
HAL Id: inria-00114026
https://hal.inria.fr/inria-00114026

Submitted on 15 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Securing Web Service Compositions: Formalizing
Authorization policies using Event Calculus

Mohsen Rouached, Claude Godart

To cite this version:
Mohsen Rouached, Claude Godart. Securing Web Service Compositions: Formalizing Authorization
policies using Event Calculus. 4th International Conference on Service-Oriented Computing - IC-
SOC’06, Dec 2006, Chicago, USA, pp.440-446, �10.1007/11948148_37�. �inria-00114026�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50414654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00114026
https://hal.archives-ouvertes.fr


Securing Web Service Compositions: Formalizing
Authorization policies using Event Calculus

Mohsen Rouached and Claude Godart

LORIA-INRIA-UMR 7503
BP 239, F-54506 Vandœuvre-les-Nancy Cedex, France
{mohsen.rouached, claude.godart}@loria.fr

Abstract. Service composition is a fundamental technique for develop-
ing Web services based applications. As autonomous services are invoked
through protocols, issues such as security must be taken into account.
Thus, ensuring security in such a system is challenging and not supported
by most of the security frameworks proposed in current literature.

This paper presents a formal model for composing security policies dy-
namically to cope with changes in requirements or occurrences of events.
We address one particular issue - that of authorization within a Web
services composition. In particular, we propose a dynamic authorization
model which allows for complex authorization policies whilst ensuring
trust and privacy between the components services.

1 Introduction

Service Oriented Computing (SOC) is gaining prominence as the technology of
choice for integrating applications in diverse and heterogeneous distributed envi-
ronments. It is widely recognized that one of the barriers preventing widespread
adoption of this technology is a lack of products that support non-functional
features of applications, such as security, transactionality and reliability. Such
properties are of utmost importance for Web service composition languages to
keep their promises. Security is a challeging aspect of Web service composition
that has not been so far deeply investigated despite its importance [2, 3]. For in-
stance, a first challenge is the definition, the verification, and the enforcement of
security policies as the complexity of composite Web services grows. To cope with
this complexity, it is useful to design a conceptual model that gives a structured
way to think about security policies. Another challenge is that non-functional
concerns should be addressed by external specifications for a better separation
of concerns and for more modular composition specification. For example, if we
extend WSBPEL with new constructs for each non-functional concern of the
composition, it would evolve into a very complex language, which in turn would
limit its acceptance. Furthermore, mixing the specification of the core logic of
the composition with specifications of security features and other non-functional
concerns into one unit would make the composition specification too complex
and hard to maintain and evolve.



In this paper, we propose to use a formalism based on the Event Calculus
(EC) [5] to specify authorization policies for Web services implied in Web services
compositions. EC is interesting because it supports the direct representation of
events that are used in such policies, and the advantage of such a formalism is
that it allows for having a common representation for different security models,
every service having its own security model. Given this common representa-
tion, we use it for two aspects. The first one deals with consistency checking. It
means that when we have all the policies expressed in the EC, we are able to
check the consistency of the Web services composition with respect to security
requirements. The second aspect is dedicated to conformance checking of the
composition. Based on our previous works [7], this means that we are able to
monitor and to detect security violations during the composition execution.

In the rest of the paper, we introduce in Section 2 the notion of authoriza-
tion in the context of Web services composition. In Section 3, we present how
we specify the policies using the EC, and how the consistency can be checked.
Section 4 is dedicated to related works. Finally, Section 5 concludes the paper
and outlines some future directions.

2 Managing Authorization for Composite Web Services

Service Oriented Architecture allows for considerably more complex interaction
models than the classical client/server model, including symmetric peer-to-peer
interactions where both parties want to check authorisations, or multi-party
composed services where authorization is an issue for each component service.
Therefore, an appropriate authorization framework is needed to smooth the flow
of a transaction between multiple services whilst respecting the privacy of the
data used. This is a complex task since each individual service may have its
own authorization requirements. The traditional authorization service – a third
party can be used to enforce privacy between the two parties – is not appro-
priate in this kind of interactions where a coordinating service would need to
exchange policy and credential information as well as managing the operation de-
tails. Managing these authorization exchanges can lead to processing bottlenecks
within the service as well as privacy concerns given that the coordinating service
retains visibility and control. In this context, our interest is about dynamically
composed services.

