
HAL Id: inria-00113954
https://hal.inria.fr/inria-00113954

Submitted on 28 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvements in the configuration of Posix 1003.1b
scheduling

Mathieu Grenier, Nicolas Navet

To cite this version:
Mathieu Grenier, Nicolas Navet. Improvements in the configuration of Posix 1003.1b scheduling. 15th
International Conference on Real-Time and Network systems - RTNS’2007, Mar 2007, Nancy, France.
pp.141-150. �inria-00113954�

https://hal.inria.fr/inria-00113954
https://hal.archives-ouvertes.fr

Improvements in the configuration and analysis of Posix 1003.1b scheduling

Mathieu Grenier Nicolas Navet

LORIA-INRIA
Campus Scientifique, BP 239

54506 Vandoeuvre-lès-Nancy- France
{grenier, nnavet}@loria.fr

Abstract

Posix 1003.1b compliant systems provide two well-
specified scheduling policies, namely sched_rr (Round-
Robin like) and sched_fifo (FPP like). Recently, an op-
timal priority and policy assignment algorithm for Posix
1003.1b has been proposed in the case where the quan-
tum value is a system-wide constant. Here we extend this
analysis to the case where quanta can be chosen on a
task-per-task basis. The algorithm is shown to be opti-
mal with regards to the power of the feasibility test (i.e.
its ability to distinguish feasible and non feasible config-
urations). Though much less complex than an exhaustive
exploration, the exponential complexity of the algorithm
limits its applicability to small or medium-size problems.
In this context, as shown in the experiments, our proposal
allows achieving a significant gain in feasibility over FPP
and Posix with system-wide quanta, and therefore using
the computational resources at their fullest potential.

1. Introduction

Context of the paper. This study deals with the
scheduling of real-time systems implemented on Posix
1003.1b compliant Operating System (OS). Posix
1003.1b [7], previously known as Posix4, defines real-
time extension to Posix mainly concerning signals, inter-
process communications, memory mapped files, syn-
chronous and asynchronous IO, timers and scheduling (a
recap of Posix’s features related to scheduling is given in
§2.1). This standard has become very popular and most of
today’s OS conform, at least partially, to it.

Problem definition. Posix 1003.1b compliant OSs pro-
vide two scheduling policiessched_fifoand sched_rr,
which under some restrictions discussed in §2.1, are re-
spectively equivalent to Fixed Preemptive Priority (FPP)
and Round-Robin (RR for short). Thus, under Posix
1003.1b, each process is assigned both a priority, a
scheduling policy and, in the case of Round-Robin, a
quantum. At each point in time, one of the ready pro-
cesses with the highest priority is executed, according to

the rules of its scheduling policy (e.g. yielding the CPU
after a quantum under RR).

The problem addressed here is to assign priorities, poli-
cies and quanta to tasks in such a way as to respect dead-
line constraints. For FPP alone, the well-known Auds-
ley algorithm [2] is optimal. A similar algorithm exists
for both RR and FPP in the case of a system-wide quan-
tum [6]. Here we consider the case where quanta can be
chosen on a task-per-task basis. As it will be seen in §3.2,
the complexity of the problem is such that an exhaustive
search is usually not feasible even on small size problems.
For instance, a task set of cardinality10 with quanta cho-
sen among 5 different values requires to analyze the fea-
sibility of more1011 different configurations (see §3.2).

Contributions. Traditionally, the RR policy is only con-
sidered useful for low priority processes performing some
background computation tasks “when nothing more im-
portant is running”. In this paper, as we did in [10, 6],
we argue that the combined use of RR and FPP allows to
successfully schedule a large number of systems that are
unschedulable with FPP alone.

The contribution of the paper is twofold, first we pro-
pose an algorithm for assigning priorities, policies and
quanta that is optimal in the sense that if there exists at
least a feasible solution1, then the algorithm will return
a feasible solution. The algorithm being an extension of
the classical Audsley algorithm [2] and theAudsley-RR-
FPP from [6], we name it theAudsley-RR-FPP∗ algo-
rithm. The worst-case complexity of the algorithm is as-
sessed and a set of optimizations are proposed to reduce
the search space. The second contribution of the paper
is that we give further evidences that the combined use
of both FPP and RR is effective - especially when quanta
can be chosen for each individual task - for finding fea-
sible schedules even when the workload of the system is
high.

Related work. We identify two closely related lines of
research: schedulability analyses and priority assignment.

1We call here afeasiblesolution, a solution that successfully passes
a schedulability test verifying property 2 (see §2.5). In the following, we
make use of the response time bound analysis derived in [9].

Audsley in [2, 3] proposes an optimal priority assignment
algorithm for FPP, that is now well-known in the literature
as the Audsley algorithm. Later on in [5], this algorithm
has been shown to be also optimal for the non-preemptive
scheduling with fixed priorities. The problem of best as-
signing priorities and policies under Posix 1003.1b was
first tackled in [9] but the solution relies on heuristics and
is not optimal in the general case. Then, in [6], an optimal
solution is proposed for the case where the quantum value
is a system-wide constant.

As in [6], the problem addressed here is different than
in the plain FPP case because the use of RR leads to the
occurrence of scheduling “anomalies”, which are some-
times counter-intuitive. For instance, as it will be seen in
§2.5, increasing the quantum value for a task can leads
sometimes to a greater worst-case response time for this
task. Similarly, decreasing the set of higher priority tasks,
can increase the response time (see [6]). This prevents
us from using the proposed priority and assignment algo-
rithm with the schedulability assessed by simulation, or
with a feasibility test that would not possess some spe-
cific properties discussed in §2.5. Indeed there would be
cases where the algorithm would discard schedulable as-
signments and thus not be optimal. In this study, feasi-
bility is assessed by the analysis published in [9], which
ensures that the computed response time bounds decrease
when the set of higher priority tasks is reduced. This prop-
erty enables us to use an Audsley-like algorithm for the
assignment that will be shown to be optimal with regard
to the power of the test, that is its ability to distinguish
feasible or non feasible configurations.

