
HAL Id: inria-00113750
https://hal.inria.fr/inria-00113750v2

Submitted on 22 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalising Sylow’s theorems in Coq
Laurent Théry, Laurence Rideau

To cite this version:
Laurent Théry, Laurence Rideau. Formalising Sylow’s theorems in Coq. [Technical Report] RT-0327,
INRIA. 2006, pp.23. �inria-00113750v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50413205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00113750v2
https://hal.archives-ouvertes.fr

in
ria

-0
01

13
75

0,
 v

er
si

on
 2

 -
 2

2
N

ov
 2

00
6

ap por t
 t e ch n i qu e

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-0
32

7-
-F

R
+

E
N

G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Formalising Sylow’s theorems in Coq

Laurence Rideau — Laurent Théry

N° 0327

Novembre 2006

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Formalising Sylow’s theorems in Coq

Laurence Rideau , Laurent Théry

Thème SYM — Systèmes symboliques
Projet Marelle

Rapport technique n° 0327 — Novembre 2006 — 23 pages

Abstract: This report presents a formalisation of Sylow’s theorems done in Coq. The
formalisation has been done in a couple of weeks on top of Georges Gonthier’s ssreflect [2].
There were two ideas behind formalising Sylow’s theorems. The first one was to get familiar
with Georges way of doing proofs. The second one was to contribute to the collective effort
to formalise a large subset of group theory in Coq with some non-trivial proofs.

Key-words: Group theory, Sylow’s theorems, Formalisation of mathematics

Formalisation des théorèmes de Sylow dans Coq

Résumé : Ce rapport présente une formalisation des théorèmes de Sylow faite dans le
système Coq. La formalisation s’est faite en deux semaines au dessus de la librairie
ssreflect de Georges Gonthier. Il y avait deux principales motivations pour formaliser
les théorèmes de Sylow. La première était de se familiariser avec la façon qu’a Georges de
faire des preuves. La seconde était de contribuer à l’effort collectif de formaliser un large
ensemble de la théorie des groupes en Coq.

Mots-clés : Théorie des groupes, Théorème de Sylow, Formalisation des mathématiques

Sylow in Coq 3

1 Introduction

Sylow’s theorems are central in group theory. Any course has a section or a chapter on
them. Taking them as a first step in an effort to formalise group theory seemed a good
idea. One of these theorems is number 72 in the list of the 100 theorems [4] maintained by
Freek Wiedijk. Surprisingly, only one formalisation is known. It has been done in Isabelle by
Florian Kammüller [3]. The proof that has been formalised in Isabelle is due to Wielandt [5].
It is a very concise and elegant proof. A central step in the proof is a non-trivial combinatorial
argument that is used to show the existence of a group with a particular property. This is not
the proof we have chosen to formalise. As we are interested in formalising Sylow’s theorems
not only as a mere exercise but as a base for further development, conciseness is nice but
reusability is much more important. We have chosen to follow the proof given by Gregory
Constantine [1] in his group theory course. It has the nice property of using one main tool,
namely group actions, to prove most of the key results. The combinatorial argument that
was present in the proof of Wielandt is then reduced to a minimum. Most of our formalising
time has then been spent proving theorems about groups not about numbers.

The presentation of this work is organised as follows. In a first section, we describe what
we started from. The main points we want to address are how ssreflect is organised and
how using this dedicated version of Coq differs from using the standard one. In a second
section, we outline the main steps of our proofs. Then, in a last section we conclude.

2 From types with decidable equality to finite types

2.1 Types with decidable equalitiy

One of the key decision of ssreflect is to base the development on objects not in Type but
in eqType, i.e objects for which equality is decidable.

Structure eqType : Type := EqType {

sort :> Set;

eq : sort -> sort -> bool;

eqP : forall x y, reflect (x = y) (eq x y)

}.

eq is the function that decides equality and eqP the theorem that insures that (eq x y),
written in the following as x == y, is true iff x = y. We call this the adequacy of equality.

Adding decidability on objects has the nice consequence to equate the type bool, the
booleans, with the type Prop, the propositions. Of course, these two types are not identified
since we are completely compatible with the standard way of doing proofs in Coq. Still,
an inductive relation reflect of type Prop -> bool -> Type holds all the information to
coerce one into the other.

In practice, booleans are always privileged with respect to propositions. For this, the
coercion is_true from booleans to propositions is used.

Coercion is_true b := b = true.

RT n° 0327

4 Rideau & Théry

As an example, let us consider equality and conjunction. Instead of stating a conjunction of
two equalities as x = y /\ z = t, we prefer writing it using booleans as x == y && z ==
t. This simple modification gives a classical flavour to the usually intuitionistic prover Coq.
Moreover, proof scripts become more similar to the ones of other systems like Hol. In par-
ticular, as booleans accommodate the substitutivity property, rewriting becomes the tactic
number one. This reflection between bool and Prop is supported by the tactic language
with the so-called views. As an example, consider the reflection over conjunction which is
represented by the theorem andP

Theorem andP: forall b1 b2 : bool, reflect (b1 /\ b2) (b1 && b2).

Suppose now that we have to prove the following goal x == y && z == t. In order to split
this goal into two subgoals, we use a combination of two tactics: (apply/andP; split).
The first tactic converts the && into a /\ , the second tactic can then perform the splitting.
Similarly for an hypothesis, if the goal is x == y && z == t -> A for an arbitrary A, the
tactic (move/andP; case) performs the convertion and the destructuring. Note that we
can do even shorter combining view and case: case/andP.

