
HAL Id: inria-00114029
https://hal.inria.fr/inria-00114029

Submitted on 15 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Composite Web Services using Logging
Facilities

Mohsen Rouached, Claude Godart

To cite this version:
Mohsen Rouached, Claude Godart. Analysis of Composite Web Services using Logging Facilities. Sec-
ond International Workshop on Engineering Service-Oriented Applications: Design and Composition
- WESOA’06, Dec 2006, Chicago, USA. �inria-00114029�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50414651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00114029
https://hal.archives-ouvertes.fr

Analysis of Composite Web Services using Logging
Facilities

Mohsen Rouached and Claude Godart

LORIA-INRIA-UMR 7503
BP 239, F-54506 Vandœuvre-les-Nancy Cedex, France

{mohsen.rouached, claude.godart }@loria.fr

Abstract. Web services are becoming more and more complex, involving nu-
merous interacting business objects within considerable processes. In order to
fully explore Web service business opportunities while ensuring a correct and
reliable modelling and execution, analyzing and tracking Web services interac-
tions will enable them to be well understood and controlled. Then, given the
resulting event log we want to verify certain specified properties, to provide
knowledge about the context of and the reasons for discrepancies between ser-
vices’behaviours and related instances.
This paper advocates a novel technique to log composite Web services and a for-
mal approach, based on an algeabric specification of the discrete event calculus
languageDEC, to check behavioural properties of composite Web services re-
garding their execution log. An automated induction-based theorem prover SPIKE
is used as verification back-end.

1 Introduction

Creating new services by combining a number of existing ones is becoming an attractive
way of developing value added web services. This pattern is not new but it does pose
some new challenges which have yet to be addressed by current technologies and tools
for Web service composition.

In order to satisfy current users and to attract new customers, services providers
need to pay special attention to the quality of their services. In particular, they need
to trace executions of these services in order to ensure explainability in case of failure
or auditing, as well as to support decision-making aimed at improving the structure
and dynamics of the services. These traces of ongoing and past executions of services
provide also the information required to detect services whose executions tend to fail,
and to conduct routine or ad-hoc checks involving the executions of a service.

In the research related to Web services, several initiatives have been conducted with
the intention to provide logging facilities. Despite all these efforts, the Web service
logging activity is a highly complex task. The complexity, in general, comes from the
following sources. First, the number of services available over the Web increases dra-
matically during the recent years, and one can expect to have a huge Web service repos-
itory to be searched. Second, Web services can be created and updated on the fly, thus
the composition system needs to detect the updating at runtime and the decision should
be made based on the up to date information.

To a service composer, it is desirable to be able to verify that the composition is well
formed: for example that it does not contain any deadlocks or livelocks which would
cause the composition to not terminate under certain conditions; and that the compo-
sition uses each web servicecorrectly. It is possible to verify the former using formal
notations and model checkers but for the latter it is necessary to precise what is meant
by correctly. One aspect of using a web service correctly is invoking the operations in
the order in which the provider intended. However, the WSDL description of a web
service does not specify any ordering information for the operations which are exposed
by the service. To allow a service composer to verify this aspect of correctness of the
composition, we focus in this paper on defining ordering information about services’ be-
haviours regrding the execution log. Indeed, we consider behavioural properties where
ordering and timing are relevant and we check whether certain properties hold or not
assuming that the information system at hand left a “footprint” in some event log. To
do this, both behavioural properties and the log are expressed in a novel algeabric spec-
ification ofDEC. Then, an automated induction-based theorem prover SPIKE is used
as verification back-end.

The remainder of the paper is structured as follows. Section 2 discusses existing
Logging facilities for Web services and introduces our technique to collect composite
Web services executions. Section 3 presents an algeabric specification of theDEC lan-
guage. An illustrative example is used to illustrate our ideas. In Section 4, an overview
of SPIKE is given. The encoding ofDEC in SPIKE is explained in Section 5. Using
this encoding, behavioural properties are checked in Section 6. The related work is dis-
cussed in section 7. Finally, Section 8 concludes the paper and outlines some future
directions.