A statically composed service would consist of a number of potentially inde-
pendent services, each service having its own set of policies that must be satisfied
for any particular request. A service invocation must satisfy the overall composed
policy in order to proceed successfully. This kind of composition suggests a simple
way to extend authorization for composite services where there is a well-defined
combination of services and associated policies. However, the situation can be
far more complex as a transaction is formulated in a more dynamic manner. Ser-
vices can be added as needed (on demand) and may be derived from a dynamic
service registry or through an auction. The user may want each service to meet
appropriate policies. In these cases, authorization can be seen as a dialog. For



example, it is likely that a client interacts with a travel agent who in turn in-
teracts with various service providers. In these situations, there is an interaction
as the service provider pulls together a transaction over multiple components.
To perform the transaction involving all these parties, the client must satisfy
the union of all the individual policies. Once the service provider knows each
subpart of the transaction is satisfied, it can allow the client to commit to the
overall transaction.

In the rest of the paper, we focus on the later type of service composition
since it is more realistic and needs a high level of details.

3 Formalizing Authorization for Composite Web Services

3.1 Basic notations and definitions

Ensuring security is tricky and formal notations are increasingly used to specify
security policies. In this work, we use two booleans autho+ and autho− to model
positive and negative authorizations respectively. Therefore a positive authoriza-
tion is denoted by autho+(s, o, a), where s, o, and a stand for subject, object, and
action respectively. This authorization holds if the value of autho+(s, o, a) equals
true and does not hold otherwise. Similarly, autho−(s, o, a) models a negative
authorization. Positive and negative authorizations are used at the specification
level to state who is or is not allowed to do what. As we will show, the use of
signed (i.e positive/negative) authorizations gives more flexibility in handling
authorization rules. For example, negation can be banned in consequences of
rules without lost of generality.

An authorization policy must determine at any time the access rights of
each subject with respect to any object and any action. Writing a complete
specification to state this can be very complex and cumbersome. Indeed, to
enable the definition of authorization policies in the context of Web service
compositions, we assume a finite set of users U , Web services S, and roles R.
Users (that can be services) are entities connecting to the system and allowed
to submit requests. Web services are those involved in the composition process.
Roles are named collection of privileges needed to perform specific activities in
the service composition process. Hierarchical relationships can be defined within
any of these sets to describe dependencies among their elements. For example
services can be organized into federations. Each Web service can play several
roles in the same composition, and can belong to more than one composition at
the same time. In this case it will be able to exercise the union of the privileges
of all these roles. How this union is to be determined and whether the user looses
hidher personal privileges upon activation of some roles depend on the access
decision policy to be applied. Note that the fact that the authorizations given to
a role are applicable only when that role is active for a user has two advantages.
First, it gives the user all those privileges that are needed to perform a task.
Second, it is consistent with the “principle of least privilege”: each process is
confined to those actions needed to perform the task. This acts as a defense
against malicious attacks that may aim to exploit the role’s authorizations.



Formally, we define the set of roles related to a Web service composition C
as RC , and the role assigned to a given Web service s in that composition as rs

C .
Then, we distinguish between two states of a given Web service. It depends on
its role in the request. The first one is given by ssrc to express that the service
s represent the source (who submit the request). The second type is denoted by
starg to precise that the service s is the target (who receive the request).

To summarize, a service is seen as a resource that is provided within the
system, to which access is controlled. A service can also request other services
and is actively involved in computation. In our formal policy model, a Web
service can therefore be seen as both source and target. The type of request
made to the Web service is modelled as an action.

3.2 Authorization Model

To allow the necessary level of control over the behaviour of the Web service
composition it is our contention that authorization policies should be defined
in a language flexible enough to allow the specification of conditions that can
include multiple triggering events that may take place over time. EC seems to
be the best basis to start from.

We adapt a simple classical logic form of the EC, whose ontology consists of
(i) a set of time-points isomorphic to the non-negative integers, (ii) a set of time-
varying properties called fluents, and (iii) a set of event types (or actions). The
logic is correspondingly sorted, and includes the predicates Happens, Initiates,
Terminates and HoldsAt, as well as some auxiliary predicates defined in terms
of these. Happens(a, t) indicates that event (or action) a actually occurs at time-
point t. Initiates(a, f, t) (resp. Terminates(a, f, t)) means that if event a were
to occur at t it would cause fluent f to be true (resp. false) immediately after-
wards. HoldsAt(f, t) indicates that fluent f is true at t. The auxiliary predicate
Clipped(t1, f, t2) expresses whether a fluent f was terminated during a time in-
terval [t1, t2]. Similarly, the auxiliary predicate Declipped(t1, f, t2) expresses if
a fluent f was initiated during a time interval [t1, t2].

