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Abstract

This paper presents the Adapt-EvE algorithm, extending the UCBT online
learning algorithm (Auer et al. 2002) to abruptly changing environments.
Adapt-EvE features an adaptive change-point detection test based on Page-
Hinkley statistics, and two alternative extra-exploration procedures respec-
tively based on smooth-restart and Meta-Bandits.

1 Introduction

The Game Theory perspective is gradually becoming more relevant and appealing to Ma-
chine Learning (ML), as quite a few application domains emphasize the incompleteness of
available information in the learning game (Cesa-Bianchi & Lugosi, 2006). In some cases,
the huge volume of available information enforces the use of incremental and/or anytime
algorithms (Auer et al., 2002). In other cases, the dynamic nature of the application domain
asks for new learning algorithms, able to estimate on the fly the relevance of the training
examples, and accommodate these relevance estimates within the learning process (Kifer
et al., 2004). One central question for ML in this perspective is that of the balance between
Exploration and Exploitation (EvE). For instance in the multi-armed bandit problem, on-
line learning is both concerned with finding the very best option (exploration) and playing
as often as possible a good enough option (exploitation), in order to optimize the cumulated
reward of the gambler (Auer et al., 2002).

This paper is about online learning in dynamic environments. While online algorithms
offer some leeway for accommodating dynamic environments, empirical evidence shows that
their Exploration versus Exploitation trade-off is not appropriate for abruptly changing
environments. In order to adapt online learning to such abrupt changes in the environment,
three interdependent questions must be addressed. The first one, referred to as change-
point detection (Page, 1954), is concerned with deciding whether some change has occurred
beyond the “natural” variations of the environment. The second, referred to as Meta-EvE,
is concerned with designing a good strategy for such change moments. On one hand, the
change-point detection must trigger some extra exploration; this extra exploration relates
to the (partial) forgetting of the recent history. On the other hand, if the change-point
detection was a false alarm, the process should quickly recover its memory and switch
back to exploitation; otherwise, the extra exploration results in wasting time. Thirdly,
the process should be able to adapt the change-point detection mechanism based on what
happened during the Meta-EvE episodes. Typically, if the Meta-EvE episode concludes that
the change-point detection was a false alarm, the detection thresholds should be increased.

The algorithm presented in this paper, called Adapt-EvE, relies on the UCBT algorithm
proposed by (Auer et al., 2002), described in Appendix 1 for the sake of completeness.
Our contribution is two-fold. Firstly, Adapt-EvE incorporates a change-point detection
test based on the Page-Hinkley statistics (Page, 1954); parameterized after the desired
false alarm detection rate, this test provably minimizes the expected time before detection



(section 2). Secondly, two alternative Meta-EvE strategies are proposed and compared. The
first one, γ-restart strategy, proceeds by discounting the process memory. The second one,
Meta-Bandit, formulates the Meta-Eve problem as another multi-armed bandit problem,
where the two options are: i/ forgetting the whole process memory and playing UCBT
accordingly; ii/ discarding the change detection and keeping the same UCBT strategy as
before (section 3). Finally, the adjustment of the change point detection criterion is based
on a simple multiplicative update of the underlying threshold.

Empirical validation, conducted on the EvE Challenge proposed by (Hussain et al., 2006)
and discussed in section 4 demonstrates significant improvement over the baseline UCBT
algorithm (Auer et al., 2002). The paper concludes with some perspectives for further
research, particularly considering the case of many options.

2 Change point detection

As already mentioned, one question raised by the extension of UCBT to abruptly changing
environments is that of detecting the environment changes. Let us assume that the best
current option i∗ is correctly identified, and let µ∗ denote the expected associated reward.
Three types of change can occur. In the first case, the best option remains the same but
the associated reward µ∗ changes (it decreases or increases); in the second case, the reward
of another option increases to the point that it outperforms option i∗; in the third case,
reward µ∗ associated to option i∗ abruptly decreases and another option becomes the best
one. Only the last type of changes will be considered in this section, leaving the other two
cases for further study.

