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Abstract

During the last few years, kernel methods
have been a popular area of research in ma-
chine learning, providing a number of ef-
ficient and popular algorithms like SVMs.
They have not been much investigated in
the field of continuous reinforcement learning
(RL) however, the main reason being the off-
line nature of kernel algorithms, whereas RL
needs to update estimates iteratively. The
most notable contribution yet has been that
of (Engel et al.,, 2005), who uses Gaus-
sian processes. Engel’s method is of the
same nature as Least-Squares TD, in that
it considers every observation from the start
of the learning session. It has been shown
that this can lead to convergence issues, con-
trary to TD which performs updates con-
ditioned on the last observations only. We
have taken a wide point of view on kernel
methods as methods of regression with non-
parametric basis-functions-networks, and in-
troduce a variation of TD that uses the
recently introduced Least-Angle Regression
Stepwise (LARS) method in place of the gra-
dient descent step. In this context, the LARS
is viewed and renamed as an equi-gradient de-
scent. This allows to approximate the value
function with a self-adaptative basis func-
tions network, instead of a fixed, parametric
one. Our algorithm combines the low com-
Preliminary work. Under review for the kernel machines
for reinforcement learning workshop, on behalf of the In-

ternational Conference on Machine Learning (ICML). Do
not distribute.

plexity and good convergence properties of
parametric TD()\) with the precision and ef-
ficient use of the data of kernel methods.

1. Introduction

We address the approximation of the value function for
temporal difference methods in reinforcement learning
problems. Various tilings methods have been investi-
gated — see (Sutton & Barto, 1998) for instance —, as
well as neural networks which have provided very nice
results both for discrete problems (Tesauro, 1995), and
for continuous problems (Coulom, 2002). In the same
time, there has been a frenzy around support vector
machines and, more generally, kernel machines, mostly
in the field of supervised learning (classification and
regression problems). These two threads eventually
mixed these last years with the works by (Ormoneit
& Sen, 2002; Lagoudakis & Parr, 2003; Ratitch B.,
2004; Engel et al., 2005). Using kernel methods for
reinforcement learning is not straightforward, though,
and several difficulties have to be dealt with:

e putting the kernel methods into the reinforcement
learning problem framework

e making the kernel methods able to work on-line

e making them able to do it efficiently, at low com-
putational costs.

In this paper, we propose to use the Least-Angle Re-
gression Stepwise (LARS) algorithm which has been
originally proposed in a regression context, without
kernelization (Efron et al., 2004). The LARS has then
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been kernelized, and it has demonstrated very good
performance for feature selection (Guigue, 2005). We
formulate the LARS in a slightly more general way,
renaming it an equi-gradient descent, and use it to
learn the value function of a continuous Markov deci-
sion problem, within the reinforcement learning frame-
work. Equi-gradient descent has attractive properties
to this end, and early experimental results show its
effictiveness and efficiency.

This paper is organized as follows: Section 2 defines
the notation used throughout the paper; Section 3
presents the equi-gradient descent method for regres-
sion. Then, Section 4 presents the original point of this
paper, that is, the way we use it in the TD()\) algo-
rithm; Section 5 then provides an experimental assess-
ment of the LATD(\). The paper closes on a summary
and discussion of future work on this algorithm.

2. TD Learning

Let us consider the following family of continuous
Markov decision processes (Sutton & Barto, 1998):

e A dynamical system is observed at discrete fixed
time intervals t € {0,1,...}

e It is described by its state x; which belongs to a
continuous space X.

e At each time ¢, an action wu; chosen in a finite set
U is applied to the system, which state becomes
2t11 = ut(z). The dynamics of each action is
deterministic and known.

e A reward r; is associated to each transition
u
Tt—1 — Tt

A policy 7 associates to each state a chosen action
m(x) € U, and the problem of maximizing a discounted
sum of rewards to come is considered: finding a policy
that maximizes >_,_, v'r; for any start state zo, with
v €]0;1]. The reward function is also deterministic
and known.