2 Web Service Logging

In this section we examine and formalize the logging possibilities in service-oriented ar-
chitectures.Then, we introduce our technique to log Web services executions and more
specifically the composite ones. The levels of logging vary in the richness of the in-
formation that is logged and in the additional development effort that is needed when
implementing the respective features.

2.1 Web service collecting solutions and Web log structure

The first step in the Web service analysis process consists of gathering the relevant
Web data, which will be analyzed to provide useful information about the Web Service
behaviour. We discuss how these log records could be obtained by using existing tools
or specifying additional solutions. Then, we show that the analysis process is tightly
related to what of information provided in Web service log and depend strongly on its
richness.

Existing logging solutionsprovide a set of tools to capture web services logs. These
solutions remain quite “poor” to analyze advanced web service behaviours. That is why
advanced logging solutionsshould propose a set of developed techniques that allows

us to record the needed information to analyze more advanced behaviour. This addi-
tional information is needed in order to be able to distinguish between Web services
composition instances.

2.2 Existing logging solutions

There are two main sources of data for Web log collecting, corresponding to the inter-
acting two software systems: data on the Web server side and data on the client side (see
Figure 1). The existing techniques are commonly achieved by enabling the respective
Web server’s logging facilities. There already exist many investigations and proposals
on Web server log and associated analysis techniques. Actually, papers on Web Usage
Mining WUM [11] describe the most weel-known means of web log collection. Ba-
sically, server logs are either stored in theCommon Log Format1 or the more recent
Combined Log Format2. They consist primarily of various types of logs generated by
the Web server. Most of the Web servers support as a default option theCommon Log
Format, which is a fairly basic form of Web server logging. The log entry recorded in
Apache Tomcat when a request is sent to a Web serviceExampleServicemay look as
follows:

127.0.0.1 - - [15/Mar/2005:19:50:13 +0100] "POST /axis/
services/ExampleService HTTP/1.0" 200 819 "-" "Axis/1.1"

The log entry contains the requestor’s IP address, a timestamp, the request line, the
HTTP code returned by the server, i.e., 200 for OK, the size of the returned resource,
and the User-Agent, i.e., Axis/1.1. The empty element, i.e. ”-”, indicates that no referer-
information is available. Such log records allow for tracking of the service consumer,
determining which service is called how often (but not which operation of the service),
or analyzing service failure rates.

Level Logged information Logging facility
(1) Standard HTTP-server logging consumer’IP,invoked

WS,timestamp,HTTP’status code
Web server

(2) Logging of complete HTTP requests and re-
sponses

(1)+ SOAP request and re-
sponse,timestamps

HTTP listener and logger

(3) Logging at Web service container level invoked WS and operation,SOAP
request and response,timestamps

WS container, SOAP handlers

(4) Logging client activity (3)+ consumer-side activity WS container,SOAP handlers
(5) Providing for process information (4)+ workflow information (4)+ Web services

Fig. 1.Summary of logging features

However, the emerging paradigm of Web services requires richer information in
order to fully capture business interactions and customer electronic behaviour in this
new Web environment. Since the Web server log is derived from requests resulting from
users accessing pages, it is not tailored to capture service composition or orchestration.
That is why, we propose in the following a set of advanced logging techniques that
allows to record the additional information to analyze more advanced behaviour.

1 http://httpd.apache.org/docs/logs.html
2 http://www.w3.org/TR/WD-logfile.html

2.3 Advanced logging solutions

Identifying Web service composition instance : Successful analysis for advanced ar-
chitectures in Web services models requires composition (choreography/orchestration)
information in the log record. Such information is not available in conventional Web
server logs. Therefore, the advanced logging solutions must provide for both a chore-
ography or orchestration identifier and a case identifier in each interaction that is logged.