Organisation. Section2 summarizes the main features
of the scheduling under Posix 1003.1b and introduces the
model and notations. In section 3, we present the opti-
mal priority, policy and quantum assignmentAudsley-RR-
FPP∗ algorithm. Efficiency of the proposal is then as-
sessed in section 4.

2. Scheduling under Posix 1003.1b: model
and basic properties

In this section we present the system model and sum-
marize the main features related to scheduling of Posix
1003.1b. We then present the assumptions made in this
study and derive some basic properties of the scheduling
under Posix 1003.1b that will be used in the subsequent
sections.

2.1. Overview of Posix 1003.1b scheduling
In the context of OS, we define a task as a recurrent

activity which is either performed by repetitively launch-
ing a process or by a unique process that runs in cycle.
Posix 1003.1b specifies 3 scheduling policies:sched_rr,
sched_fifoand sched_other. These policies apply on a
process-by-process basis: each process run with a partic-
ular scheduling policy and a given priority. Each process

inherits its scheduling parameters from its father but may
also change them at run-time.

– sched_fifo: fixed preemptive priority with First-In
First-Out ordering among same-priority processes.
In the rest of the paper, it will be assumed that all
sched_fifotasks of an application have different pri-
orities. With this assumption and without change
during run-timesched_fifois equivalent to FPP.

– sched_rr: Round-Robin policy (RR) which allows
processes of the same priority to share the CPU. Note
that a process will not get the CPU until a higher pri-
ority ready-to-run processes are executed. The quan-
tum value may be a system-wide constant (e.g. QNX
OS), process specific (e.g. VxWorks OS) or fixed for
a given priority interval.

– sched_otheris an implementation-defined scheduler.
It could map ontosched_fifoor sched_rr, or also im-
plement a classical Unix time-sharing policy. The
standard merely mandates its presence and its doc-
umentation. Because we cannot rely on the same
behaviour ofsched_otherunder all Posix compliant
OSs, it is strongly suggested not to use it if a porta-
bility is a matter of concern. We will not consider it
in our analysis.

Associated with each policy is a priority range. Depend-
ing on the implementation, these priority ranges may or
may not overlap but most implementations allow over-
lapping. Note that these previously explained scheduling
mechanisms similarly apply to Posix threads with the sys-
tem contention scope as standardised by Posix 1003.1c
standard [7].

2.2. System model
The activities of the system are modeled by a setT

of n periodic and independent tasksT = {τ1, τ2, ..., τn}.
Each taskτi is characterized by a tuple(Ci, Ti, Di) where
each request ofτi, called an instance, has an execution
time ofCi, a relative deadlineDi and a period equal toTi
time units. One denotes byτi,j thejth release ofτi. As
usual, the response time of an instance is the time elapsed
between its arrival and its end of execution.

Under Posix 1003.1b, see §2.1, each taskτi possesses
both a prioritypi and a scheduling policyschedi. In this
study, we choose the convention “the smaller the numeri-
cal value, the higher the priority”. In addition to the prior-
ity, under RR, each taskτi is assigned a quantum valueψi.
The priority and scheduling policy assignmentP is fully
defined by a set ofn tuples(τi, pi, sched

P
i) (i.e. one for

each task). A quantum assignment underP , denoted by
ΨP , defines the set of quantum valuesψΨP

i
whereψΨP

i
is

the quantum ofτi. The whole scheduling is fully defined
by the tuple(P ,ΨP) which is called aconfigurationof
the system.

Under assignmentP , the set of tasksT is partitioned
into separate layers, one layer for each priority levelj

where the layerT P
j is the subset of tasks assigned to pri-

ority levelj. UnderP , T P
hp(j) (resp.T P

lp(j)) denotes the set
of all tasks possessing a higher (resp. lower) priority than
j. A layer in which all tasks are scheduled with RR (resp.
FPP) is called an RR layer (resp. FPP layer). In the fol-
lowing,P or ΨP will be omitted when no confusions are
possible. A list of the notations is provided in appendix at
the end of the paper.

In the following, a taskτi is saidschedulableunder as-
signment(P ,ΨP) if its response time bound, as computed
by the existing Posix 1003.1b schedulability analysis [9],
is no greater than its relative deadline (i.e. maximum du-
ration allowed between the arrival of an instance and its
end of execution). The whole system is said schedulable
if all tasks are schedulable. Note that the test presented
in [9] is sufficient but not necessary, there are thus task
sets which won’t be classified as schedulable while there
exist configurations under which no deadlines are missed.

2.3. Assumptions
In this study, as explained in§2.1, only sched_fifoand

sched_rrare considered for portability concern. Due to
the complexity of assigning priorities and scheduling poli-
cies, the following restrictions are made:

1. context switch latencies are neglected, but they could
be included in the schedulability analysis of [9] as
classically done (see, for instance, [11]),

2. since a priority level without any tasks has no effect
on the scheduling, we impose the priority range to be
contiguous,

3. two tasks having different scheduling policies have
different priorities, i.e., ∀i 6= j, schedi 6=
schedj =⇒ pi 6= pj ,

4. all sched_fifotasks must possess distinct priorities
(schedi = schedj = sched_fifo =⇒ pi 6= pj).
With this assumption and without priority change at
run-time,sched_fifois equivalent to fixed-preemptive
priority (FPP). Thus, several tasks having the same
priority are necessarily scheduled undersched_rr
policy,

5. the quantum value can be chosen on a task-per-task
basis in the interval[Ψmin,Ψmax], whereΨmin and
Ψmax are natural numbers whose values are OS-
specific constraints or chosen by the application de-
signer.