The value function V™ of a policy 7 has the following
property, known as Bellman’s equation:

w(x)

if o —= o'

V7(2) =r(z,7(x)) + V" (") 1)

An optimal policy 7* is obtained greedily from its
value function V* :

7 (x) = argmax, o, r(z, u) +yV* (u(z)) (2)

(this is not true for non-optimal policies)

2.1. Optimistic policy iteration

Optimistic policy iteration (Bertsekas, 1996) consists
in refining estimates of 7* and V*, as follows:

initialize V R
the optimistic assumption that V' estimates V* leads
to define 7 greedily wrt. V, as in Eq. (2):

7(x) = argmax,  r(z, u) + 7V (u(z))

loop
apply 7 for a number of transitions
update V wrt. the observed errors in Eq. (1)
(the change in V induces a change in )
end loop

The errors in Eq. (1) are the temporal differences:
dt =Tt — ‘7(;’]5,571) + ’}/‘7(It)

Let us consider:

e one-episode iterations: an episode consists in ap-
plying 7 during n+1 time steps (n being set in ad-
vance or corresponding to a goal being reached),
from a random state zo to a final state z,,. Up-
dates of V' (and consequently 7) are done after
each episode.

e approximation of V' by a basis functions network
(BFN):

Viz)= Zﬂi¢i($)

where ¢;’s, which we will call features, are func-
tions X — R, and (;’s, which we will call weights,
are in R. Let us consider both parametric BFN
where the set of features {¢;} is set in advance,
and non-parametric BFN where this set might
evolve during learning.

Let us note
[ ] 16:(76“)1'
e given an episode {zg,...,7,},
—r=(r,...,r)"
- ¢, = (¢i($0)7 .. 7¢z(zn))T
(.., D)
—V=WV(x),...,V(zn))"
—d=(dy,...,d,)" =r — H®3
1 —x 0
with H = L=
0
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2.2. Continuous TD()\) and parametric BFN

The TD(\) algorithm (Sutton, 1988) considers that
the temporal difference obserxed at x; is not directly
related to the error made on V(x;). Instead, it states
that this error is gradually involved in all subsequent
temporal differences, and thus approximates the error
at z; by:

n

Vixy) — ‘A/(:I:t) ~ Z()q)tl*tdt/ ,

t'=t
V being the true unknown value function of the current
policy.

The estimated error vector on visited states is then:

—

er=V-V=V_-&3=Lr-H&)

1oy ()2
1 Ay
with L = 1
0

In the TD()) algorithm, the correction on V consists
in changing the weights 3 as follows:

B—B+ds
thus correcting the value function as:
VeV+ Pig
in order to reduce the error, ie. minimize the residual:
res = err — Pdg

It is worth noting that err is an approximation of the
direction of the error. It is not intended to be maxi-
mally reduced, but gives a good direction for a careful
step.

The value-gradient method performs a gradient de-
scent step on the squared residual 1| res||? :

_O3lres(da)]?
043
B Ores(6g)
= —« 905 res(0)
d(err — ®dg)
043

= ad'err

= -« (err — ®0)

2.3. Continuous TD()\) and non-parametric
BFN

In the non-parametric case, one wishes to reduce the
error not only by changing weights on “existing” fea-
tures, but also by adding new features, conditioned on
the observations. A simple example is the use of radial
Gaussian features of a given radius o:

Each ¢; is centered on a state x;. In the parametric
case, {z;} would be a predefined set of states, like the
vertices of a mesh (hyper-grid). In the non-parametric
case, all visited states are potential centers for a new
feature, and the most relevant ones should be picked
up. More precisely, the k-th learning step would be:

e after the (k-1)-th step, we have

Vici(z) = Z Bigi(x)

perform an episode with a ‘A/—greedy policy

estimate errors made by ‘7;@,1 on visited states

build a set {¢}} of candidate features related to
visited states

e define
V@)= > Biei(x)
+ iﬁm@@
+ iﬂ}a%—(x)

The goal is again to make the corrective term
> 08,0i(x) + 37, B¢ () correlated with err: in the
same direction but with a partial step.

Here, a gradient descent step is not a good solution
anymore, as one wants to use only a small and smart
subset of {¢;}. The method presented in the next
section adresses this problem, as it provides a stepwise
path from an error to its least-squares minimization.
Each step gets closer to the minimization, using more
and more features, in an optimal way.

3. Equi-gradient descent

In this section, the general regression problem is con-
sidered, independently of the RL framework.
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INTRODUCTION

For regression problems, kernel methods aim to solve

the following problem: given a sample {y1,...,yn} €
R™ of an unknown function f at points {x1,...,2,} €
X" and a kernel function £ : X?> — R find an

o~

estimate f(z) = Y., Bik(z;,x) such that § =
{F(z1),..., f(z1)} is “close t0” {y1,...,yn} and the
number of nonzero (; is kept small, which prevents
from over-fitting the data and gives a good complexity

and an expressive solution.