If we consider the series of rewards x1, ...xT gathered by playing the current best option i∗

in the last T steps, the question is whether this series can be attributed to a single statistical
law (null hypothesis); otherwise (change-point detection) the series demonstrates a change
in the statistical law underlying the rewards. A most well-known criterion for testing this
hypothesis is the Page-Hinkley (PH) statistics (Page, 1954; Hinkley, 1969; Hinkley, 1970;
Hinkley, 1971). The PH statistical test involves a random variable mT defined as the
difference between the xt and their average x̄t, cumulated up to step T ; by construction,
this variable should have 0 mean if the null hypothesis holds (no change has occurred). The
maximum value MT of the mt for t = 1 . . . T is also computed and the difference between MT

and mT is monitored; when this difference is greater than a given threshold λ (depending on
the desired false alarm rate), the null hypothesis is rejected i.e. the PH test concludes that
a change point has occurred. Further, under some technical hypothesis, the Page-Hinkley
test provably ensures the minimal expected time before detection for a given false detection
rate (Lorden, 1971).

x̄t = 1
t

∑t

`=1 x`

mT =
∑T

t=1(xt − x̄t + δ)

MT = max{mt, t = 1 . . . T}

PHT = MT − mT

Return(PHT > λ)

Table 1: The Page-Hinkley sta-
tistical test

The PH test involves two parameters. Param-
eter δ, manually adjusted in this paper, corre-
sponds to the magnitude of changes that should
not raise an alarm. Parameter λ depends on the
desired false detection rate. Increasing λ will en-
tail less false alarms, but might miss some changes.
As λ directly controls the exploration-exploitation
dilemma, an adaptive control of λ is proposed in
section 3.3.

3 Meta Exploration vs Exploitation Dilemma

When the change-point detection test is positive, the question becomes to reconsider the
balance between exploration and exploitation. Two alternative strategies are proposed to
handle the extra-exploration control, referred to as Meta-EVE. The first strategy, γ-restart,
is based on discounting the process memory (section 3.1). The second strategy, Meta-
Bandit, is based on the formulation of the Meta-EVE problem as another multi-armed



bandit problem (section 3.2).
Independently, section 3.3 tackles the a posteriori control of the change-point detection test,
through adaptively adjusting the λ parameter of the Page-Hinkley test.

Notations
In this section, ni,t and µ̂i,t respectively denote the estimation effort (initially, the number
of times the i-th arm has been selected) and the average reward associated to the i-th arm
at time step t; subscript t is omitted when clear from the context. The process memory,
made of the ni,t and µ̂i,t for i = 1 . . . K, dictates the selection of the next option through
the UCBT algorithm (Appendix 1).

3.1 γ− Restart

Let T denote the current time step where the change-point detection occurs, and let T −
nC denote the time step where the previous change-point detection occurred (set to 0 by
default). Window time [T − nC , T ] is referred to as the last episode of the process.

Smooth restart proceeds by discounting the estimation effort associated to every bandit arm.
Formally, the γ-restart procedure multiplies ni,T by the discount γ factor (0 < γ < 1) for
i = 1 . . . K. The average reward µ̂i,T is kept unchanged. In further time steps, parameters
ni,T+` and µ̂i,T+` are updated as before (Appendix 1).

3.2 Meta-Bandit

The Meta-Bandit procedure models the choice of increasing exploration or discarding the
change-point detection as another bandit problem. Precisely, the Meta-Bandit is concerned
with selecting one among two Bandits: the Old Bandit considers that the change-point
detection is a false alarm; it implements the UCBT algorithm based on the current process
memory (no

i,T = ni,T ; µ̂o
i,T = µ̂i,T ); the New Bandit considers instead that the change-point

detection is correct; it accordingly implements the UCBT algorithm based on a void memory
at time step T (nn

i,T = µ̂n
i,T = 0).

The Meta-Bandit memory involves the number of times each Bandit has been selected,
respectively noted nn and no, and the associated average reward µ̂n and µ̂o, all set to 0
at time T . In every further time step T + `, ` ≥ 1, the Meta-Bandit uses UCBT to select
one among the New and Old Bandits. The selected Bandit uses its own memory to select
some i-th option and it accordingly gets some reward ri. Reward ri is used to update three
parameters: i/ the reward associated to the selected Bandit; ii/ the reward associated to
the i-th option for the New Bandit; iii/ the reward associated to the i-th option for the Old
Bandit. Further, the Meta-Bandit increments the number of selections associated to the
selected Bandit1.