2.4. Schedulability analysis under Posix: a recap [9]
In this paragraph, we summarize the schedulability

analysis [9] of a configuration(P ,ΨP) under Posix.
Tasks scheduled under Posix can be described as a super-
position of priority layers [9]. At each point in time, one
of the ready instances with the highest priority (let’s say
pi) is executed as soon as and as long as no instances in
the higher priority layers (instances of tasks inThp(pi)) are

pending. Inside each priority layer, instances are sched-
uled either according to FPP or RR with the restrictions
that all instances belonging to the same layer have the
same policy.

FPP policy is achieved when a ready instanceτi,j is ex-
ecuted when no higher priority instances is pending. Un-
der RR, a taskτi has repeatedly the opportunity to execute
during a time slot of maximal lengthψΨP

i . If the task has
no pending instance or less pending work than the slot
is long, then the rest of the slot is lost and the task has
to wait for the next cycle to resume. The time between
two consecutive opportunities to execute may vary, de-
pending on the actual demand of the others tasks, but it is

bounded byψ
ΨP

i =
∑
τk∈T P

pi

ψΨP

k in any interval where

the considered task has pending instances at any moment.
In [9], worst-case response time bounds for priority lay-
ers have been derived in a way that is independent from
the scheduling policies used for each layer. This analysis
is based on the concept of majorizing work arrival func-
tions, which measure a bound on the processor demand,
for each task, over an interval starting at a “generalized
critical instant”. The majorizing work arrival function on
an interval of lengtht for a periodic taskτi is:

si(t) = Ci ·

⌈
t

Ti

⌉
. (1)

The worst-case response time bound can be expressed as

maxj<j∗(ei,j − ai,j) , (2)

wherej∗ = min{j | ei,j ≤ ai,j+1}, whereai,j is the

release of thejth instance ofτi after the critical instant
andei,j is a bound on the execution end of this instance.
Sinceτi is a periodic task,ai,j = (j−1)·Ti (j = 1, 2, ...).
If τi is in an FPP layer, then

ei,j = min{t > 0 | s̃i(t) + si,j = t} , (3)

where s̃i(t) =
∑

τk∈T P

hp(pi)
sk(t) is the demand from

higher priority tasks (i.e. task inT P
hp(pi)

) and si,j =
∑j

i=1 Ci is the demand from previous instances and the
current instance ofτi. If τi is in an RR layer, then

ei,j = min{t > 0 | Ψi(t) + si,j = t} , (4)

where the demand from higher priority tasks and of all
other tasks of the RR layer is:

Ψi(t) = min

(⌈
si,j

ψΨP

i

⌉
· (ψ

ΨP

i − ψΨP

i
) + s̃i(t), s

∗
i (t)

)
,

(5)

whereψ
ΨP

i − ψΨP

i
is the sum of the quanta of all other

tasks of the RR layer and

s∗i (x) = max
u≥0

(si(u) + s̃i(u + x) + si(u + x) − u) ,

(6)

wheresi(u+x) =
∑

τk∈T P
pi

\{τi}
sk(u+x) is the demand

from other tasks thanτi in T P
pi

. The algorithm for com-
puting the worst-case response time bounds can be found
in [9]. It is to stress that this schedulability analysis is suf-
ficient but not necessary; some task sets may fail the test
while they are perfectly schedulable. This will certainly
induce conservative results but the approach developed
here remains valid with another - better - schedulability
test as long as it is sufficient and possesses the properties
described in §2.5.

2.5. Scheduling under Posix 1003.1b: basic properties
Under FPP, as well as under RR, any higher priority

task will preempt a lower priority task thus the following
properties hold for any taskτi :

1. all ready instances, with higher priorities thanpi, will
delay the end-of-execution of the instances ofτi. It is
worth noting that this delay is not dependent on the
relative priority ordering among these higher priority
instances and their quantum values,

2. lower priority instances, whatever their policy, will
not interfer with the execution of instances ofτi and
thus won’t delay their end-of-execution.

These two properties ensure that the following lemma,
which is well-known in the FPP case, holds.

Lemma 1 [3] The worst-case response time of an in-
stance ofτi only depends on the set of same priority tasks,
the values of their quantum and the set of higher priority
tasks. The relative priority order among higher priority
tasks and the values of their quantum has no influence.

However, despite lemma 1 holding, scheduling under
RR leads to scheduling anomalies. Indeed, scheduling un-
der Posix is often counter-intuitive. For instance, it has
been shown in [4], that early end-of-executions can lead
to missed deadlines in configurations that would be feasi-
ble with WCETs. Similarly, removing a task with a higher
priority thanτj may lead to increased response times for
τi (see figures 1 and 2 in [6]).

Here, we highlight that increasing the quantum size of
a task can increase its response time. Figures 1 and 2
present the scheduling of task setT = {τ1, τ2} where
τ1 = (C1 = 2, T1 = 5) and τ2 = (4, 10). All the
tasks belong to the same layer and the chosen quantum
assignments areΨ

′

= {ψ1 = 2, ψ2 = 2} (figure 1) and
Ψ = {ψ1 = 2, ψ2 = 3} (figure 2) .

As it can be seen on figures 1 and 2, surprisingly the
response time ofτ2 is 6 with a quantum of2 and8 with
3. However, with the schedulability analysis used in this
study, property 1 holds and will be used to restrain the
search space in section 3. A proof is given in appendix A.

Property 1 Let τi be a task in a RR layer, increasing
(resp. reducing) its quantum value, while reducing (resp.

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

τ1, ψ1 = 2

τ2, ψ2 = 2

0 5 10

t

Figure 1. Scheduling of task set T = {τ1, τ2}
with Round-Robin and quantum assign-
ment Ψ

′

= {ψ1 = 2, ψ2 = 2}.

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

�
�
�

�
�
�

0 5 10

t

τ1, ψ1 = 2

τ2, ψ2 = 3

Figure 2. Scheduling of task set T = {τ1, τ2}
with Round-Robin and quantum assign-
ment Ψ1 = {ψ1 = 2, ψ2 = 3}.

increasing) the quantum value of the other tasks of its
RR layer, diminishes (resp. increases) the response time
bound ofτi computed with the chosen schedulability anal-
ysis.