Kernel-based regression methods, generally use a sym-
metric positive-definite kernel (e.g., SVMs), which in-
duces a reproducing kernel Hilert space (RKHS), de-
noted H. The kernel reproducing property transforms
the nonlinear regression problem in & into a linear
regression problem in H. Different from SVMs, Gaus-
sian processes regression uses k in a way that allows
to make a bayesian compromise between data-fitting
and closeness to an awaited covariance.

The Least-angle regression stepwise (LARS) method,
introduced by (Efron et al., 2004) as a variable se-
lection method, and adapted by (Guigue, 2005) to
kernel feature selection, uses several kernels on which
no positive-definitiveness assumption is required. It
can actually be seen as a method to find an estimate
f(x) =3, Bidi(x), where ¢;’s are numerous arbitrary
functions. We present it here from a slightly different
point of view than (Efron et al., 2004; Guigue, 2005),
and relax a normalization condition. This leads us to
rename it an equi-gradient descent.

PRINCIPLE

The compromise between data-fitting and the number
of nonzero weights can be solved by solving the follow-
ing problem:

minimize ||y —®/3||? under the constraint Z 1B;] < p

2

The method exactly solves it for all possible values of
w: at each step a solution is provided for a certain p,
which increases monotonously from 0. Each step cor-
responds to the activation of a new candidate feature
(its weight becomes nonzero), or a de-activation of an
active feature (its weight is zero).

Let A = {a1,as,...} € 2" be the active set (that is,
the indices of the features ¢, , ¢q,, ... With nonzero
weight), and

¢a2 (ml)
¢a2 ($2)

¢a1 (ml)
¢a1 ($2)

by =

The principle is to activate features one by one, using
the general ideas of basis pursuit. Precisely, at each
step, a new feature is added, and then weights of all
active features are modified to optimally reduce the
current residual.

At each step, a new residual wrt. the original target
is reached, and the next step purpose is, after hav-
ing included a new feature, to determine the weights
corrections dg to obtain a new optimally decreasing
residual.

To help understand the algorithm, one can view it in
a geometrical way (see Fig. 1), in a basis where each

axis concerns a learning data z;, ¥y = (y1,...,%n)" is
the target, and
Y1 — foey (1)
res() = :
Yn — [y (Tn)
is the residual after the k-th step.
y
»
res(l) - -
7/
/
7/
o«
- Tes(g)
—~ I‘ES(k) )
y2 = Sy (@2) | e
o=

Y1 — J?(k) (iﬂl)

Figure 1. The residual path: we start with a target y =
(y1,y2). At each step, a correction of f is made, hence
anewy = (f(xl), f(:cz)) which takes the residual y — y
closer to its minimum

PROFITABILITY

The criterion for including a feature is its profitability:
the gradient of the squared residual minimization wrt.
a weight correction on this feature:

_ aHI‘eS(k) — ¢i65i||2
9op;

= @iTres(k)

which represents the correlation of the feature ¢; to
the current residual, and geometrically a dot-product
(see fig. 2).
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(1)2 . I‘eS(k)

d)l (:L'Q) ........................... ' ',',.

¢1(.301)

Figure 2. Gradient as a dot-product. ¢ is more correlated
to res(yy than ¢z, as &1 = (qﬁl(acl)7 qﬁl(xg)) is closer to the
residual than ®,: it makes a least-angle, and their norms
are equal, which is expressed by a higher dot-product.

OPTIMAL DIRECTION

Let us consider the (k+1)-th step. We have a given set
of active features. Let us suppose the problem should
be solved with these features only. Their weights
should be corrected (by 3; < (3; + dg,) in order to
minimize:
[res(ry — ®adgp]

To fully minimize this expression, its derivative must
be zeroed:

O|resr) — L adpl® _

955 0

= @AT(res(k) — (I’A(sg) =0
= 5[3 = (@AT@A)ilq)ATI‘eS(k)

Let us note this optimal correction of the active
weights:

w = 6ﬁleast75quares —

((}AT@A)_lq)ATI’eS(k)

~

and its application (correction of f):

u=>w

An equi-gradient step goes in that direction, without
necessarily reaching the full least-squares solution:

0 = aw, with a€|0,1]
thus reducing the residual by:

res(k_H) — Tesy) —au

—ul = —d, y

res;

b,y

Figure 3. Least-squares minimization: for example if only
¢1 is active (first step), the least-squares optimal weight
to assign to it is such that (®; - res(;)) = 0 (they are
orthogonal).