A known method for debugging, is to insert logging statements into the source code
of each service in order to call another service or component, responsible for logging.
However, this solution has a main disadvantage: we do not have ownership over third
parties code and we cannot guarantee they are willing to change it on someone else
behalf. Furthermore, modifying existing applications may be time consuming and error
prone.

Since all interactions between Web services happen through the exchange of SOAP
message (over HTTP), an other alternative is to use SOAP headers that provides addi-
tional information on the message’s content concerningchoreography. Basically, we
modify SOAP headers to include and gather the additional needed information captur-
ing choreographydetails. Those data are stored in the special<WSHeaders>. This
tag encapsulates headers attributes like:choreographyprotocol , choreograp-
hyname, choreographycase and any other tag inserted by the service to record
optional information; for example, the<soapenv:choreographyprotocol >
tag, may be used to register that the service was called byWS-CDLchoreography
protocol. The SOAP message header may look as shown in Figure 2. Then, we use
SOAP intermediaries [2] which are an application located between a client and a ser-
vice provider. These intermediaries are capable of both receiving and forwarding SOAP
messages. They are located on web services provider and they intercept SOAP request
messages from either a Web service sender or captures SOAP response messages from
either a Web service provider. On Web service client-side, this remote agent can be
implemented to intercept those messages and extract the needed information. The im-
plementation of client-side data collection methods requires user cooperation, either in
enabling the functionality of the remote agent, or to voluntarily use and process the
modified SOAP headers but without changing the Web service implementation itself
(the disadvantage of the previous solution).

Concerningorchestration log collecting, since the most Web services orchestration
are using a WSBPEL engine, which coordinates the various orchestration’s web ser-
vices, interprets and executes the grammar describing the control logic, we can extend
this engine with a sniffer that captures orchestration information, i.e., the orchestration-
ID and its instance-ID. This solution provides is centralized, but less constrained than
the previous one which collects choreography information.

Using these advanced logging facilities, we aim at taking into account Web services’
neighbors in the analysis process. The term neighbors refers to other Web services that
the examined Web service interacts with. The concerned levels deal with analyzing Web
service choreography interface (abstract process) through which it communicates with
others web services to accomplish a choreography, or discovering the set of interactions
exchanged within the context of a given choreography or composition.

< soapenv : Header >
< soapenv : choreographyprotocol

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : string” > WS − CDL

< /soapenv : choreographyprotocol >
< soapenv : choreographyname

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : string” > OTA

< /soapenv : choreographyname >
< soapenv : choreographycase

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : int” > 123

< /soapenv : choreographycase >
< /soapenv : Header >

Fig. 2.The SOAP message header

Collecting Web service composition Instance : The focus in this section is on col-
lecting and analysingsingleweb service composition instance. The issue of identifying
several instances has been discussed in the previous section. The exact structure of the
web logs or the event collector depends on the web service execution engine that is
used. In our experiments, where we have used the engine bpws4j3 uses log4j4 to gen-
erate logging events. Log4j is an OpenSource logging API developed under the Jakarta
Apache project. It provides a robust, reliable, fully configurable, easily extendible, and
easy to implement framework for logging Java applications for debugging and monitor-
ing purposes. The event collector (which is implemented as a remote log4j server) sets
some log4j properties of the bpws4j engine to specify level of event reporting (INFO,
DEBUG etc.), and the destination details of the logged events. At runtime bpws4j gen-
erates events according to the log4j properties set by the event collector. More details
about the implementation can not be presented here due to lack of space but can be
found in [13].

3 Analyzing Web services’behaviours

In this section, we focus on the process of analyzing Web services’behaviours regarding
their execution logs. Indeed, given an event log, we want to verify certain behavioural
properties, to provide knowledge about the context of and the reasons for discrepancies
between services ’behaviours and related instances.

3.1 Illustrative example

As an illustrative example, we consider a scenario of a device purchase order shown in
Figure 3. This scenario models a 3-party composition, in which a supplier coordinates
with its warehouse in order to sell and ship electronic devices.