To be optimal, the Audsley algorithm requires that the
schedulability test fulfills some properties (see §3.3). In
particular, removing a task with a higher priority must not
lead to increased response times. In the case of Posix
1003.1b, this imposes constraints on the schedulability
test which must fulfill property 2.

Property 2 Let τi be a task in RR or FPP layer, reduc-
ing its set of higher and same priority tasks, while keep-
ing the quantum allocation unchanged within its Round-
Robin layer (ifτi is scheduled under RR), diminishes or
leaves unchanged the response time bound ofτi computed
with the chosen schedulability analysis.

It has been shown in [6] that the conservative response
time bound computed with [9] ensures that property 2
holds. The proof, given in [6] in the context of a unique
sysrem-wide quantum value, is still valid when different
values for the quanta are possible. As it will be shown
in section 3, a schedulability test which ensures that prop-
erty 2 is verified, allows to use an extension of the Audsley
algorithm and preserves its optimality with regards to the
ability of the test to distinguish between feasible and non-
feasible solutions (i.e., what is called the power of the test
in the following).

3. Optimal assignment algorithm with task-
specific quanta

We present here an optimal priority, scheduling pol-
icy and quanta assignment for Posix 1003.1b systems
when the feasibility is assessed with schedulability analy-
sis which verifies property 2 described in §2.5. This algo-
rithm heavily relies on both the Audsley algorithm and the
algorithm previously proposed for system-wide quantum
values (calledAudsley-RR-FPPin [6]). Here we extend
previous works to the case where quanta can be chosen
on a task-per-task basis, the corresponding algorithm is
named theAudsley-RR-FPP∗. With the assumption made
in section 2, the policy is implied by the number of tasks
having the same priority level: should only one task be as-
signed priority level i then its policy is FPP (i.e. a RR layer
of cardinality 1 is strictly equivalent to an FPP layer, see
§2.1), otherwise the policy is necessarily RR. The prob-
lem is thus reduced to assigning priorities and quanta to
tasks in a RR layer.

3.1.Audsley-RR-FPP∗ algorithm
In the same way as the original Audsley algorithm

(abridged by AA in the following), the idea is to start
assigning the priorities from the lowest priorityn to the
highest priority1 (line 3 in algorithm 1). The difference
with AA, is that, at each priority level, the algorithm is not
looking for a single task but for a set of tasks (line5). For
each such set of tasks, our algorithm examines all possible
quantum assignments until it finds one suitable one.

Underlying idea. The underlying idea of the algorithm
is to move , when needed, the maximum amount of work-
load to the lower priority levels and to schedule the tasks
under RR. When an instanceτi,j is assigned the same pri-
ority as τk,h and both are scheduled under RR,τi,j can
delay τk,h less than ifτi,j would be scheduled with a
higher priority. The same argument holds for the delay
induced byτk,h to τi,j . Thus, as illustrated with an exam-
ple in [10], where a task set that is not feasible under FPP
alone, becomes feasible with RR. Of course, in the general
case, combining the use of both policies is the most effi-
cient and, as it will be shown, leads to an optimal priority
and policy assignment.

Step of the algorithm. For each priority level i
(line 3), theAudsley-RR-FPP*algorithm attempts to find
a schedulable subsetTi in subsetR (line 5) whereR is
made of all the tasks which have not been yet assigned
a priority, a policy and a quantum. The algorithm tries
all possible subsets ofR, one by one, and all possible
quantum assignments for each subset until a schedulable
configuration is obtained or all configurations have been
considered. In the latter case, the system is not schedula-
ble (lines 7-8). Otherwise, we have found a schedulable
subset, denoted byTi, which, in the RR case, possesses
quantum assignment{ψk}τk∈Ti

(lines 7 and 8). Precisely,

Input : task setT = {τ1, τ2..., τn}
Result: schedulable priority, scheduling policy and

quantum assignmentPk = (P ,Ψk)
Data: i: priority level to assign

R: task-set with no assigned priority
P : partial priority and policy assignment
ΨP : partial quantum allocation

R = T ;1

P = ∅;2

for i = n to 1 do3

try to assign priority i:4

search a schedulable subset of tasksTi under5

quantum allocation{ψk}τk∈Ti
in R

if no subsetTi is schedulable at priorityi then6

failure, return partial7

assignement:
return (P ,ΨP);8

else9

let Ti a schedulable subset at priorityi with10

quantum allocation{ψk}τk∈Ti
;

assign priority, policy and11

quantum:
if #Ti = 1 then12

P = P ∪ {(τk, i, sched_fifo)}τk∈Ti
;13

else14

P = P ∪ {(τk, i, sched_rr)}τk∈Ti
;15

ΨP = ΨP ∪ {ψk}τk∈Ti
;16

end17

remove Ti from R:18

R = R\Ti;19

end20

if R = ∅ then return (P ,ΨP);21

end22

Algorithm 1 : Audsley-RR-FPP∗ algorithm with task-
specific quantum.

a

b c

d e

f g h i

τ1

τ2

τ3

=i : priority i

>i : priority greater than i

>i

>i>i

>i

=i

=i

=i =i

=i

depth 1

depth 0

depth 3

depth 4

Figure 3. Search tree constructed in the search of
a feasible subset ofR = {τ1, τ2, τ3} at priority i.
For instance, node b models the partial priority as-
signment whereτ1 is assigned priority i while node
c means thatτ1 is assigned a greater priority.

Ti is schedulable when all tasks ofTi are feasible at pri-
ority i while all tasks without assignment (i.e., tasks in
R\Ti) have a priority greater thani. At each step, at least
one task is assigned a priority and a policy (lines 11 to
17). Note that, when RR is used at least once, less thann

priority levels are needed (early exit on line 21).