The Meta-Bandit thus gradually estimates the rewards associated to the New and Old
Bandits. After MT time steps (set to 1000 in all reported experiments), the Bandit with
the lowest reward is killed; the other Bandit takes in the control of the process, and the
Meta-Bandit is killed too.

3.3 Adaptive change-point detection through adjusting λ

Note that one can always determine a posteriori whether the last change-point detection
was a false alarm. In the smooth restart case, the false alarm is detected as: the best
option did not change between the previous and the current episode. In the Meta-Bandit
case, the false alarm amounts to: the Old Bandit wins.
Accordingly, the λ parameter is adjusted as fol-
lows, where ∆µ is the difference between the re-
ward of the best current option and the second
best. Parameters α and β are experimentally ad-
justed.

λ := λ × e

e =

{

(1 − α∆µ) if true alarm

(1 + β∆µ) if false alarm

1In the rare cases where both Bandits would select the same option, the Meta-Bandit increments
both nn and no.



4 Empirical validation

Adapt-EvE involves six parameters, detailed in Table 2 together with the empirically optimal
values in the context of validation, that of the EvE Pascal Challenge (Hussain et al., 2006).
The sensitivity analysis is in Appendix 2.

Parameter Role Adjustment Optimal value
δ change-point detection manual 5 10−3

λ change-point detection adaptive 100
γ in γ-restart only manual .95

MT in Meta-Bandit only fixed 1000
α for λ adjustment manual 10−4

β for λ adjustment manual 10−2

Table 2: Parameters of Adapt-EvE

The experimental results of Adapt-EvE compared to the baseline UCBT (Auer et al., 2002)
and the discounted UCBT proposed by L. Kocsys (2006), are reported in Table 3. For each
algorithm and visitor, the regret (in thousands) is averaged over 100 independent runs.

Baseline Algs γ-restart Meta-Bandit
Adaptive Detection Adaptive Detection

UCBT UCBT + discount No Yes No Yes
Frequent Swap 32.6 ± 0.2 19.1 ± 0.1 12.1 ± 0.1 16.6 ± 0.6 17.7 ± 1 14 ± 0.5
Long Gaussians 53.1 ± 4 7.1 ± 0.2 7.4 ± 0.4 5.6 ± 0.3 5.9 ± 0.3 6.5 ± 0.4
Daily Variation 60.2 ± 1.4 6.9 ± 0.1 6.9 ± 0.6 5 ± 0.2 13.4 ± 0.9 6.5 ± 0.3

Weekly Variation 62.2 ± 0.7 10.2 ± 0.4 7.3 ± 0.2 5.5 ± 0.1 5.9 ± 1.7 6 ± 0.2
Weekly Close Var. 21.6 ± 0.5 9.0 ± 0.2 6.6 ± 0.2 6.1 ± 0.1 6.1 ± 0.2 6.5 ± 0.2

Constant 0.4 ± 0.02 7.3 ± 0.05 0.4 ± 0.02 3.1 ± 0.1 0.4 ± 0.02 1.5 ± 0.1

Regret 230 ± 4.5 59.7 ± 0.5 40.9 ± 0.8 42.2 ± 0.7 49.5 ± 1.3 41.6 ± 0.8

Table 3: Adapt-EvE: Regret (in thousands) after 106 steps on every visitor with confidence
interval at 95%, using the best parameterization for each variant, averaged over 100 runs.

The γ-restart strategy appears to be the best one in the context of the EvE Challenge,
provided that parameters γ and λ are carefully adjusted. Complementary experiments and
the sensitivity analysis (Appendix 2) shows that the adaptive adjustment of λ does not work
well in the context of the γ-restart; further, the performances strongly depend on the values
of γ and λ.
With no adaptation of the change-point detection, the Meta-Bandit is outperformed by the
γ-restart although its performances are less sensitive to the δ and λ parameters. Interest-
ingly, the Meta-Bandit enables an efficient adaptation of the λ parameter; this adaptation
leads Meta-Bandit to catch up γ-restart.