Some standard operations are defined on eqType. For example, it is possible to build the
set of pairs of objects. The construction is the following:

Structure eq_pair (d1 d2: eqType): Type := EqPair {

eq_pi1: d1;

eq_pi2: d2

}.

Definition pair_eq (d1 d2: eqType) (u v: eq_pair d1 d2): bool:=

let EqPair x1 x2:= u in

let EqPair y1 y2:= v in (x1 == y1) && (x2 == y2).

Once the adequacy of the equality is proved, we can build the expected type with decid-
able equality. This is represented by the function prod_eqType with the following type
prod_eqType: eqType -> eqType -> eqType.

2.2 Sets

Sets are represented by their indicator function:

Definition set (d: eqType) := d -> bool.

For example, the constructor of a singleton is defined as

Definition set1 x := fun y => (y == x).

A key construction is the one that allows to build a type d1 with decidable equality from a
set A whose carrier is a type d with decidable equality. This is done using the constructor
sub_eqType:

sub_eqType: forall d: eqType, set d -> eqType.

d1 is then (sub_eqType d A) and elements of d1 are composed of elements of d and a proof
that they belong to A.

INRIA

Sylow in Coq 5

Structure eq_sig (d: eqType) (A: set d): Set := EqSig {

val: d;

valP: A val

}.

Equality then only checks the first elements of the two records. As sets are represented as
indicators, this equality is adequate (there is only one proof of x = true). Over sets, there
is also the usual extensional equality, i.e. A1 =1 A2 iff A1 x == A2 x for all x.

2.3 Sequence

Sequences are represented in a standard way

Inductive seq (d: eqType): Type := Seq0 | Adds (x : d) (s : seq d).

Sequences are equipped with all the basic operations. In the following, we are going to use
two of these operations: size, count. size gives the number of elements of a sequence.
count returns the number of elements of a set inside a sequence.

2.4 Finite type

The last construction before defining groups is the one for creating finite types. A finite type
is composed of a type sort with decidable equality, its sequence of elements and a proof
that the sequence contains each element of sort once and only once.

Structure finType: Type := FinSet {

sort :> eqType;

enum : seq sort;

enumP : forall x, count (set1 x) enum = 1

}.

Note that this encoding of finite sets gives for free an order on the elements of the finite set,
i.e. the index of its occurrence in the sequence. The cardinality of a set A over a finite type
S is defined as (count A (enum S)). It is written in the following as (card A).

3 From finite groups to Sylow’s theorems

3.1 Finite group, coset and subgroup

A finite group contains a finite set, an unit element, an inverse function and a multiplication
with the usual properties.

Structure finGroup : Type := Finite {

element:> finType;

unit: element;

inv: element -> element;

RT n° 0327

6 Rideau & Théry

mul: element -> element -> element;

unitP: forall x, mul unit x = x;

invP: forall x, mul (inv x) x = unit;

mulP: forall x1 x2 x3, mul x1 (mul x2 x3) = mul (mul x1 x2) x3

}.

Given a multiplicative finite group G and x, y two elements of G, 1 is encoded as (unit
G), x−1 as (inv G x), and xy as (mul G x y). Given a finite group G, a set H of G and an
element a of G, the left coset aH (the right coset Ha) is the set of the elements ax (respectively
the set of elements xa) for all x in H. As we have x in aH iff a−1x is in H (respectively x in
Ha iff xa−1 is in H), we have the following definitions:

Definition lcoset H a: set G := fun x => H (a−1x).

Definition rcoset H a: set G := fun x => H (xa
−1

).

The function x 7→ ax is a bijection between H and aH, so both sets have same cardinality.
Furthermore, every coset aH can be represented by a canonical element a such that aH =1 bH

iff a == b. Technically, a is encoded as (root (lcoset H) a), which is the first element in
the sequence of the finite set that belongs to aH.

Subgroups are not defined as structures but as sets. Their definition is a bit intricate.
The idea is to say that a set H is a subgroup if it is not empty, and if x and y are in H so
is xy−1. This is sufficient. Since if H is non empty, it contains at least an element z, so we
have zz−1 == 1 belongs to H. Also, for all x in H, 1x−1 == x−1 also belongs to H. Finally, if
x and y belongs to H, we have y−1 belongs to H, so is x(y−1)−1 == xy. In our definition, 1
is used as a witness of non-emptiness. For the second condition, we rewrite it as “if x is in
H then H is included in Hx”.

Definition subgrp H :=

H 1 && subset H (fun x => subset H (rcoset H x)).

where (subset H1 H2) is true iff for all x in H1, x is also in H2. In this definition, G is given
implicitly since the type of H is (set G). This definition is of little use for proving that a
set is a subgroup. As we are in a finite setting, a much more practical characterisation of a
subgroup is that it is a non-empty set that is stable by multiplication. This is represented
in our development by the theorem finstbl_sbgrp:

Lemma finstbl_sbgrp: forall G (H : set G) (a : G),

H a -> (forall x y, H x -> H y -> H (xy)) -> subgrp H.

If H is a subgroup, its left cosets partition G: if z is in the intersection aH and bH, there exist
h1 and h2 such that ah1 == z == b h2, we get a == b(h2h1

−1) and b == a(h1h2
−1), so aH

=1 bH. We denote (lindex H) the number of canonical elements. We then get that card G =
lindex H * card H. As in our development groups and subgroups differ in nature, groups
hold the carrier while subgroups are only indicators, it is preferable to state Lagrange’s
theorem at the level of subgroups:

Theorem lLaGrange:

forall G (H K: set G),

subgrp H -> subgrp K -> subset H K => card H * lindex H K = card K.