Looking for the set of schedulable tasksTi. There are
2#R possible subsetsTi of R that can be assigned prior-
ity level i (line 5). Since the quantum can take‖ψ‖ =

ψmax − ψmin + 1 different values, there are‖ψ‖#Ti dif-
ferent quantum assignments for each subsetTi. First, we
explain the basic exhaustive tree-search used to set prior-
ities. Then, we explain how we use a similar search to
choose the quantum assignment for each possible setTi.
A method that speeds-up the search by pruning away sub-
trees that cannot contain a solution is provided in §3.2.

A binary tree structure reflects the priority choices and
the search for the schedulable subset is performed by ex-
ploring the tree. In the following, we callpriority-search-
tree the search tree modeling the priority choices. As an
illustration, figure 3 shows the priority-search-tree corre-
sponding to the setR = {τ1, τ2, τ3}. Each edge is labeled
either with “= i” (i.e., priority equal toi) or “> i” (i.e.,
priority greater thani). A label “= i” (resp. “> i”) on
the edge between vertices of depthk andk + 1 means
that the(k + 1)th task ofR belongs to the layer of prior-
ity i (resp. belongs to a layer of priority greater thani).
Thus, a vertex of depthk models the choices performed
for the k first tasks ofR. For instance, on figure 3, the
vertex e implies that tasksτ1 belongs to layer of priorityi
while taskτ2 does not. Each leaf is a complete assignment
for priority level i, for instance leaf g corresponds to set
Ti = {τ1, τ2}.

The search is performed according to a depth-first strat-
egy. The algorithm considers the first child of a vertex that

appears and goes deeper and deeper until a leaf is reached,
i.e., until the setTi is fully defined. When a leaf is reached,
the schedulability ofTi is assessed. IfTi is feasible, the
algorithm returns, otherwise, it backtracks till the first ver-
tex such that not all its child vertices have been explored.

To assess the schedulability ofTi, all possible quan-
tum assignments are successively considered. In the
same manner as for the priority allocation, a tree -called
quantum-search-tree- reflects the choices for quantum
values. A depth-first strategy is used as well to explore
the search space. In this case, a node has‖ψ‖ children
where each child models a different quantum value. Here,
we label the edge between vertices of depthk andk + 1
with the quantum value of the(k + 1)th task ofTi. Thus,
a vertex of depthk models the choices performed for the
k first tasks ofTi.

3.2. Complexity and improvements
Size of the search space.Assigningn tasks to differ-
ent non-empty layers is like subdividing a set ofn ele-
ments into non-empty subsets. Letk be the number of
layers. The number of possible assignments is equal, by
definition, to the the Stirling number of the second kind
(see [1], page 824):

1

k!

k∑

i=0

(−1)(k−i)
(
k

i

)
in,

where
„
k

i

«
is the binomial coefficient, i.e., the number

of ways of picking an unordered subset ofi elements in a
set ofk elements.

The complexity depends on the number of tasks sched-
uled under RR since their quantum values have to be cho-
sen. When there arek layers, at leastn− k + 1 tasks are
in an RR layer (i.e.,n − k + 1 tasks in a single RR layer
and one task in each of the remainingk − 1 FPP layers)
and up tomax(n, 2(n − k)) (i.e., tasks are “evenly” dis-
tributed among RR layers). Since the quantum can take
‖ψ‖ = ψmax − ψmin + 1 different values, there are be-
tween‖ψ‖ n−k+1 and‖ψ‖max(n,2(n−k)) different quan-
tum assignments for a configuration ofk layers.

In addition, n tasks can be subdivided intok =
1, 2, ..., n many layers and there arek! different possible
priority orderings among thek priority layers. Thus, a
lower bound for the search space of the problem of as-
signing priority, policy and quantum for a set ofn tasks
is

n∑

k=1

k∑

i=0

(−1)(k−i) ·

(
k

i

)
· in · ‖ψ‖n−k+1 .

In a similar way, we derive an upper bound by replacing
‖ψ‖n−k+1 with ‖ψ‖max(n,2(n−k)).

For instance, as can be seen on figure 4, the size of
the search space comprises about4 · 1010 scheduling con-
figurations for a set of10 tasks. The search space grows

 1

 1e+10

 1e+20

 1e+30

 1e+40

 1e+50

 1e+60

 1e+70

 1e+80

 1e+90

 5 10 15 20 25 30 35 40 45 50

Number of tasks (n)

Size of the problem (lower bound)
Audsley-RR-FPP task-specific quanta

Audsley-RR-FPP system-wide quantum

Figure 4. Complexity of the problem for a num-
ber of tasks varying from5 to 50 when the quantum
value can be chosen in the interval[1, 5].

more than exponentially, thus an exhaustive search is not
possible in practice in a wide range of real-time problems.

Audsley-RR-FPP∗. Our algorithm looks at each priority
level i for a subsetTi in R which is schedulable at prior-
ity i (line 5). Since at least one task is assigned to each
priority level, the number of tasks belonging toR when
dealing with priority leveli is lower than or equal toi. In
addition, we know that there are‖ψ‖k different quantum
assignments for a subset ofk tasks. Thus, at each priority

level i, the algorithm examines
∑i

j=1

(
i

j

)
· ‖ψ‖j =

(‖ψ‖ + 1)i − 1 assignments in the worst-case. Thus, for
priority level from 1 to n, the algorithm considers in the
worst-case a number of assignments given by:

n∑

i=1

(‖ψ‖ + 1)i − 1 =
1 − (‖ψ‖ + 1)n+1

1 − (‖ψ‖ + 1)
− (n+ 1)

This complexity for a varying number of tasks is shown on
figure 4, for instance, for a set of10 tasks withψmin = 1
and ψmax = 5 it is approximately equal to72 · 106.
Figure 4 shows also the size of the search space and,
for comparison, the worst-case complexity of the solution
proposed in [6] in the case where the quantum size is a
system-wide constant. Although we achieve a great com-
plexity reduction with regards to an exhaustive search, the
complexity remains exponential in the number of tasks.
Thus, in practice, our proposal is not suited for large-size
task sets that would, for instance, be better handled by
heuristics guiding the search towards promising parts of
the search space. This is left as future work.