To achieve a complete specification that supports formal reasoning in EC, the
following elements must be represented in the model.

– Separation between source services (ssrc) and target services (starg) depend-
ing on the role of the service when performing or receiving the effect of an
operation.

– Functions that can be used as parameters in the basic predicate symbols of
EC. We define these functions as events that may occur during the composi-
tion execution. Below, the introduced events are explained. In these formulas,
Vp represents the set of parameters values for the operations supported by
services.
• operation(s,Action(Vp)) : used to denote the operations specified in a

policy function or event (see below).
• requestAction(ssrc, operation(starg, Action(Vp))) : represents the event

that occurs whenever a service source attempts to perform an operation



on a target service. Therefore, this is the event that will trigger a per-
mission (or denial) decision to be taken by the target service’s access
controller.

• doAction(ssrc, operation(starg, Action(Vp))) : represents the event of the
action specified in the operation term being performed by the service ssrc

on the service starg.
• rejectAction(ssrc, operation(starg, Action(Vp))) : the event that occurs

after the enforcement decision to reject the request by a particular source
service to perform an action is taken.

• permit(ssrc, operation(starg, Action(Vp))) : represents the permission gr-
anted to a source service to perform the action defined in the operation
on the target service.

• deny(ssrc, operation(starg, Action(Vp))) : used to denote that the source
service, ssrc, is denied permission to perform that action on the target
service starg.

– In addition to the described EC predicates, we add specific predicate symbols.
Indeed, in our case many of the function definitions above contain the tuple
(ssrc, operation(starg, Action(Vp)). To check if the members of this tuple are
consistent with the specification of the Web service composition, we define
the isV alidComp predicate. As such it must be used in any rule where
functions with the tuple (ssrc, operation(starg, Action(Vp)) are involved.

Having specified these elements, it is now possible to explain how the various
symbols defined above can be incorporated into rules that represent the different
types of information required to specify authorization policies able to support
Web service composition requirements in terms of security.

The complete authorization enforcement model is illustrated in Figure 1. As
shown, once the service source makes a request to perform an action on the
service target, the target service’s access controller processes it. To do this, the
access controller evaluates the request by referring to the policy repository and
the access control model. If the action is permitted, the access control model will
proceed to do the requested action. Otherwise, if the action should be denied,
the access control system will reject the action. We precise that the scheme is
symmetric, i.e each of the two services could be target, source, or target and
source at the same time.

Access
control model

Access controller

permit/deny

Policies
repository

Access
control model

Ac
ce

ss
 c

on
tro

lle
r

permit/deny

Policies
repository

Source service
execution environment

Target service
execution environment

requestAction(src,
op(targ,params))

Permit
doAction(…)

Deny
rejectAction(…)

Fig. 1. Authorization Enforcement Model

As shown in Figure 1, we distinguish two scenarios to represent the enforce-
ment model. The first scenario models the behaviour of the target service’s access



controller, generating a doAction event when an action is permitted. This event
would trigger the relevant service behaviour rules thus causing the composition
state to change according to the specification. The second one models a target
service’s access control monitor rejecting the action to prevent a denied operation
from being performed.

3.3 Authorization Specification

In order to correctly interact with the enforcement model described above, each
policy specification rule should initiate the appropriate policy function symbol
(permit, deny) for each of the events. So for example, a positive authoriza-
tion policy rule should specify that permit(ssrc, Operation(starg, Action(Vp)))
holds when the requestAction(ssrc, Operation(starg, Action(Vp))) event occurs
and the constraints that control the applicability of the policy hold. Additionally,
the fluent permit(ssrc, Operation(starg, Action(Vp))) should cease to hold once
the action has been performed thus making it possible to re-evaluate the policy
rule on subsequent requests to perform the action. The EC representation of this
functionality is indicated in the auto+ specification shown in Figure 2. This also
shows how each of the other policy types would be represented by rules in the
formal notation. For each rule, the terms, ssrc, starg, Action and Constraint,
can be directly mapped to the source service, target service, action, constraint
and event clauses used when specifying policies. The Constraint predicate is
introduced to specify the pre- and post-conditions for each operation. It can be
represented by a combination of HoldsAt terms.

The autho− specification shown in Figure 2 represents a negative authoriza-
tion policy by stating that, if the Constraint holds and the event requesting
the action is performed happens, the action is denied. The second part of the
rule shows how the deny fluent will be terminated once the decision to reject
that action has been taken, thus allowing the specification to be re-evaluated
on subsequent requests. Note that the termination parts for these policies do
not have any constraints and can be generically specified for the whole service
composition.