INRIA

Sylow in Coq 7

Now, lindex H K denotes the number of coset of H with respect to K. Note that we can
always get back to the usual statement, using the fact that G is a subgroup of itself.

3.2 Conjugate, normaliser and normal subgroub

Normal subgroups are needed for the proof of Sylow’s theorem. In order to define them, we
first define the conjugate operation.

Definition yx := x−1yx.

Then, given an arbitrary element x and an arbitrary set H the conjugate set xHx−1 is defined
as follows:

Definition conjsg H x := fun y => H yx.

y is in xHx−1 iff x−1yx is in H. We are now ready to define the notion of normal subgroup.
H is normal in K iff for all element x in K, xHx−1 =1 H. It is in fact sufficient to require that H
is included in xHx−1 as both sets have same cardinality. This gives the following definition:

Definition normal H K := subset K (fun x => subset H (conjsg H x)).

Later in the proof of the first Sylow’s theorem we use the property that the quotient of
a group by a normal subgroup is a group. This is a direct consequence of normality that
imposes that the operation of the group behaves well with respect to cosets. The quotient
group is represented in our development by the group RG composed with the roots of G with
respect to the left coset relation.

Given a subgroup H, it is possible to build its normaliser, the set of all x in K such that
xHx−1 = H as:

Definition normaliser H K x :=

(subset K (fun z => (conjsg H x z == H z))) && K x.

By definition, we have that H is normal in (normaliser H K). This is the theorem nor-
maliser_normal:

Lemma normaliser_normal:

forall G (H K : set G), subset H K -> normal H (normaliser H K).

3.3 Group actions

Group actions are the key construction for our final theorems. To define an action, we need
a group G, a subgroup H and a finite set S. This is written in our development as:

Variable G : finGroup.

Variable H : set G.

Hypothesis sgrp_H: subgrp H.

Variable S : finType.

An action to is a homomorphism from H to the permutations of S (the bijections from S to
S). This is defined as:

RT n° 0327

8 Rideau & Théry

Variable to: G -> (S -> S).

Hypothesis to_bij: forall x, H x -> bijective (to x).

Hypothesis to_morph: forall (x y: G) z,

H x -> H y -> to (xy) z = to x (to y z).

where the predicate bijective indicates that the function is a bijection. Note that we have
arbitrary chosen to define our action to on G and only require the properties of homomor-
phism and permutation to hold for elements of H.

For an element a of S, we define its orbit as all the elements of S that can be reached
from a by the function to. In other words, it is the image of H by the function that given
an x in G associates (to x a).

Definition orbit a := image (fun x => to x a) H.

We can partition S using the orbits. A key property of group action comes with the notion
of stabiliser. Given an element a of S, we call its stabiliser the set of all the elements x of H
that leave a unchanged by the function to x. Formally, this gives

Definition stabiliser a := fun x => (((to x a) == a)) && (H x)).

The stabiliser is clearly a subgroup of H but the key property is that the cardinal of the orbit
of a and the index of the stabiliser of a are equal.

Lemma card_orbit: forall a, card (orbit a) = lindex (stabiliser a) H.

to see this we just have to notice that we have (to x a) =d (to y a) iff x−1y is in (sta-

biliser a). For this, we write (to y a) as (to x (to (x−1y) a))) and use the fact that
to is injective.

In the particular case where H has cardinality pα with p prime, as orbits partition S and
their cardinality is an index, Lagrange’s theorem gives us that these orbits are of cardinality
pβ with β ≤ α. Now, if we collect in the set S0 all the elements of S whose orbit has
cardinality 1 = p0, i.e elements that are in the stabiliser of every element of H:

Definition S0 a := subset H (stabiliser a).

we get our central lemma

Lemma mpl: (card S) % p = (card S0) % p.

where % is the usual modulo operation. All the orbits of cardinality pβ with 0 < β ≤ α

cancel out in the modulo.

3.4 Cauchy’s theorem

The proof of the first Sylow theorem is an inductive proof. Cauchy’s theorem solves the base
case. This theorem states that if a prime p divides the cardinality of a group, then there
exists a subgroup of cardinality p. More precisely, there exists an element a, such that its
cyclic group, i.e. the set of all the ai, is of cardinality p. As we did for Lagrange’s, we state
this theorem at the level of subgroups. We take H a subgroup of G and a prime p that divides
the cardinality of H. We first consider Hp−1 the cartesian product H× . . . × H

︸ ︷︷ ︸

p−1

. An element x

INRIA

Sylow in Coq 9

of Hp−1 is written as (h0, ..., hp−2). We have (card Hp−1) = (card H)p−1. We define
H∗ a subset of Hp as the image of Hp−1 by the function

(h0, ..., hp−2) 7→ ((
∏p−2

i=0 hi)
−1, h0, ..., hp−2).