The choice for « will be such that after the correspond-
ing change of weights, an inactive feature “deserves” to
be included in the active set.

EQUI-CORRELATION

The key of the algorithm is that all active features will
remain equi-correlated to the current residual: they all
make the same gradient on it, and this correlation is
superior to the one of any inactive feature. It uses the
following property:

IF the active features are equi-correlated to the resid-
ual after the k-th step:

|<I>;rlres(k)| = |<I)Izres(k)| =...

ie. 3c € RT such that <I>ATres(k) =csgn
where sgn is the vector of signs of the correlations

THEN when going in the least-squares direction, they
will remain equi-correlated, because:

I'eS(k+1) = I'eS(k) — @Aég
= resg) — a<I>A(<I>AT!I>A)*1<I>ATres(k)
= resg) — a<I>A(<I>AT<I>A)*10 sgn

= res() —ac ‘I>A(<I’AT<I’A)_1$gn
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thus

<I>ATres(k)
T T -1
—QcC ’~I>A ’~I>A(’~I>A ’~I>A) sgn

= csgn—acsgn

<I>ATres(k+1) =

= (1—a)csgn

The invariant of the algorithm is that inactive features
are always less correlated to the residual than active
ones. So the value of o will be chosen as the smallest
such that an inactive feature gets as much correlated
to the new residual as the active ones: Metaphorically,
the weights are gradually corrected in the least-squares
direction until this happens (see Fig. 4).

[O2) res(i) - y

B,

Figure 4. o™ is such that inactive feature ¢2 gets as much
correlated to the new residual as active feature ¢;.

o = arg min (3i ¢ A, |®]res;t1(a)| = (1 — a)c)
ael0,1]

We have:
[®Tresys1(a) = (1 - a)e

& |<I>;r(res(k) —au)| =(1-a)c
®lres) —a®lu=(1-a)c
& | or

—®lres) + a®lu=(1-a)c

cfézres(k)

cf<I>ZTu
& or
o c+<I>ITreS(k)
c+®Tu
And so
T T
v . 4 c—Piresy) c+ D resy, o
o = min™{ } o, inactive

c—®lu 7 c+®lu

By min™", we mean the smallest positive element of the
set:
min™(S) = min{z € S,z > 0}

Indeed, a* must be positive to go in the good direc-
tion. The feature ¢; corresponding to the chosen o*
will be included in the active set A in the next step.
The sign of its correlation depends on wether the
first or the second expression was the smallest positive.

DE-ACTIVATION

Though it may not appear clearly in the algorithm,
the weight on an active feature may first increase, and
then decrease, as the least-squares direction changes
from step to step. This illustrates the optimal use of
weights: in the first step, the algorithm is greedy wrt.
derr/0;, which is the best solution if the threshold
w1 is very small; in the following, the current-residual
greediness leads to discard these greedy choices in favor
of more weight-costly but more error-fitting choices.

Another invariant is that the weight of every active fea-
tures should keep its sign, which is the same as its cor-
relation with the residual when it was included. This
relates to the fact that sgn(5;) = 0|5;|/06;. So when
it changes during a step, it should be removed from
the active set after having taken a step back so as to
strictly zero it, by letting:
r_ P

- (IDju
Instead of noting afterwards that a change of sign oc-
cured and making this step back, a* should be chosen
as the smallest that wether activates a new feature or
zeroes the weight of an active feature.

(0%

After its de-activation, a feature should remain avail-
able for a possible re-activation.

NORMALIZATION

A normalization of the variables/features is imposed
in (Efron et al., 2004; Guigue, 2005). It consists in
asserting that

@12 > [[P2fl2 ~ ...

with [ @illa = [ ¢i(s)?
t

It is important in the idea of selection where one looks
for a ranking of the variables/features, but not crucial
in the idea of gradient descent.

The criterion of profitability (correlation) defined
above, being a gradient wrt. the weights selects fea-
tures that both “go” in a good direction (geometrically
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.res(l) P,

Figure 5. The first step selects ¢1, because the norm of
®; is greater and putting a small weight on it will be
more benefitable than on ¢2. The second and last step

o~

(— res(o) = 0) will take (1 to 0, and give f(z) = Bagp2(x)
as it should.

form a small angle with the residual) and have a large
norm. The reason is that the norms of the weights are
penalized, and a feature with a larger norm requires
less weight to produce an effect of the same amount.
Given two features, if one has a larger angle and a
larger norm, it may be selected first. However, the
other will eventually be activated and the first degen-
erated, as illustrated in Fig. 5. But to fairly compare
the candidates, they should have a similar norm.