Complexity reduction. As seen before, theAudsley-
RR-FPP∗ performs an exhaustive search for each priority
level. To a certain extent, it is possible to reduce the num-
ber of sets that are to be considered. Indeed, the property 3

given in this paragraph shows that it is possible to identify
priority and policy assignments that are not schedulable
whatever the quantum allocation. Thanks to property 2
and property 3, one can identify and prune away branches
of the priority-search-tree which necessarily lead to sub-
setsTi that are not schedulable whatever the quantum as-
signments. Furthermore, with property 3, one can reduce
in a similar manner the number of quantum assignments
to consider for a particular subsetTi in a quantum-search-
tree.

With the basic algorithm explains in §3.1, feasibility of
a priority allocation is assessed at the leafs when all tasks
have been given a priority by testing all quantum assign-
ments. The idea is here to evaluate feasibility at interme-
diate vertices as well, by assigning a priority lower than
i to the tasks for which no priority choice has been made
yet. Under that configuration, if a taskτi which is as-
signed the priorityi is not schedulable whatever the quan-
tum assignment, there is no need to consider the children
of this vertex. Indeed, from property 2, since the priority
assignment of the children of this node will increase the
set of same or higher priority tasks, the response time of
τi cannot decrease. Thus, all child vertices corresponds
to priority assignments that are not schedulable. Now, it
remains to identify priority and policy assignments that
are not schedulable whatever the quantum allocation. The
following property, proven in appendix A.3, can be stated.

Property 3 LetS be a schedulability test for which prop-
erty 2 holds. LetT be a task set andP be a global priority
and policy assignment. Letτi be a task with the maximum
quantum valueψmax in an RR layer. Let the quantum val-
ues of all other tasks in the RR layer be set to the minimum
ψmin. If the response time bound ofτi, computed withS,
is greater than its relative deadline, then, whatever the
quantum assignment underP , τi will remain unschedula-
ble withS.

Thus, at each vertex of the priority search tree, a priority
assignmentP is not feasible whatever the quantum assign-
ment, if a taskτk which has a priorityi is not feasible with
the quantum allocation given in property 3.

Similarly, we can cut branches when exploring the
quantum-search-tree of a setTi. The idea is again to eval-
uate feasibility at intermediate vertices. Since an interme-
diate vertex models a partial quantum assignment for a set
Ti, we assign the lowest quantum value to each task inTi
which has no quantum assigned yet. In that case, if a task
τk for which the quantum has already been set at this ver-
tex is not schedulable, then there is no need to consider the
children of this vertex. Indeed, given property 1, the re-
sponse time ofτk can only increase when the the children
of this vertex are considered.

The finding of this paragraph allows a very significant
decrease in the average number of configurations tested
by theAudsley-RR-FPP∗ algorithm. For instance, for task
sets constituted of 10 tasks, the algorithm examines on
average only about4000 configurations before coming up

with a feasible solution or concluding that the task set is
unfeasible while it would require about7 · 107 tests other-
wise.

3.3. Proof of optimality
Here we show that theAudsley-RR-FPP∗ algorithm is

optimal in the sense that if there is a priority, policy and
quantum assignment that can be identified as feasible by
the schedulability analysis, it will be found by the algo-
rithm. Let us first remind the following theorem which
has been proven in [2, 3, 5, 9] for various contexts of fixed
priority scheduling.

Theorem 1 [3] Let (P ,ΨP) be a schedulable configura-
tion up to priority i, i.e. tasks that have been assigned
the priorities fromn to i are schedulable. If there exists a
schedulable configuration(A,ΨA), then there is at least
one schedulable configuration(Q,ΨQ) having an identi-
cal configuration as(P ,ΨP) for priorities n to i.

From theorem 1, we can prove the optimality of
Audsley-RR-FPP∗. Indeed, ifAudsley-RR-FPP∗ happens
to fail at leveli, the priority, scheduling policy and quan-
tum assignment(P ,ΨP) provided byAudsley-RR-FPP∗

leads to a schedulable solution up to leveli + 1. Since
Audsley-RR-FPP∗ performs an exhaustive search to as-
sign leveli, there cannot be anyschedulableassignment
(Q,ΨQ) possessing the same assignment as(P ,ΨP) for
priority i + 1 to n. Thus, from theorem 1, there is no
schedulable assignment.

We give here an intuitive proof of theorem 1, which ba-
sically is valid under Posix thanks to lemma 1 and prop-
erty 2. It should be pointed out that theorem 1, and thus
the optimality result ofAudsley-RR-FPP∗, does not hold
where property 2 is not verified by the schedulability test.

Theorem 1 holds if a schedulable configuration
(A,ΨA) can be transformed into a schedulable configu-
ration (Q,ΨQ) for which the configuration is the same
as (P ,ΨP) for priority i to n. This transformation can
be done iteratively by changing the configuration of cer-
tain tasks in(A,ΨA) to the configuration they have in
(P ,ΨP). The procedure is the following: for priority
levelk fromn to i, assign in(A,ΨA) the priorityk+n−i
to the tasks of priorityk in (P ,ΨP) (i.e., the setT P

k)
and set their quantum value to their valuesψP

i in ΨP

(∀τj ∈ T P
k , pAj = pPj + n − i, schedAj = schedPj

and ψΨA

j = ψΨP

j). Since at each step, tasks inT P
k

have the same quantum assignment, the same set of higher
and equal priority tasks under the current configuration
(A,ΨA) as under(P ,ΨP), they remain schedulable un-
der (A,ΨA) by lemma 1. From property 2, the other
tasks (T \ T P

k) meet their deadline too since the quan-
tum assignment and the set of higher and same priority
task is reduced or stay unchanged under current configura-
tion compared to the initial configuration(A,ΨA). Note
that in the proof the priority range has been artificially ex-
tended by addingn − i lower priority levels in order to

avoid the case where a higher priority tasks is moved to a
non-empty layer since property 2 does not cover this situ-
ation.