Clearly, we have (card H∗) = (card H)p−1 and every element (h0, ..., hp−1) of Hp such

that
∏p−1

i=0 hi = 1 is in H∗. Now we consider the additive group Zp and the action to from
Zp to H∗ defined as

n 7→ { (h0, h1..., hp−1) 7→ (h(0+n)%p, h(1+n)%p,..., h(p−1+n)%p)}
Now, if we look at the set S0 of the elements of orbit with cardinality 1. We can easily prove
that S0 is composed of the elements (h, ..., h) such that hp = 1. In one direction, such
elements clearly belong to S0 since they are left unchanged by any permutation of indexes.
Conversely, if an element x belongs to S0, in particular (to 1 x) is equal to x. So, if we
write x as (h0, ..., hp−1), this means (h0, ..., hp−1) is equal to (h1, ..., h0) which
in turn implies that h0 is equal to h1, h1 is equal to h2 and so on. Now, the mpl lemma tells
us that (card H∗) % p = (card S0) % p, but the cardinality of H∗ is divisible by p so we
can conclude that the cardinality of S0 is also divisible by p. As, p ≥ 2, this means that
there exists at least one element a different from 1 in S0. For this element, we have ap = 1.
We have that the cardinality of the cyclic group of a divides p but as p is prime and a is
different of 1, the cardinality of its cyclic group is then exactly p. The exact statement of
Cauchy’s theorem in our development is

Theorem cauchy: forall G, (H : set G) p,

subgrp H -> prime p -> p | (card h) ->

exists a, H a && (card (cyclic a) == p).

where | denotes the divisibility and cyclic builds the cyclic group of an element.

3.5 Sylow’s theorems

The first Sylow theorem tells us that if G is a group and K is a subgroup of G of cardinality
pns with p prime and p, s relatively prime, then there exists a subgroup of K of cardinality
pn. Such a subgroup of maximal cardinality in p is called a Sylow p subgroup. It is defined
in our development as

Definition sylow K p H:=

subgrpb H && subset H K && card H == expn p (dlogn p (card K)).

where expn is the exponential function and dlogn is the divisor logarithm, i.e (dlogn p u)

is the maximal power of p that divides u.
The proof of the first Sylow theorem is done by induction. We are going to prove that

for all i, 0 < i ≤ n, there exists a subgroup of cardinality pi. For i = 1, the existence is
given by Cauchy’s theorem. Now, suppose that there exists a subgroup H of cardinality pi,
we are going to prove that there exists a subgroup L of cardinality pi+1. We are acting by
left translation with H on the left cosets of H with respect to K as follows:

x 7→ { yH 7→ (xy)H }
The mpl lemma gives us (card S0) % p = (lindex H K) % p. But by Lagrange’s theorem
we know that (lindex H K) is equal to pn−is. As i < n, we can conclude that the cardinal
of S0 is divisible by p. Now, if we look at the cosets that are in S0. They are the yH such that

RT n° 0327

10 Rideau & Théry

(xy)H = yH for all x in H. This corresponds to y−1Hy = H so y is in (normaliser H K). So,
we can deduce that (card S0) = (lindex H (normaliser H K)). This means that if we
take the quotient of the normaliser (normaliser H K) by H, this is a group (H is normal in
its normaliser) and its cardinality which is (lindex H (normaliser H K)) is divisible by p.
We can then apply Cauchy’s theorem and get the existence of a subgroup L1 of cardinality p
in the quotient. Taking the inverse image of L1 by the quotient operation, we get a subgroup
L of G whose cardinality is card L1 * card H = p pi = pi+1. This ends the proof of the
first Sylow theorem. The exact formal statement of this theorem is the following:

Theorem sylow1_cor: forall G (K: set G) p,

subgrp K -> prime p -> 0 < dlogn p (card K) ->

exists H : set G, sylow K p H.

The second Sylow theorem says that two Sylow p subgroups L1 and L2 of K are conjugate.
For the proof, we act by left translation with L2 on the left coset of L1. By the mpl lemma,
we know the (card S0) % p = (lindex L1 K) % p. As L1 is a Sylow p group, we have by
Lagrange’s theorem that (lindex L1 K) is equal to s, so is not divisible by p. This means
that (card S0) is not divisible by p, so there exists an x in K such that xL1 is in S0. But for
this x, we know that for all y in L2, (yx)L1 = xL1, this means that L2 is included in xL1x

−1.
As both sets have same cardinality, we have L2 =1 xL1x

−1. The exact formal statement of
this theorem is the following:

Theorem sylow2_cor: forall G (K: set G) p L1 L2,

subgrp K -> prime p -> 0 < dlogn p (card K) ->

sylow K p L1 -> sylow K p L2 ->

exists x : G, K x /\ L2 =1 conjsg L1 x.

The third Sylow theorem gives an indication on the number of Sylow p groups. It says
that this number divides the cardinality of K and is equal to 1 modulo p. In order to count
the number of Sylow p subgroup, we have to define the sylow subset of the power set of G
as:

Definition syset K p := fun (H: powerSet G) => sylow K p (subdE H).

Now, the first part of the third theorem that regards divisibility is proved acting with K on
(syset K p) as follows:

x 7→ { L 7→ xLx−1 }
The second theorem tells us that all the elements of (syset K p) are conjugate. So, from
one Sylow p subgroup L we can reach any other by conjugation. This means that (syset K
p) contains one single orbit. So, (card (syset K p)) = (card (orbit L)). The theorem
card_orbit tells us the card (orbit L) is equal to (lindex (stabiliser L) K). Using
Lagrange’s theorem, we get that it divides (card K). The formal statement of the first part
of the third Sylow theorem is the following:

Theorem sylow3_div: forall G (K: set G) p,

subgrp K -> prime p -> 0 < dlogn p (card k) ->

(card (syset K p)) | (card K).