3 http://alphaworks.ibm.com/tech/bpws4j
4 http://logging.apache.org/log4j

Fig. 3.Device purchase order

The interaction starts when aCustomercommunicates a purchase order to theSup-
plier. Supplierreacts to this request asking theWarehouseabout the availability of the
ordered item. Once received the response,Supplierdecides to cancel or confirm the
order, basing this choice upon Item’s availability andCustomer’s country. In the for-
mer case, the execution terminates, whereas in the latter one a concurrent phase is per-
formed:Customersends an order payment, whileWarehousehandles the item’s ship-
ment. When both the payment and the shipment confirmation are received bySupplier,
it delivers a final receipt to theCustomer. The specification of this scenario is given as
follows. The events are represented in the formmsgType(sender, receiver, content1,
..., contentn), where themsgType, sender, receiver andcontenti retain their intu-
itive meaning.

During the rest of the paper, we focus on a simple execution instance of the previ-
ously described example. In this instance, inspired by Disney characters, the criminal
bigTime(BT) beagle wants to buy a device from the online shopdevOnline(DO), whose
warehouse isdevWare(DW). Figure 4 contains the log of the scenario from the view-
point of devOnline; note that messages are expressed in an high level way, abstracting
from the SOAP exchange format using the technique introduced in Section 2.3.

In the device purchase scenario, we can distinguish several behavioural properties
that should be respected. However, due to lack of space, we just mention the following
ones. (BP1) specifies that, whenCustomersends toSupplierthe purchase order, includ-
ing the requestedItemand his/herCountry, Suppliershould request Item’s availability
to Warehouse. (BP2) indicates thatWarehouseshould respond within 6 minutes toSup-
plier’s request giving the corresponding quantityQty. The deadline is a constraint over
the variableTqty, that represents the time which the response is sent to.

message sender receiver content ts te

1.purchaseorder BT DO [dev] 1 2
2.isAvailable DO DW [dev] 3 9
3.inform DW DO [dev, 2] 10 11
4.acceptorder DO BT [dev] 12 13
5.shipmentorder DO DW [dev] 14 15
6.confirmshipment DW DO [dev] 16 18
7.payment BT DO [dev] 19 20
8.delivery DO BT [dev, r] 21 22

Fig. 4.A fragment of SOAP messages exchanged in the device purchase order

3.2 Discrete Event Calculus:DEC

Given the fact that we consider behavioural properties where ordering and timing are
relevant and we adopt an event driven reasoning, the Event Calculus (EC) [9] seems to
be a solid basis to start from.EC is a temporal formalism based on a first order logic,
that can be used to specify theeventsthat appear within a system and the effect (or
thefluents) of these events. It includes an explicittime structurethat dates the system
changes caused by the occurrence of the events.

For our purpose, we have used the discrete Event Calculus (DEC) that is enough
expressive to cope with the runtime analysis of composite Web services.DEC includes
the predicatesHappens, Initiates, Terminates andHoldsAt, as well as some auxil-
iary predicates defined in terms of these.Happens(a, t) indicates that event (or action)
a actually occurs at time-pointt. Initiates(a, f, t) (resp.Terminates(a, f, t)) means
that if eventa were to occur att it would cause fluentf to betrue (resp.false) im-
mediately afterwards.HoldsAt(f, t) indicates that fluentf is true att. The auxiliary
predicateClipped(t1, f, t2) expresses whether a fluentf was terminated during a time
interval [t1, t2]. The following four axioms capture the behaviour of fluents once initi-
ated or terminated by an event:

1. Happens(a, t1) ∧ (t1 < t2) ∧ Terminates(a, f, t2) → Clipped(t1, f, t2)
2. Happens(a, t1) ∧ (t1 < t2) ∧ Initiates(a, f, t2) → ¬Clipped(t1, f, t2)
3. Happens(a, t1) ∧ (t1 < t2) ∧ ¬Clipped(t1, f, t2) → HoldsAt(f, t2)
4. Happens(a, t1) ∧ (t1 < t2) ∧ Clipped(t1, f, t2) → ¬HoldsAt(f, t2)