4. Experimental results

Here our aim is to quantify the extent to which using
task-specific quanta enables us to improve the schedula-
bility of the system by comparison 1) with FPP and 2)
with system-wide quanta.

4.1. Experimental setup.

In the following experiments, we only consider task
sets that are unschedulable with FPP alone. Since we
choose to consider periodic tasks with deadlines equal to
periods (Di = Ti), we use the Rate Monotonic priority
assignment, which is optimal in that context. The global
loadU (i.e.,

∑n
i=1

Ci

Ti
) has to be necessarily greater than

n · (21/n−1) (from [8]) in order to be able to exhibit non-
feasible task sets. In the following, we choose a quantum
value of 1 for the system-wide quantum or, when task-
specific quanta is considered, a quantum value which can
be chosen in the interval[1, 5]. The actual parameters of
an experiment are defined by the tuple(n,U). The uti-
lization rate (Ci

Ti
) of each taskτi is uniformly distributed

in the interval
[
U
n · 0.9, Un · 1.1

]
wheren is the number of

tasks. The computation timeCi is randomly chosen with
an uniform law in the interval[1, 30] and the periodTi is
upper bounded by500. The results shown on figure 5 have
been obtained with 200 task sets randomly generated with
the aforementioned parameters.

4.2. Schedulability improvement over FPP and system-
wide quanta

Figure 5 shows the percentage of task sets that are
not schedulable with FPP alone and become schedulable
when using theAudsley-RR-FPP∗(task-specific quanta)
andAudsley-RR-FPP(system-wide quanta - see [6]) algo-
rithms that are both optimal in their context. One observes
that the improvement with task-specific quanta is very im-
portant, at least 3 times better than with a system-wide
quantum. When the load is lower than84%, a solution is
found in almost all cases, the percentage of successes re-
maining greater than50% up to a load equal to88%. As
it was to be expected, when the load gets higher, feasible
scheduling solution tends to rarefy.

Our experiments show that the combined used of RR
and FPP with process-specific quanta allows to schedule
a large number of task sets which are neither schedulable
with FPP nor with a system-wide quantum. It is worth not-
ing that context switch latencies were neglected while RR
induces more context switches than FPP. This fact weak-
ens to a certain extent our conclusions. A future work is
to find the feasible quantum allocation that minimizes the
global number of context switches.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.82 0.84 0.86 0.88 0.9 0.92 0.94

%
 o

f s
ch

ed
ul

ab
le

 ta
sk

 s
et

s

Load

Audsley-RR-FPP task-specific quanta
Audsley-RR-FPP system-wide quantum

Figure 5. Percentage of task sets unschedulable
with DM which become schedulable under Posix
using the Audsley-RR-FPP∗(task-specific quanta)
andAudsley-RR-FPP(system-wide quanta - see [6])
algorithms. The CPU load ranges from0.82 to 0.94.
The number of tasks is equal to10.

5. Conclusion

In this paper, we propose a priority, policy and quan-
tum assignment algorithm for Posix 1003.1b compliant
OS that we named theAudsley-RR-FPP∗. We have shown
this algorithm to be optimal in the sense that if there is
a feasible schedule using FPP and RR that can be identi-
fied as such by the schedulability test, it will be found by
the algorithm. A result yields by the experiments is that
the combined used of FPP and RR with process-specific
quanta enables to significantly improve schedulability by
comparison with FPP alone and with system-wide quanta.
This is particularly interesting in the context of embedded
systems where the cost pressure is high, which lead us to
exploit the computational resources at their fullest.

In terms of worst-case complexity, the algorithm
greatly improves upon an exhaustive exploration of the
search space but is still exponential in the number of tasks
in the worst-case. Therefore, it is not suited to large task
sets and future work is needed to develop techniques able
to handle such systems. A future work is to take into ac-
count context switches and come up with a way of assign-
ing quantum values in such a manner as to minimize the
context-switch overhead.

References

[1] M. Abramowitz and I.A. Stegun. Handbook of
Mathematical Functions. Dover Publications (ISBN
0-486-61272-4), 1970.

[2] N.C. Audsley. Optimal priority assignment and fea-
sibility of static priority tasks with arbitrary start
times. Report YO1 5DD, Dept. of Computer Sci-
ence, University of York, England, 1991.

[3] N.C. Audsley. On priority assignment in fixed pri-
ority scheduling. Inf. Process. Lett., 79(1):39–44,
2001.

[4] R. Brito and N. Navet. Low-power round-robin
scheduling. InProc. of the 12th international con-
ference on real-time systems (RTS 2004), 2004.

[5] L. George, N. Rivierre, and M. Spuri. Pre-
emptive and non-preemptive real-time uniprocessor
scheduling. Technical Report RR-2966, INRIA,
1996. Available athttp://www.inria.fr/
rrrt/rr-2966.html .

[6] M. Grenier and N. Navet. Scheduling configuration
on Posix 1003.1b systems. Technical report, INRIA,
to appear, 2007.

[7] (ISO/IEC) 9945-1:2004 and IEEE Std 1003.1, 2004
Edition. Information technology—portable operat-
ing system interface (POSIXR©)—part 1: Base defi-
nitions. IEEE Standards Press, 2004.

[8] C.L. Liu and J.W Layland. Scheduling algorithms
for multiprogramming in hard-real time environ-
nement.Journal of the ACM, 20(1):40–61, 1973.

[9] J. Migge, A. Jean-Marie, and N. Navet. Timing anal-
ysis of compound scheduling policies : Application
to Posix1003.1b.Journal of Scheduling, 6(5):457–
482, 2003.

[10] N. Navet and J. Migge. Fine tuning the schedul-
ing of tasks through a genetic algorithm: Applica-
tion to Posix1003.1b compliant OS.Proc. of IEEE
Proceedings Software, 150(1):13–24, 2003.