For the second part, we consider H a Sylow p group for K. We act with H on (syset K
p) by conjugation as before:

INRIA

Sylow in Coq 11

x 7→ { L 7→ xLx−1 }
An element L is in S0 if xLx−1 =1 L for all x in H. This means that H is included in (nor-
maliser L K). As we have (sylow K p H), we have also (sylow (normaliser L K) p H).
This holds also for L, so we have (sylow (normaliser L K) p L). The second theorem tells
us that H and L are then conjugate in (normaliser L K). But as L is normal in its nor-
maliser, this implies that H =1 L. So (card S0) is equal to 1. If we apply the mpl lemma we
get the expected result. The formal statement of the second part of the third Sylow theorem
is the following:

Theorem sylow3_mod: forall G (K: set G) p,

subgrp K -> prime p -> 0 < dlogn p (card k) ->

(card (syset K p)) % p = 1.

4 Conclusion

Formalising Sylow’s theorems has been surprisingly smooth. One reason has to do with
the fact that we have built our development on top of ssreflect. This base was used by
Georges Gonthier for his proof of the four colour theorem. It has already been tested on a
large development, so it is quite complete. The only basic construction we had to add is the
power set. Another reason that made our life simpler is that we were working in a decidable
fragment of the Coq logic. No philosophical issue about constructiveness slowed down our
formalisation. Finally, Gregory Constantine’s proof was perfect for our formalisation work.
The only part of the formalisation that was ad-hoc was the construction of the set H∗. It
represents only 360 lines of the 3550 lines of the formalisation. The fact that this experiment
was positive is clearly a good sign for further formalisations in group theory.

References

[1] Gregory M. Constantine. Group Theory. Available at
http://www.pitt.edu/~gmc/algsyl.html.

[2] Georges Gonthier. Notation of the Four Colour Theorem proof. Available at
http://research.microsoft.com/~gonthier/4colnotations.pdf.

[3] Florian Kammüller and Lawrence C. Paulson. A Formal Proof of Sylow’s Theorem.
Journal of Automating Reasoning, 23(3-4):235–264, 1999.

[4] Freek Wiedijk. Formalizing 100 theorems. Available at
http://www.cs.ru.nl/~freek/100/.

[5] Helmut Wielandt. Ein beweis für die existenz der sylowgruppen. Archiv der Mathematik,
10:401–402, 1959.

RT n° 0327

http://www.pitt.edu/~gmc/algsyl.html
http://research.microsoft.com/~gonthier/4colnotations.pdf
http://www.cs.ru.nl/~freek/100/

12 Rideau & Théry

Module groups

Structure finGroup: Type:= Finite {
element :> finType;
unit : element ;
inv : element → element ;
mul : element → element → element ;
unitP : ∀x, mul unit x = x ;
invP : ∀x, mul (inv x) x = unit ;
mulP : ∀x1 x2 x3, mul x1 (mul x2 x3) = mul (mul x1 x2) x3

}.

Section GroupIdentities.

Variable G: finGroup.

Lemma mulgA: ∀x1 x2 x3: G, x1 × (x2 × x3) = x1 × x2 × x3.

Lemma mul1g: ∀x : G, 1 × x = x.

Lemma mulVg: ∀x : G, x−1 × x = 1.

Lemma mulg invl : ∀x : G, cancel (mulg x) (mulg x−1).

Lemma mulg injl : ∀x : G, injective (mulg x).

Lemma mulg1 : ∀x : G, x × 1 = x.

Lemma invg1 : 1−1 = 1.

Lemma mulgV : ∀x : G, x × x−1 = 1.

Lemma mulg invr : ∀x : G, monic (mulgr x) (mulgr x−1).

Lemma mulg injr : ∀x : G, injective (mulgr x).

Lemma invg inv : monic invg invg.

Lemma invg inj : injective invg.

Lemma invg mul : ∀x1 x2: G, (x2 × x1)
−1 = x1

−1 × x2
−1.

Lemma mulVg invl : ∀x : G, monic (mulg x−1) (mulg x).

Lemma mulVg invr : ∀x, monic (mulgr x−1) (mulgr x).

Theorem mulg s1: ∀a b:G, (b × a−1) × a = b.

Theorem mulg s2: ∀a b:G, (b × a) × a−1 = b.

End GroupIdentities.

Definition conjg (G: finGroup) (x y: G):= x−1 × y × x.

INRIA

Sylow in Coq 13

Section Conjugation.

Variable G: finGroup.

Lemma conjgE : ∀x y: G, xy = y−1 × x × y.

Lemma conjg1 : conjg 1 =1 id.

Lemma conj1g: ∀x : G, 1x = 1.

Lemma conjg mul : ∀x1 x2 y: G, (x1 × x2)
y = x1

y × x2
y.

Lemma conjg invg: ∀x y: G, (x−1)
y

= (x y)−1.

Lemma conjg conj : ∀x y1 y2: G, (xy1)y2 = xy1×y2 .

Lemma conjg inv : ∀y: G, monic (conjg y) (conjg y−1).

Lemma conjg invV : ∀y: G, monic (conjg y−1) (conjg y).

Lemma conjg inj : ∀y: G, injective (conjg y).

Definition conjg fp (y x : G):= xy =d x.

Definition commg (x y: G):= x × y = y × x.

Lemma conjg fpP : ∀x y: G, reflect (commg x y) (conjg fp y x).

Lemma conjg fp sym: ∀x y: G, conjg fp x y = conjg fp y x.

End Conjugation.

Section SubGroup.

Variables (G: finGroup) (H : set G).

Definition lcoset x : set G:= fun y ⇒ H (x−1 × y).
Definition rcoset x : set G:= fun y ⇒ H (y × x−1).

Definition subgrpb:= H 1 && subset H (fun x ⇒ subset H (rcoset x)).