Thus, the event log fragment depicted in Figure 4 can be easily translated inDEC
formalism as follows:

L1 : Happens(purchase order(BT, DO, dev, country), 2)
L2 : Happens(isAvailable(DO, DW, dev), 3)
L3 : Happens(inform(DW, DO, dev, 3), 10)
L4 : Happens(accept order(DO, BT, dev), 12)
L5 : Happens(shipment order(DO, DW, dev,BT), 13)
L6 : Happens(confirm shipment(DW, DO, dev), 16)
L7 : Happens(payment(BT, DO, dev), 19)
L8 : Happens(delivery(DO, BT, dev, rec), 21)

In the same way, the behavioural properties can be expressed formally. For instance, the
properties introduced in Section 3.1 are described inDEC formalism as follows:

(BP1) : Happens(purchase order(cu, s, i), Tpo)∧
Happens(isAvailable(s, w, i), Tca))
=⇒ Tpo < Tca

(BP2) : Happens(isAvailable(s, w, i), Tca)∧
Happens(inform(w, s, i,Qty), Tqty))
=⇒ Tqty < Tca + 6

4 Overview of SPIKE

Theorem provers have been applied to the formal development of software. They are
based on logic-based specification languages and they provide support to the proof of
correctness properties, expressed as logical formulas. In this work, we use the SPIKE
induction prover [3]. SPIKE was chosen for the following reasons: (i) its high au-
tomation degree (to help a Web service designer), (ii) its ability on case analysis (to
deal with multiple operations and many case of transformations), (iii) itsrefutational
completeness(to find counter-examples), (iv) its incorporation ofdecision procedures
(to automatically eliminate arithmetic tautologies produced during the proof attempt5).
SPIKE proof method is based on cover set induction. Given a theory, SPIKE computes
in a first step induction variables where to apply induction and induction terms which
basically represent all possibles values that can be taken by the induction variables.
Typically for a nonnegative integer variable, the induction terms are0 andx+1, where
x is a variable.

Given a conjecture to be checked, the prover selects induction variables according
to the previous computation step, and substitute them in all possible way by induc-
tion terms. This operation generates several instances of the conjecture which are then
simplifiedby rules, lemmas, and induction hypotheses.

5 EncodingDEC in SPIKE

In this section, we describe a method for representingDEC in SPIKE language. In the
sequel, we assume that all formulas are universally quantified.

5.1 Ingredients of our encoding

Data. All data information manipulated by the system is ranged over a set of sorts.
This data concerns generally the argument types of events and fluents. For instance,
the sets of customers, suppliers, items and countries are defined respectively by the
sortsCustomer, Supplier, Item andCountry. The sortBool represents the boolean
values, wheretrue andfalse are its constant constructors.

5 like x + z > y = false ∧ z + x < y = false =⇒ x + z = y

Events.We consider that all events of the system are of sortEvent, where the event
symbols are the constructors of this sort. These constructors are free as all event symbols
are assumed distincts. For instance, the event symbolpurchase order(x, y, z, t) is a
constructor ofEvent such thatx, y, z andt are variables of sortsCustomer, Supplier,
Item andCountry respectively. We define also anidle event which when occuring it
lets the system unchanged. We represent it by the constant constructorNoact.
Fluents. The sortFluent respresents the set of fluents. All fluent symbols of the
systems are the constructors of sortFluent, that are also free. The fluent symbol
EqualItem(x, y), for example, means that the variablesx andy, of sort Item, are
equal.
Time. We use the sort of natural numbers,Nat, which is reflected by constructors0 and
successorsucc(x) (meaningx + 1). We have modified the code of SPIKE in order to
enable handling of Peano numbers. For example, now we can directly write17 instead
of s(s(...(0)...)))) as it was in the previous versions of SPIKE .
Axioms. We express all predicates used inDEC as boolean function symbols. The sig-
natures of these function symbols and others additional functions are as follows:

Happens : Event×Nat → Bool
Initiates : Event× Fluent×Nat → Bool
Terminates : Event× Fluent×Nat → Bool
HoldsAt : Fluent×Nat×Nat → Bool
Clipped : Fluent×Nat×Nat → Bool
p : Event× nat → EventT ime
Cons : EventT ime× List → List
member : EventT ime× List → bool
Happens : EventT ime → Bool

HoldsAt andClipped are defined within a time range. For instance,HoldsAt(f, t1, n)
is defined within the range[t1, t1 + n]. In addition, we define the functions symbolsp,
Cons, andmember. p is a constructor that associates an event to its occurrence time.
Cons is used to group the list of events in the constantListEvent. This provide a
certain flexibility in the construction of the log. Then,member is a boolean function
that permits to test if an event appears in the log. After defining thep constructor,
the signature of the function associated to the predicateHappens is changed from
Happens : Event×Nat → Bool to Happens : EventT ime → Bool.

Finally, the four axioms given in Section 3.2 are expressed in conditional equations
as follows:

(A1) event 6= Noact∧Happens(p(event, t1)) = true∧ Initiates(event, f, t1) = true ⇒
HoldsAt(f, t1, 0) = true

(A2) HoldsAt(f, t1, t) = true∧Clipped(f, t1+t, s(0)) = false ⇒ HoldsAt(f, t1, s(t)) =
true

(A3) event 6= Noact ∧ Happens(p(event, t1)) = true ∧ Terminates(event, f, t1) =
true ⇒ Clipped(f, t1, s(0)) = true

(A4) event 6= Noact∧Happens(p(event, t1+t+s(0))) = true∧Terminates(event, f, t1+
t + s(0)) = true ⇒ Clipped(f, t1, s(s(t))) = true

(A5) Happens(p(Noact, t1 + t + s(0))) = true =⇒ Clipped(f, t1, s(s(t))) =
Clipped(f, t1, t + s(0))

(A6) Happens(x) = member(x, ListEvent)
(A7) member(x, Nil) = false
(A8) x = y ⇒ member(x, Cons(y, l)) = true
(A9) x 6= y ⇒ member(x, Cons(y, l)) = member(x, l)

Log. Using the functionCons we define the log in equational form:

ListEvent = Cons(p(purchase order(BT, DO, dev, country), 2),
Cons(p(isAvailable(DO, DW, dev), 3),
Cons(p(inform(DW, DO, dev, 3), 10),
Cons(p(accept order(DO, BT, dev), 12),
Cons(p(shipment order(DO, DW, dev,BT), 13),
Cons(p(confirm shipment(DW, DO, dev), 16),
Cons(p(payment(BT, DO, dev), 19),
Cons(p(delivery(DO, BT, dev, rec), 21), Nil))))))))

Behavioural properties. In the same way, we can express the bahavioural properties
in equational form. For instance, the properties (BP1) and (BP2)given in Section 3.2,
are written as follows:

(BP1) : Happens(purchase order(x, y, i), t1) = true∧
Happens(isAvailable(y, w, i), t2) = true
=⇒ (t1 < t2) = true

(BP2) : Happens(isAvailable(s, w, i), t1) = true∧
Happens(inform(w, s, i, q), t2) = true
=⇒ (t2 < t1 + 6) = true

wheret1, t2, x, y, w, q andi are variables.

5.2 Methodology

In the following, we propose a methodology for reasoning about composite Web ser-
vices specifications with deductive methods based on induction and rewriting. In the
first step, we build an algebraic specification fromDEC specification. The sorts, the
signatures of the functions and the axioms (conditional equations) of the algebraic spec-
ification are obtained by

1. associating to each argument of events and fluents a sort;
2. definig events and fluents as constructors of sortsEvent andFluent respectively;
3. encoding the log in a set of conditional equations (as in the above section);
4. adding the axioms given in Section 5.1.