Given candidate features ¢;, this can be achieved by
scaling them (¢; «— a;¢;, a; € R) so that their
norms on the training set ||®;| are equal. One can
also scale them wrt. their norms on the whole dataset
([ ¢i(x)?dx). This is more robust in certain cases,
as it allows to compare features that are similar on
the data space but may have different ranges of effect
on a local training set: the ones whose local effect is
lower are penalized, which is fair, as using them would
unconsiderably change the estimate outside the local
training set.

BANDWITHS

One of the tendancy and advantage of equi-gradient
descent is to first select features with a large band-
width, ie. which reduce the residual on more learning
points. This tendancy depends on the normalization.
If the norms are equal, large bandwidth features have
a notable effect on more points, but the effect on each
of these points is lower than that of a small bandwidth
feature. Nonetheless, the largest one tends to be se-
lected first. If largest bandwidths come with largest
norms, they will be used longer (further) before using

more local and precise features.

STOPPING

The algorithm converges to the least-squares solution,
but its interest is the intermediate solutions, that get
closer to the target while using more and more of the
candidate features, in an optimal way. The question
of when it should stop is left open since it depends on
the problem and various considerations on the dataset,
training set, estimated function, complexity of the so-
lution... It is typically a matter of bias/variance trade-
off. It can rely on the number of active features, the
value of their correlation to the residual, the squared
norm of the residual compared to the original target,

ALGORITHM

The previous subsections have explained the principle
and properties of the equi-gradient descent. This al-
gorithm 4s the Least-Angle Regression Stepwise, but
generalized to features - and not only variables or ker-
nels, and in which the normalization condition is re-
laxed. Thus the term least-angle is no longer justified:
the highest gradient corresponds to a least angle only
if all norms are equal.

To summarize, the algorithm consists in reducing the
error (the residual gradually goes to its minimum)
along a regularization path. Along that path, it only
alters those weights that have the highest influence on
the current residual. This alteration is made in the
optimal direction considering only these weights.
Given a data space X
Input:
- a vector of training points = (z1,...,7,)" € A"
- a target vector y = (y1,...,Yn) € R"
- a set of candidate features {¢; : X — R};cq1, . m}
having equal or similar norm on X ([ ¢?)
Output at each step:
-A={a,...,q} C{1,...,m}
and {8y, -, 0a}
such that ||y — 3" B4, ¢q, || optimally decreases at
each step as > |0;| increases

for i =1 to m do

¢i(x1)
(I)i «—
end for
res —y

i* < argmax [(®; - res)|
¢ (D - Tes)|
sgn «— sgn((®;- - res))
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A — {i*}

B < (0)

Py [0]
sgn «— (sgn)

repeat
w — (<I>AT<I’A)’10 sgn
u— Ppw
c—®lres
AT dlu
c+®lres
AT dlu
76(1]-

wj

a,iy) < (min*, argmin™
+5 0+ g

+

(a_,i_) « (min™", argmin™)

+

(Oéo, .]) — (mln ) argmin+ )a]‘ cA

*

a* = min(a4, a_, ap)

c—(1—-a*)e

B—B+aw

res «— res — a*u

if o = oy then

remove j-th element of A, ® 4, sgn, 3

else
if o = a4 then
1* — iy, sgn «— +1
else
F —1i_; sgn«— —1
end if
A— AU {i*}
@A «— (I’A (I)i*
sgn — sgn
sgn
g—| "
0
end if

until stop criterion(A4, 8, ¢, res,...)

Note: (®4"®4)"! can be computed recursively, using
block matrix inversion.

4. Equi-gradient TD()\)

The integration of the equi-gradient descent in contin-
uous TD()) has been explained in Section 2, but will
be made more precise here.

The goal is to approximate V' as a linear combination
of a few relevant features related to the visited states.
A natural example is to associate to each visited
state several Gaussian kernels of various bandwidth

centered on that state (more generally, radial features).

e At step k of the policy iteration, V' is approxi-
mated as a linear combination of previously se-

lected features:
V= Z Bidi

o A XA/—greedy episode is done.

e The error made by V on visited states is esti-
mated.

e A set of new features {¢}} is mapped from the
visited states.

e The error is considered as a target for a corrective

term
> bs0i+ > B

— This target should not be reached, for it is
approximate and over-estimated; it just gives
a good direction.