Definition subgrp: Prop:= subgrpb.

Lemma subgrpP : reflect (H 1 ∧ ∀x y, H x → H y → rcoset x y) subgrpb.

Hypothesis Hh: subgrp.

Lemma subgrp1 : H 1.

Lemma subgrpV : ∀x, H x → H x−1.

Lemma subgrpM : ∀x y, H x → H y → H (x × y).

Lemma subgrpMl : ∀x y, H x → H (x × y) = H y.

Lemma subgrpMr : ∀x y, H x → H (y × x) = H y.

RT n° 0327

14 Rideau & Théry

Lemma subgrpVl : ∀x, H x−1 → H x.

Definition subFinGroup: finGroup.

End SubGroup.

Lemma subgrp of group: ∀G: finGroup, subgrp G.

Coercion subgrp of group: finGroup >-> subgrp.

Section LaGrange.

Variables (G: finGroup) (H : set G).
Hypothesis (Hh: subgrp H).

Lemma rcoset refl : ∀x, rcoset H x x.

Lemma rcoset sym: ∀x y, rcoset H x y = rcoset H y x.

Lemma rcoset trans : ∀x y, connect (rcoset H) x y = rcoset H x y.

Lemma rcoset csym: connect sym (rcoset H).

Lemma rcoset1 : rcoset H 1 =1 H.

Lemma card rcoset : ∀x, card (rcoset H x) = card H.

Definition rindex := n comp (rcoset H).

Theorem rLaGrange: ∀K : set G,
subgrp K → subset H K → card H × rindex K = card K.

Theorem sugrp divn: ∀K : set G,
subgrp K → subset H K → card H | card K.

Lemma lcoset refl : ∀x, lcoset H x x.

Lemma lcoset sym: ∀x y, lcoset H x y = lcoset H y x.

Lemma lcoset trans : ∀x y, connect (lcoset H) x y = lcoset H x y.

Lemma lcoset csym: connect sym (lcoset H).

Lemma lcoset1 : lcoset H 1 =1 H.

Lemma card lcoset : ∀x, card (lcoset H x) = card H.

Definition lindex := n comp (lcoset H).

Theorem lLaGrange: ∀K : set G,
subgrp K → subset H K → card H × lindex K = card K.

End LaGrange.

Section FinPart.

INRIA

Sylow in Coq 15

Variables (G: finGroup) (H : set G) (a: G).
Hypothesis Ha: H a.
Hypothesis Hstable: ∀x y, H x → H y → H (x × y).

Lemma heqah: (lcoset H a) =1 H.

Lemma heqxh: ∀x, H x → (lcoset H x) =1 H.

Lemma heqhx : ∀x, H x→ (rcoset H x) =1 H.

Lemma finstbl sbgrp1 : H 1.

Lemma finstbl mulV : ∀x, H x → H x−1.

Lemma finstbl sbgrp: subgrp H.

End FinPart.

Section Eq.

Variable G: finGroup.

Theorem eq subgroup: ∀a b: set G, a =1 b → subgrpb a = subgrpb b.

End Eq.

Section SubProd.
Variable G: finGroup.

Section SubProd subgrp.

Variables (H K : set G).
Hypothesis h subgroup: subgrp H.
Hypothesis k subgroup: subgrp K.

Lemma subprod sbgrp: prod H K =1 prod K H → subgrp (prod H K).

Lemma sbgrp subprod : subgrp (prod H K) → prod H K =1 prod K H.

End SubProd subgrp.

Variables (H K : set G).
Hypothesis h subgroup: subgrp H.
Hypothesis k subgroup: subgrp K.

Lemma sbgrphk sbgrpkh: subgrpb (prod H K) = subgrpb (prod K H).

End SubProd.

Module action

Section Action.

RT n° 0327

16 Rideau & Théry

Variable (G: finGroup) (H : set G).

Hypothesis sgrp h: subgrp H.
Variable s : finType.

Variable to: G → (s → s).
Hypothesis to bij : ∀x, H x → bijective (to x).
Hypothesis to morph: ∀(x y: G) z,

H x → H y → to (x × y) z = to x (to y z).

Theorem to 1 : ∀x, to 1 x = x.

Definition stabiliser a:= setI (fun x ⇒ ((to x a) =d a)) H.
Definition orbit a:= image (fun z ⇒ to z a) H.

Theorem orbit to: ∀a x, H x → orbit a (to x a).

Lemma orbit refl : ∀x, orbit x x.

Lemma orbit sym: ∀x y, orbit x y = orbit y x.

Lemma orbit trans : ∀x y, connect orbit x y = orbit x y.

Lemma orbit csym: connect sym orbit.

Definition S0 a:= subset H (stabiliser a).

Theorem S0P : ∀a, reflect (orbit a =1 set1 a) (S0 a).

Theorem stab 1 : ∀a, stabiliser a 1.

Theorem subgr stab: ∀a, subgrp (stabiliser a).

Theorem subset stab: ∀a, subset (stabiliser a) H.

Theorem orbit from: ∀a x (Hx : orbit a x),
(setI (roots (lcoset (stabiliser a))) H) (root (lcoset (iinv1 Hx)).

Theorem card orbit : ∀a, card (orbit a) = lindex (stabiliser a) H.

Theorem card orbit div : ∀a, card (orbit a) | card H.

Variable n p: nat.
Hypothesis prime p: prime p.
Hypothesis card h: card H = pn.

Theorem mpl : (card s) % p = (card S0) % p.

End Action.