[11] K. Tindell. An extendible approach for analyzing
fixed priority hard real-time tasks. Technical Re-
port YCS-92-189, Department of Computer Science,
University of York, 1992.

A. Proof of properties 1 and 2

In this appendix, we prove that the schedulability anal-
ysis [9] ensures that properties 1 and 3 hold. The first
paragraph is devoted to the study of the execution end
ei,j of τi,j computed with [9] under two configurations
(P ,ΨP) and (P ,Ψ

′

P) that only differ by their quantum
assignment. This result is used in subsequent proofs.

A.1. Execution end bound: basic properties
We compare bounds on the execution end ofτi under

the same priority and policy assignmentP with two differ-
ent quantum allocations. Letei,j ande

′

i,j be respectively
the execution end bound ofτi under(P ,ΨP) and under
(P ,Ψ

′

P). Sinceτi is in an RR layer,ei,j is computed with
equation 4 of §2.4:

ei,j = min{t > 0 | Ψi(t) + si,j = t} ,

where (equation 5 of §2.4)

Ψ
ΨP

i (t) = min

„‰
si,j

ψ
ΨP

i

ı
· (ψ

ΨP

i − ψ
ΨP

i
) + esi(t), s

∗

i (x)

«
,

whereψ
ΨP

i − ψΨP

i
is the sum of the quanta of all other

tasks of the RR layer. Sincesi,j , s̃i(t) and s∗i (x) are
independent of the quantum assignment (see §2.4), it is
enough to compare the first term of themin() to decide
which task will have the smallest response time bound.
Two cases arise:

1.

⌈
si,j

ψ
ΨP
i

⌉
· (ψ

ΨP

i − ψΨP

i
) >

⌈
si,j

ψ
Ψ

′

P
i

⌉
· (ψ

Ψ
′

P

i − ψΨ
′

P

i
)

then we concludeei,j ≥ e
′

i,j ,

2. otherwise:

⌈
si,j

ψΨP

i

⌉
· (ψ

ΨP

i −ψΨP

i
) ≤

⌈
si,j

ψ
Ψ

′

P

i

⌉
· (ψ

Ψ
′

P

i −ψΨ
′

P

i
) ,

andei,j ≤ e
′

i,j .

Whens∗i (x) is the minimum, we haveei,j = e
′

i,j .
From this finding we can deduce that for any other as-

signmentΨ
′

P , if the two following requirements are met:

requirement 1: the quantumψΨ
′

P

i of τi in Ψ
′

P is lower
than or equal to its quantumψΨP

i underΨP ,

requirement 2: the sum of the quanta of all other tasks of
the RR layerT P

i underΨ
′

P is greater than or equal to

the one underΨP , i.e.,ψ
Ψ

′

P

i − ψ
Ψ

′

P

i ≥ ψ
ΨP

i − ψΨP

i

whereψ
ΨP

i =
∑

τk∈Ti
ψΨP

τk
is the sum of the quan-

tum of all tasks of the RR layerT P
i under quantum

allocationΨP ,

then we have:

⌈
si,j

ψ
Ψ

′

P
i

⌉
·(ψ

Ψ
′

P

i −ψΨ
′

P

i
) ≥

⌈
si,j

ψΨP

i

⌉
·(ψ

ΨP

i −ψΨP

i
) , (7)

and thus∀τi,j , ei,j ≤ e
′

i,j which implies that the response

time bound ofτi under(P ,Ψ
′

P) is greater than or equal to
the response time bound under(P ,ΨP).

A.2. Proof of property 1
Since the prerequisites of property 3 are exactly re-

quirements 1 and 2 of §A.1, the response time bound of
τi in property 3, is no less under(P ,Ψ

′

P) than under
(P ,ΨP). Sinceτi is not schedulable under(P ,ΨP), it
cannot be schedulable under(P ,Ψ

′

P).

A.3. Proof of property 3
We show that the bound on the execution endei,j for a

task in an RR layer underP , is minimum underP when
the quantum ofτi is equal toψmax while the quanta of
the other tasks in the layer are set toψmin. Let ΨP be the
corresponding quantum assignment where
⌈
si,j

ψΨP

i

⌉
· (ψ

ΨP

i −ψΨP

i
) =

⌈
si,j

ψmax

⌉
· (

∑

τk∈T P
pi

\{τi}

ψmin)

and one notes that whatever a different quantum assign-
mentΨ

′

P :

⌈
si,j

ψmax

⌉
·

∑

τk∈T P
pi

\{τi}

ψmin ≤

⌈
si,j

ψ
Ψ

′

P

i

⌉
· (ψ

Ψ
′

P

i − ψΨ
′

P

i
)

since, by definition,ψmax ≥ ψΨ
′

P

i
andψmin ≤ ψΨ

′

P

k
.

From equation 7, the execution end boundei,j of τi,j
is thus minimum withΨP among the set of all possible
quantum assignments.

Notations
– T = {τ1, ..., τn}: a set ofn periodic tasks

– P : priority and policy assignment

– ΨP : a specific quantum allocation under assignment
P

– (P ,ΨP) : a priority, policy and a quantum assign-
ment

– T P
i : subset of tasks assigned to priority leveli under

P

– T P
hp(i): subset of tasks assigned to a higher priority

thani underP

– T P
lp(i): subset of tasks assigned to a lower priority

thani underP

– ψΨP

i
: Round-Robin quantum for taskτi underΨP

– ψ
ΨP

i : sum of the quanta of all tasks in layerTi under
ΨP

– si(t) = Ci ·
⌈
t
Ti

⌉
: majorizing work arrival function

on an interval of lengtht for a periodic taskτi

– s̃i(t) =
∑

τk∈T P

hp(pi)
sk(t): the demand from higher

priority tasks underP

– si,j =
∑j
i=1 Ci: the demand from previous in-

stances plus demand of current instanceτi,j of τi

– si(x) =
∑
τk∈T P

pi
\{τi}

sk(x) is the demand from all

other tasks thanτi at priority leveli under assignment
P .