Only the first three steps are to be defined for every composite Web serivces. Once
building the algebraic specification, we can check all behevioural properties by means
the powerful deductive techniques (rewriting and induction) provided by SPIKE .

6 Checking Behavioural Properties

All the generated axioms can be directly given to the prover SPIKE , which automat-
ically orientes these axioms into conditional rewrite rules. When SPIKE is called,
either the behavioural properties proof succeed, or the SPIKE ’s proof-trace is used for
extracting all scenarios which may lead to potential deviations. There are two possible
scenarios. The first scenario is meaningless because conjectures are valid but it comes
from a failed proof attempt by SPIKE . Such cases can be overcome by simply intro-
ducing new lemmas. The second one concerns cases corresponding to real deviations.
The trace of SPIKE gives all necessary informations (events, fluents and timepoints)
to understand the inconsistency origin. Consequently, these informations help designer
to detect behavioural problems in the composite Web service.

Let consider the example illustrated in this paper. SPIKE has found that (BP1)
is true and the reader can be confirm that by analyzing the log. But when submitting
(BP2), SPIKE has discovered an error. In the following, we describe how the prover
checks the behavioural property (BP2).

Firstly, SPIKE simplifies (BP2) using the axioms (A6) and (A7) introduced in
Section 5.1:

p(isAvailable(s, w, i), t1)∧ (1)

p(inform(w, s, i, q), t2) (2)

=⇒ (t2 < t1 + 6) = true (3)

Using the literalsL2 and L3 given by the log (that replacet1 and t2 by 3 and 10
respectively), this conjecture becomes(10 < 3 + 6) = true that is always false. Con-
sequently, the prover has detected an anomaly in the log. Below, we present a fragment
of the SPIKE trace when checking propertyBP2.

Uncaught exception: Failure("fail induction on [10973] inform (u2, u1, u3, u5)
<> purchase_order (e1, e2, e3, e4) /\\ inform (u2, u1, u3, u5) <> isAvailable (

e2, e5, e3) /\\ u2 = e5 /\\ u1 = e2 /\\ u3 = e3 /\\ u5 = 3 /\\ u6 = 10 /\\ isAva
ilable (u1, u2, u3) <> purchase_order (e1, e2, e3, e4) /\\ u1 = e2 /\\ u2 = e5 /
\\ u3 = e3 /\\ u4 = 3 => u6 < (u4 + (6)) = true ;")

while proving the following initial conjectures
[6584] Happens (p (isAvailable (u1, u2, u3), u4)) = true /\ Happens (p (inform

(u2, u1, u3, u5), u6)) = true => u6 < (u4 + (6)) = true ;
Elapsed time: 0.186 s

We failed

7 Related Work

Up to now, few works have been conducted on logging and analyzing Web services us-
age information. Akkiraju et al. [1] proposed a framework blending logging facilities to
private Web service registries. However, no details are provided about the log structure
or how to implement it. Irani [7] proposed the use of intermediaries to collect infor-
mation about authentication, auditing and management of services through the use of
logs, but he also does not provide any detail on the log structure. Brittenham et al. [4],

from WS-I Test Tools Working Group, proposed an architecture that consists of a mes-
sage monitor and an analyzer. The monitor is used to log the messages that were sent
to and from a Web service, while the analyzer is used to validate that the Web service
interactions contained in the message log conform to a WS-I profile. However, WS-I
monitor captures in a single log file HTTP data and the whole SOAP message content.
These data are captured in their raw format making it difficult to differentiate analytical
information from disposable data. Capturing the whole SOAP message brings another
problem: huge amount of data, many times larger than traditional HTTP logs.