INRIA

Sylow in Coq 17

Module cyclic

Section Phi.
Definition phi n:= if n is n1 + 1 then card (fun x ⇒ coprime n (val x)) else 0.

Theorem phi mult : ∀m n, coprime m n → phi (m × n) = phi m × phi n.

Theorem phi prime k : ∀p k, prime p → phi pk+1 = pk+1 - pk.

End Phi.

Section Cyclic.

Variable G: finGroup.

Fixpoint gexpn (a:G) (n: nat) {struct n}: G:=
if n is n1 + 1 then a × (gexpn a n1) else 1.

Theorem gexpn0 : ∀a, gexpn a 0 = 1.

Theorem gexpn1 : ∀a, gexpn a 1 = a.

Theorem gexp1n: ∀n, gexpn 1 n = 1.

Theorem gexpnS : ∀a n, gexpn a (n + 1)) = a × gexpn a n.

Theorem gexpn h: ∀n a H, subgrp H → H a → H (gexpn a n).

Theorem gexpn add : ∀a n m, gexpn a n × gexpn a m = gexpn a (n + m).

Theorem gexpn mul : ∀a n m, gexpn (gexpn a n) m = gexpn a (n × m).

Fixpoint seq fn (f : G → G) (n: nat) (a: G) (L: seq G) {struct n}: seq G:=
if n is n1 + 1 then

if negb (L a) then seq fn f n1 (f a) (Adds a L) else L else L.

Definition seq f f a:= seq fn f (card G) a (Seq0).

Definition cyclic a:= seq f (fun x ⇒ a × x) 1.

Theorem cyclic1 : ∀a, cyclic a 1.

Theorem cyclicP : ∀a b, reflect (∃ n, gexpn a n =d b) (cyclic a b).

Theorem cyclic h: ∀a H, subgrp H → H a → subset (cyclic a) H.

Theorem cyclic min: ∀a b,
cyclic a b → ∃ m, (m < card (cyclic a)) && (gexpn a m =d b).

Theorem cyclic in: ∀a m, cyclic a (gexpn a m).

Theorem subgr cyclic: ∀a, subgrp (cyclic a).

Theorem cyclic expn card : ∀a, gexpn a (card (cyclic a)) =d 1.

Theorem cyclic div card : ∀a n, card (cyclic a) | n) = (gexpn a n =d 1).

Theorem cyclic div g: ∀a, card (cyclic a) | card G.

RT n° 0327

18 Rideau & Théry

Module normal

Section Normal.

Variables (G: finGroup) (H K : set G).

Hypothesis sgrp h: subgrp H.
Hypothesis sgrp k : subgrp K.
Hypothesis subset hk : subset H K.

Definition conjsg x y:= H (yx).

Theorem conjsg1 : ∀x, conjsg x 1.

Theorem conjs1g: ∀x, conjsg 1 x = H x.

Theorem conjsg inv : ∀x y, conjsg x y → conjsg x y−1.

Theorem conjsg conj : ∀x y z, conjsg (x × y) z = conjsg y (zx).

Theorem conjsg subgrp: ∀x, subgrp (conjsg x).

Theorem conjsg image: ∀y,
conjsg y =1 image (conjg y−1) H.

Theorem conjsg inv1 : ∀x,
(conjsg x) =1 H → (conjsg x−1) =1 H.

Theorem conjsg card : ∀x,
card (conjsg x) = card H.

Theorem conjsg subset : ∀x,
subset H (conjsg x) → (conjsg x) =1 H.

Theorem lcoset root : ∀x, lcoset H x (root (lcoset H) x).

Definition normalb:= subset K (fun x ⇒ subset H (conjsg H x)).

Definition normal : Prop:= normalb.

Hypothesis normal k : normal.

Theorem conjsg normal : ∀x, K x → conjsg x =1 H.

Definition rootSet := subFin (setI (roots (lcoset H)) K).

Theorem card rootSet : card rootSet = lindex H K.

Theorem unit root sub:
setI (roots (lcoset H)) K (root (lcoset H) 1).

Definition unit root : rootSet.

Definition mult root : rootSet → rootSet → rootSet.

INRIA

Sylow in Coq 19

Definition inv root : rootSet → rootSet.

Theorem unitP root : ∀x, mult root unit root x = x.

Theorem invP root : ∀x, mult root (inv root x) x = unit root.

Theorem mulP root : ∀x1 x2 x3,
mult root x1 (mult root x2 x3) = mult root (mult root x1 x2) x3.

Definition root group:= (Group.Finite unitP root invP root mulP root).

Theorem card root group: card root group = lindex H K.

End Normal.

Section NormalProp.

Variables (G: finGroup) (H K : set G).
Hypothesis sgrp h: subgrp H.
Hypothesis sgrp k : subgrp K.
Hypothesis subset hk : subset H K.
Hypothesis normal hk : normal H K.

Theorem normal subset : ∀L,
subgrp L → subset H L → subset L K → normal H L.

Definition RG:= (root group sgrp h sgrp k subset hk normal hk).

Theorem th quotient : ∀x, K x →
(setI (roots (lcoset H)) K (root (lcoset H) x)).

Definition quotient : G → RG.

Theorem quotient lcoset : ∀x, K x → lcoset H x (val (quotient x)).

Theorem quotient1 : ∀x, H x → quotient x = 1.

Theorem quotient morph: ∀x y,
K x → K y → quotient(x × y) = quotient(x) × quotient(y).

Theorem quotient image subgrp: ∀L,
subset H L → subset L K → subgrp L → subgrp (image quotient L).