3.4 Conflicts

Using the authorizations’ specifications presented in Figure 2, a Web service
composer must be able to perform the two following functionalities: (1) given
the policies of services to be involved in the composition, it must find if it exists
a combination that satisfies each service policy to answer a given request, (2)
given the composition of a set of services having their own policies, it must be
able to prove that this composition is consistent regarding the policy of each
service.

In order to detect conflicts involving authorization policies, i.e. those that
arise when it exists two policies defined for the same source, target and action:
one being an authorization and the other one being a prohibition, we introduce
the authConflict predicate that holds if an authorization conflict is detected.



Policy Specification

autho+

Initiates(requestAction(ssrc, operation(starg, Action(Vp))), permit(ssrc,
operation(starg, Action(Vp))), t1)←
isV alidComp(ssrc, operation(starg, Action(Vp))) ∧ Constraint

Terminates(doAction(ssrc, operation(starg, Action(Vp))), permit(ssrc,
operation(starg, Action(Vp))), t1)←
isV alidComp(ssrc, operation(starg, Action(Vp)))

autho−

Initiates(requestAction(ssrc, operation(starg, Action(Vp))), deny(ssrc,
operation(starg, Action(Vp))), t1)←
isV alidComp(ssrc, operation(starg, Action(Vp))) ∧ Constraint

Terminates(rejectAction(ssrc, operation(starg, Action(Vp))), deny(ssrc,
operation(starg, Action(Vp))), t1)←
isV alidComp(ssrc, operation(starg, Action(Vp)))

Fig. 2. Event Calculus Specification for Authorization Policies

This predicate is defined as:
HoldsAt(authConflict(ssrc, operation(starg, Action(Vp))), t1)←

HoldsAt(permit(ssrc, operation(starg, Action(Vp))), t1)∧
HoldsAt(deny(ssrc, operation(starg, Action(Vp))), t1)

Let consider a typical example of authorization conflict, which arises when
the same service is assigned to two roles that have opposite authorization per-
missions. To enable a complete specification of the different conflict cases that
may arise, we introduce a further set of predicates, events, and fluents.

The additional predicates are Service(name), Action(name), Role(name),
and ContradictoryRoles(r1, r2, t, a). Service(name) denotes a service with a
name name. Action(name) defines an action with a name name that a source
can process on a target. Role(name) determines a role with the name name.
ContradictoryRoles(r1, r2, t, a) describes that roles r1 and r2 have opposite
permissions for processing an action a at t.

Then, the events introduced are AssignServiceRole(s, r) that denotes a re-
quest of a service s for assignment to a role r, RolePermitAction(r, a) that speci-
fies a request for permission of an action a for a role r, and RoleDenyAction(r, a)
that defines a request for denial of action a for a role r.

Finally, three fluents are specified: Assigned(s, r) indicates that service s is
assigned to a role r, RoleHavePermission(r, a) defines that a role r is permitted
to process action a, and AuthorizationConflict(r1, r2) denotes that there is an
authorization conflict in the composition (a service is assigned to contradictory
roles).

Considering the elements described above, it is possible to define rules that
can be used to recognise conflicting situations in the authorization policy speci-
fication. These rules are formalized as shown in Figure 3.

The first rule initiates the fluent RoleHavePermission(r, a) when the event
RolePermitAction(r, a) happens if this fluent is currently not true. The second
rule implements deny for role r to process the action a as a termination of
fluent RoleHavePermission(r, a) when RoleDenyActivity(r, a) event happens.
The third rule assigns service s to the role r when AssignUserRole(s, r) event



Rule Specification

R1 Initiates(RoleHavePermission(r, a), RolePermitAction(r, a), t)←
Happens(RolePermitAction(r, a), t) ∧ (¬HoldsAt(RoleHavePermission(r, a)
, t))

R2 Terminates(RoleHavePermission(r, a), RoleDenyActivity(r, a), t)←
Happens(RoleDenyActivity(r, a), t) ∧HoldsAt(RoleHavePermission(r, a), t)

R3 Initiates(Assigned(s, r1), AssignUserRole(s, r1), t)←
Happens(AssignUserRole(s, r1), t) ∧ (¬HoldsAt(AuthorizationConflict(r1,
r2), t))

R4 ContradictoryRoles(r1, r2, t, a)← (HoldsAt(RoleHavePermission(r1, a), t) ∧
(¬HoldsAt(RoleHavePermission(r2, a), t)))|(HoldsAt(RoleHavePermission
(r2, a), t) ∧ (¬HoldsAt(RoleHavePermission(r1, a), t)))