Formal analysis and verification of Web Services in the aim of detecting anomalies
are addressed in several papers. The SPIN model-checker is used for verification [10]
by translating Web Services Flow Language (WSFL) descriptions into Promela. [8]
uses a process algebra to derive a structural operational semantics of BPEL as a formal
basis for verifying properties of the specification. In [5], BPEL processes are translated
to Finite State Process (FSP) models and compiled into a Labeled Transition System
(LTS) in inferring the correctness of the Web service compositions which are specified
using message sequence charts. In [6], finite automata were augmented with (i) XML
messages and (ii) XPath expressions as the basis for verifying temporal properties of
the conversations of composite Web services. Rao et al. [12] introduces a method for
automatic composition of semantic Web services using Linear Logic theorem proving.
Services are presented by extralogical axioms and proofs in Linear Logic. For a com-
plete overview of use of event calculus in the context of Web services we refer the
reader to our previous work [13, 14].

8 Conclusions

This paper has outlined a technique to log composite Web services and a methodol-
ogy, using the logging facilities, to analyze services’ behaviours. More specifically, it
permits to check whether the observed behaviour of each involved service matches the
(un)expected/(un)desirable behaviour. The methodology is also supported by a formal
representation of behavioural properties and execution logs considered as the basis for
the automatic composition of Web services. The analysis process was supported by a
novel specification of theDEC formalism. As verification back-end we used an au-
tomated induction-based theorem prover SPIKE that provide support to the proof of
correctness properties, expressed as logical formulas.

The framework is still under development. Ongoing work on it is concerned with
(1) to test our approach on larger and more complex specifications, for example of
composition with more several involved services and complicated properties, and (3)
to automatically capture and analyse the SPIKE execution traces in order to construct
scenarios useful for ensuring re-engineering activities.

References

1. R. Akkiraju, D. Flaxer, H. Chang, T. Chao, L. Zhang, F. Wu, and J. Jeng. A framework for
enabling dynamic e-business via web service. InProceedings of the OOPSLA. Florida, USA,
2001.

2. M. Baglioni, U. Ferrara, A. Romei, S. Ruggieri, and F. Turini. Use soap-based intermediaries
to build chains of web service functionality, 2002.

3. A. Bouhoula, E. Kounalis, and M. Rusinowitch. Spike: an automatic theorem prover. In
Proceedings of LPAR 92, number 624 in LNAI. Springer-Verlag, July 1992.

4. P. Brittenham, J. Clune, J. Durand, L. Kleijkers, K. Sankar, S. Seely, K. Stobie, and G. Tur-
rell. Ws-i analyzer tool functional specification.

5. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification for web service
choreography. InICWS ’04: Proceedings of the IEEE International Conference on Web
Services (ICWS’04), page 738, Washington, DC, USA, 2004. IEEE Computer Society.

6. X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. InWWW ’04: Pro-
ceedings of the 13th international conference on World Wide Web, pages 621–630, New
York, NY, USA, 2004. ACM Press.

7. R. Irani. Web services intermediaries adding value to web services, November 2001.
8. M. Koshina and F. van Breugel. Verification of business processes for web services. Techni-

cal report, New York University, SFUCMPT-TR-2003-06.
9. R. Kowalski and M. J. Sergot. A logic-based calculus of events.New generation Computing

4(1), pages 67–95, 1986.
10. S. Nakajima. Verification of web service flows with model-checking techniques. InCW,

pages 378–385, 2002.
11. J. Punin, M. Krishnamoorthy, and M. Zaki. Web usage mining: Languages and algorithms.

In Studies in Classification, Data Analysis, and Knowledge Organization. Springer-Verlag,
2001.

12. J. Rao, P. K̈ungas, and M. Matskin. Logic-based web services composition: From service
description to process model. InICWS, pages 446–453, 2004.

13. M. Rouached, W. Gaaloul, W. M. P. van der Aalst, S. Bhiri, and C. Godart. Web service min-
ing and verification of properties: An approach based on event calculus. InProceedings 14th
International Conference on Cooperative Information Systems (CoopIS 2006), November
2006. To appear.

14. M. Rouached, O. Perrin, and C. Godart. Towards formal verification of web service com-
position. InForth International Conference on Business Process Management (BPM06),
2006.