Theorem quotient preimage subgrp: ∀L,
subgrp L → subgrp (setI (preimage quotient L) K).

Theorem quotient preimage subset h: ∀L,
subgrp L → subset H (setI (preimage quotient L) K).

Theorem quotient preimage subset k : ∀L, subset (setI (preimage quotient L) K) K.

Theorem quotient index : ∀L, subset H L → subset L K → subgrp L →
lindex H L = card (image quotient L).

RT n° 0327

20 Rideau & Théry

Theorem quotient image preimage: ∀L,
image quotient (setI (preimage quotient L) K) =1 L.

End NormalProp.

Section Normalizer.

Variables (G: finGroup) (H K : set G).

Hypothesis sgrp h: subgrp H.
Hypothesis sgrp k : subgrp K.
Hypothesis subset hk : subset H K.

Definition normaliser x :=
(subset K (fun z ⇒ (conjsg x z =d H z))) && K x.

Theorem normaliser grp: subgrp normaliser.

Theorem normaliser subset : subset normaliser K.

Theorem subset normaliser : subset H normaliser.

Theorem normaliser normal : normal H normaliser.

Theorem card normaliser :
card (root group sgrp h normaliser grp subset normaliser

normaliser normal) = lindex H normaliser.

End Normalizer.

Section Eq.

Variables G: finGroup.

Theorem eq conjsg: ∀a b x, a =1 b → conjsg a x =1 conjsg b x.

End Eq.

Section Root.

Variable (G: finGroup) (H : set G).

Hypothesis sgrp h: subgrp H.

Theorem root lcoset1 : H (root (lcoset H) 1).

Theorem root lcosetd : ∀a, H (a−1 × root (lcoset H) a).

End Root.

INRIA

Sylow in Coq 21

Module leftTranslation

Section LeftTrans.

Variable (G: finGroup) (H K L: set G).

Hypothesis sgrp k : subgrp K.
Hypothesis sgrp l : subgrp L.
Hypothesis sgrp h: subgrp H.
Hypothesis subset hk : subset H K.
Hypothesis subset lk : subset L K.

Definition ltrans : G → rootSet L K → rootSet L K.

Theorem ltrans bij : ∀x, H x → bijective (ltrans x).

Theorem ltrans morph: ∀x y z,
H x → H y → ltrans (x × y) z = ltrans x (ltrans y z).

End LeftTrans.

Module sylow

Section Cauchy.

Variable (G: finGroup) (H : set G).
Hypothesis sgrp h: subgrp H.

Variable p: nat.
Hypothesis prime p: prime p.
Hypothesis p divides h: p | card H.

Theorem cauchy: ∃ a,H a && card (cyclic a) =d p.

End Cauchy.

Section Sylow.

Variable (G: finGroup) (K : set G).
Hypothesis sgrp k : subgrp K.

Variable p: nat.
Hypothesis prime p: prime p.

Let n:= dlogn p (card K).

Hypothesis n pos : 0 < n.

Definition sylow L:= (subgrpb L) && (subset L K) && (card L =d pn).

RT n° 0327

22 Rideau & Théry

Theorem eq sylow : ∀a b, a =1 b → sylow a = sylow b.

Theorem sylow conjsg: ∀L1 x, K x → sylow L1 → sylow (conjsg L1 x).

Theorem sylow1 rec: ∀i Hi, 0 < i → i < n →

subgrp Hi → subset Hi K → card Hi = pi →
∃ H : set G,

subgrp H ∧ subset Hi H ∧ subset H K ∧ normal Hi H ∧ card H = pi+1.

Theorem sylow1 : ∀i, 0 < i → i ≤ n →

∃ H : set G, subgrp H ∧ subset H K ∧ card H = pi.

Theorem sylow1 cor : ∃ H : set G, sylow H.

Theorem sylow2 : ∀H L i,0 <i → i ≤ n →
subgrp H → subset H K → card H = pi → sylow L →
∃ x, (K x) && subset H (conjsg L x).

Theorem sylow2 cor : ∀L1 L2, sylow L1 → sylow L2 →
∃ x, (K x) ∧ (L2 =1 conjsg L1 x).

Definition syset p:= sylow (val p).

Theorem sylow3 div : card syset | card K.

End Sylow.

Section SylowAux.

Variable (G: finGroup) (H K L: set G).
Hypothesis sgrp k : subgrp K.
Hypothesis sgrp l : subgrp L.
Hypothesis sgrp h: subgrp H.
Hypothesis subset hl : subset H L.
Hypothesis subset lk : subset L K.

Variable p: nat.
Hypothesis prime p: prime p.
Let n:= dlogn p (card K).
Hypothesis n pos : 0 < n.

Theorem sylow subset : sylow K p H → sylow L p H.

End SylowAux.

Section Sylow3.

Variable (G: finGroup) (K : set G).
Hypothesis sgrp k : subgrp K.

Variable p: nat.

INRIA

Sylow in Coq 23

Hypothesis prime p: prime p.

Let n:= dlogn p (card K).

Hypothesis n pos : 0 < n.

Theorem sylow3 mod : card (syset K p) % p = 1.

End Sylow3.

RT n° 0327

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-0803

	Introduction
	From types with decidable equality to finite types
	Types with decidable equalitiy
	Sets
	Sequence
	Finite type

	From finite groups to Sylow's theorems
	Finite group, coset and subgroup
	Conjugate, normaliser and normal subgroub
	Group actions
	Cauchy's theorem
	Sylow's theorems

	Conclusion