R5 Happens(conflictEvent, t)∧Initiates(AuthorizationConflict(r1, r2),
conflictEvent, t)← HoldsAt(Authorized(s, r2), t)∧Happens(Authorize−
Request(r1, s), t)∧ContradictoryRoles(r1, r2, a, t)

Fig. 3. Rules for Authorization Conflicts

happens if AuthorizationConflict(r1, r2) between the role r1 and some other
role r2 is not presented in the composition process. The fourth rule defines two
roles, one of which has and another one does not have permission for some action.
Here we note that we not fix which role has positive permission and which role
has negative permission. Thus, ContradictoryRoles is symmetrical regarding r1
and r2. Finally, the fifth rule defines a notion of authorization conflict: the user
requested the assignment for the second of two contradictory roles.

4 Related Work

There are few papers on security in the context of Web service compositions.
We are aware only of the work presented in [4], which presents an access control
framework for business processes in BPEL. The theoretical framework identi-
fies an interactive access control model based on logical abduction as a way
for protecting security interests of the process and its partners. Like our’s, this
framework is specific to the authorization problem. Our proposal is more for-
malized and it can be easily applicable to more security facets in Web service
compositions (confidentiality, integrity, and authentication). In [8] the authors
present a tool giving a simplified, business-policy-oriented view to its users, who
are configuring secure Web services in their systems. They also based their pro-
posal on WS-Security and WS-Policy but their tool does not support composite
Web services.

In the project SECTINO1, a system architecture for local and global workflow
system is proposed based on the XACML[6] and SAML. Security concerns are
defined in OCL(Object Constraint Language) with model-driven UML tools.
XACML is good for specifying policy in a specified domain. But it is not se-
mantic rich enough for cross-organisational orchestration and high-level security
requirements.
1 http://qe-informatik.uibk.ac.at



AO4BPEL[1] proposes an aspect-oriented extension to BPEL. It uses aspects-
oriented concept to modularize cross-cutting concerns like security and perfor-
mance in business processes. Although the AO4BPEL framework offers the mod-
ularity and dynamic adaptability to the Web service composition, it lacks seman-
tic description of security aspects, business processes and business rules. This
make conflicts detection and policy negotiation infeasible for securing the Web
service composition.

5 Conclusion

In this paper, we presented a framework for managing authorization policies
for Web service compositions. Specifically, we have described the use of Event
Calculus and abductive reasoning for developing a language that supports spec-
ification and analysis of authorization policies for Web service composition. A
complete implementation and an EC plug-in for Web service were developed and
tested using test cases.

There are several directions for future work to further improve the presented
work. One thread in our future work will focus on the generalisation of the rea-
soning technique to handle other security properties as presented in Section ??.
A more general direction considers the application of our framework to other
non-functional concerns in Web service compositions such as reliability, persis-
tence, and transactional perspectives.

References

1. A. Charfi and M. Mezini. Aspect-oriented web service composition with ao4bpel.
In ECOWS, volume 3250 of LNCS, pages 168–182. Springer, 2004.

2. D. Geer. Taking steps to secure web services. IEEE Computer, 36(10):14–16, 2003.
3. P. Hung, E. Ferrari, and B. Carminati. Towards standardized web services pri-

vacy technologies. In Proc of the IEEE International Conference on Web Services
(ICWS’04), San Diego, CA, USA, July 2004.

4. H. Koshutanski and F. Massacci. An access control framework for business processes
for web services. In XMLSEC ’03: Proceedings of the 2003 ACM workshop on XML
security, pages 15–24, New York, NY, USA, 2003. ACM Press.

5. R. Kowalski and M. J. Sergot. A logic-based calculus of events. New generation
Computing 4(1), pages 67–95, 1986.

6. T. Moses. Extensible access control markup language (xacml) version 2.0 3, Feb
2005.

7. M. Rouached, O. Perrin, and C. Godart. A contract-based approach for monitoring
collaborative web services using commitments in the event calculus. In Sixth In-
ternational Conference on Web Information System Engineering (WISE05), pages
426–434, 2005.

8. M. Tatsubori, T. Imamura, and Y. Nakamura. Best-practice patterns and tool sup-
port for configuring secure web services messaging. In ICWS ’04: Proceedings of the
IEEE International Conference on Web Services (ICWS’04), page 244, Washington,
DC, USA, 2004. IEEE Computer Society.