5 Conclusion and Perspectives

The Adapt-EvE algorithm was devised for online learning in abruptly changing environ-
ments. Its good performances rely first on the use of an efficient change-point detection
test, and secondly on specific (alternative) procedures devised for controlling the extra-
exploration related to change-point detection, the γ-restart and Meta-Bandit. The theoret-
ical study of these procedures is undergoing.

Further work will be concerned with incorporating prior or posterior knowledge about the
periodicity of the dynamic environments. Another perspective is concerned with extending
Adapt-EvE to Many-armed bandit problems.
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Appendix 1: UCBT

In order for this paper to be self contained, this section briefly describes the UCB-Tuned
(UCBT) algorithm proposed by (Auer et al., 2002) for the multi-armed bandit problem, and
incorporated in Adapt-EvE.

Formally, let K denotes the number of options (bandit arms). The (unknown) reward
associated to the i-th option is noted µi. Let µ̂i denote the average reward collected by the
gambler for the i-th option; let ni denote the estimation effort spent on the i-th option2.

Let N =
∑K

i=1 ni denote the total estimation effort.

The regret L(N) after N estimation effort is the loss incurred by the gambler compared
to the best possible strategy, i.e. investing N effort on the best option (with reward µ̂∗ =
max{µ̂i, i = 1 . . . K}).

L(N) =
∑

i

ni × (µ̂∗ − µ̂i)

Assuming that rewards are bounded, the UCB1 algorithm ensures that the expected loss
is bounded logarithmically with the estimation effort N (Auer et al., 2002), assuming that
the machines are independent.

Adapt-EvE uses an algorithmic variant of UCB referred to as UCB-Tuned (UCBT) for its
better empirical results (Auer et al., 2002). Let Vi(ni) denote an upper bound on the
variance of the reward of the i-th machine, then equation (1) is replaced by

i = Argmax{µ̂j +

√

2 log N

nj

× min(
1

4
, Vj(nj))}

The above selection rule tends to decrease the exploration strength, except possibly for
options with high variance.

2Originally, ni is the number of times the i-th option has been selected. However, considering
ni as the estimation effort spent on the i-th option makes more sense in the context of the γ-restart
strategy (section 3.1).



Initialization: For i = 1 . . . K, ni = µ̂i = 0. N = 0

Repeat

if ni = 0 for some i ∈ 1 . . . K play i

else play i = argmax {µ̂j +
√

2 log N
nj

, j = 1 . . . K}

let r be the associated reward

Update ni and µ̂i

µ̂i := 1
ni+1

× (niµ̂i + r)

ni := ni + 1

N := N + 1

Table 4: Algorithm UCB1

Appendix 2. Sensitivity study

The sensitivity of Adapt-EvE with no adaptive change detection, with respect to parameters
δ and λ (controlling the false alarm rate), and γ (controlling the γ-restart), is respectively
shown in Table 5.(a), (b) and (c).

δ γ-restart Meta-Bandit
10−4 43.8 ± 2.8 48.8 ± 1.5

5 10−4 42.9 ± 1.9 49.2 ± 2.4
10−3 42.3 ± 1.7 50.9 ± 2.1

5 10−3 39.8 ± 2 47.7 ± 4.9
10−2 44.2 ± 5.3 47.9 ± 2.4

(a) Adapt-EvE sensitivity wrt δ

λ γ-restart Meta-Bandit
80. 41.9 ± 2 51.5 ± 3.6
100 39.8 ± 2 47.7 ± 4.9
150 45.7 ± 6 52.1 ± 4
250 51 ± 5 52.6 ± 5.8

(b) Adapt-EvE sensitivity wrt λ

γ Adapt-EvE with γ-restart
0. 46 ± 2.1

0.85 41.7 ± 2.4
0.9 40.5 ± 1.9
0.95 39.8 ± 2
0.99 41.7 ± 2.5
0.999 79.9 ± 3.5

(c) Adapt-EvE- γ-restart sensitivity wrt γ

Table 5: Sensitivity analysis of Adapt-EvE wrt parameters δ, λ and γ (95% confidence
interval), with NO adaptive adjustment of the λ parameter

The online regrets of all Adapt-EvE variants and the baseline algorithms are reported in
Fig. 1.
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Figure 1: Adapt-EvE: Online regret averaged over all visitors × 10 runs, compared to baseline
average regret


