modi�eddi�erential equation (beause the origin is stationary also for the numerial solution and thus for the modi�edequation). Therefore, any numerial solution starting lose to the origin has to ome bak to it after turningaround one of the stationary points. The minimal distane to the origin will always stay the same (see the zoomin Figure 2). This explains the good behavior of sympleti integrators.For the non-sympleti integrator, the term h2f3(η) is not Hamiltonian. Therefore the solution of themodi�ed di�erential equation (and hene also the numerial solution) is no longer periodi. In fat, it spiralsoutwards and after surrounding the �rst stationary point, the numerial solution does not approah the saddlepoint su�iently lose, whih indues a faster dynamis as an be observed in Figures 1 and 2. This auses ahuge error, beause lose to the saddle point the numerial solution is most sensible to errors.3.2.2 Non integrable perturbationIn this ase, the argument in the omparison of sympleti and non-sympleti integrators is very similar tothe disussion of the Van der Pol's equation in [5, Set. XII.1℄. For β 6= 0 (non integrable perturbation), thedynamis takes plae in the four dimensional spae with variables η = (x, y, px, py). In this spae the system(2) beomes

η̇ = f(η) + βg(η)where f(η) is the Hamiltonian vetor �eld orresponding to β = 0 and g(y) = O(1) depends smoothly on β.Here, the modi�ed equation beomes
˙̃η = f(η̃) + βg(η̃) + h2f3(η̃) + O(h3 + βh2),where the perturbation term h2f3(η) is the same as for the Martinet �at ase.For the sympleti integrator, the perturbation βg(η) has the same e�et for the original problem as for

˙̃η = f(η̃) + h2f3(η̃) + . . . . This explains the orret qualitative behavior for small h and small β. There is norestrition on the step size h ompared to the size of β.For the non-sympleti integrator, eah of the perturbation terms βg(η) and h2f3(η) destroys the periodiorbits in the subsystem for the (y, py) variables, and the dominant one will determine the behavior of thenumerial solution. Only when h2 ≪ |β|, the numerial solution will ath the orret dynamis of the problem.In Figures 3 and 4, where β = −10−4, this ondition is not satis�ed for h ≥ 10−2. Sine β is hosen smalland negative, the two perturbation terms are on�iting. The term βg(η) auses the solution to spiral aroundthe positive stationary point, whereas the term h2f3(η) auses it to spiral alternatively around both stationarypoints. For too large step sizes the qualitative behavior of the non-sympleti integrator (4) is thus ompletelywrong.Remark 3.1 The problem (2) with β = 0 has a lot of symmetries. In the (y, py)-spae the orbits are symmetriwith respet to the y-axis and also with respet to the py-axis. If we apply a symmetri numerial integrator (notneessarily sympleti), it is possible to prove the same qualitative behavior as for the sympleti Störmer�Verletmethod. This follows from the fat that the solution of the modi�ed equation (numerial orbit) orrespondingto a symmetri method has the same symmetry properties as the exat �ow (see [5, Set. IX.2℄ for preisestatements). Consequently, in the (y, py) plane and for β = 0, the solution will stay exponentially near toa losed orbit, as it is the ase for sympleti integrators. In the non integrable ase, the good behavior ofsymmetri methods an be explained as in Set. 3.2.2 for sympleti methods.RR n° 6017
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