— The number of nonzero 3} should be small.

e This corrective term is determined by making
an equi-gradient descent. The stopping criterion,
given that a partial reduction of the error should
be made, can be its reduction by a given percent-
age (eg. ||[res||? = 0.8]lerr|?).

e nonzero dg,’s come as a modification of previous
weights (3;; nonzero ﬂg-’s add new features and

associated weights to V.

Two variations can be added to this general algorithm:
setting a preference on existing features ¢;, and the
possibility of removing them.

PREFERENCE ON EXISTING FEATURES

As explained previously, the norm of a feature on the
training set influences the equi-gradient descent: one
going in a slightly less good direction, but having a
higher norm than another might be selected first. This
is a good thing in the above algorithm, as an existing
feature centered on a state far from the trajectory of
the episode should not be used: it would take a high
weight and dangerously modify V' outside the trajec-
tory.

However, it would be benefitable to put a preference on
existing nearby features, as long as they provide a good
correction. This can be achieved by over-estimating
them:

The candidate features proposed to the equi-gradient
descent will be
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e new features {¢’} centered on the visited states.

e existing features scaled so their norm on the data
space are greater: {¢, = 7¢;}, with 7 > 1.

Thus, on existing features, the weights considered and
penalized by the equi-gradient descent (egd) are lower
than the ones eventually used:

B
Bidi = (—)(7¢i)

T

and the equi-gradient descent will tend to use these
features easily in the first steps. The weights (] com-
puted by the egd on scaled existing features ¢; = 7¢;

should then be scaled “back” by

Bi =710,

DE-ACTIVATION OF EXISTING FEATURES

When the weight on an existing feature is zeroed, it is
clearly of no use anymore. It should then be removed,
as well as new features can be activated and then re-
moved in the course of a single episode correction. This
can be achieved in a simple way: equi-gradient algo-
rithm, though stated with initial weights at zero, can
be generalized to arbitrary ones. In this case, the vec-
tor 3 of active weights is built with these initial values:
when activating an existing feature, instead of adding
a 0 element to it the initial value is used. Then the o
test considers the overall value of the weight.

5. Experimental results

Experiments were run on the inverted pendulum prob-
lem, as described in (Coulom, 2002). 100 independent
learning sessions of 300 episodes were run each time,
the episodes consisting in 40 transitions of 0.1s. The
evolution of the quality of the value function was esti-
mated by running 100 off-learning episodes and adding
received rewards. The same initial states were used for
each experiment. The results are presented in Fig.’s
6-10, and are detailed below.

INFLUENCE OF THE PREFERENCE PARAMETER T

We first used a Gaussian kernel of variance 0.15 for
each state, and compared choices for the preference pa-
rameter 7 (scale factor on existing features to promote
them to the egd). It has the expected influence on
the number of actives features: as the 7 increases, the
number of active features naturally decreases, which
is helpful to tune the computation time: in fact, the
algorithm is linear in the number of active features.

The convergence speed and quality are overall similar,
but it should be noted that the quality is slightly better
with preference 7 = 1.3, see Fig. 6.
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Figure 6. Influence of 7 on the number of active features
(3 thick lines), and on the cumulated reward (3 thin lines),
for three values of 7. We use a single Gaussian kernel of
variance 0.15.

MULTI KERNELS

We then used 3 Gaussian kernels of variances 0.15, 0.17
and 0.2. Convergence is a bit faster, and the number
of active features does not change, see Fig. 7.
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Figure 7. This plot compares the performance of the algo-
rithm using a single kernel function (in red), and using 3
kernel functions (in green). All the kernels are Gaussian;
they differ from their variance.

SYMMETRY

We then exploited the central symmetry of the prob-
lem (V(z) = V(—=x)) by using symmetric features:
Instead of ¢;(z) = k(z;, ), we set ¢;(z) = k(z;, ) +
k(x;, —z). This trick is not applicable in either TD(\)



Equi-gradient Temporal Difference Learning

with gradient descent nor GPTD, as it creates diver-
gences around 0. With Equi-gradient TD, some mo-
mentaneous divergences appear when using multi ker-
nels, but it is robust with a single kernel. The benefits
are a faster convergence and the use of less features,
as can be seen in Fig. 8.
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Figure 8. This plots exhibits the difference that is observed
when one uses the symmetry of the problem (in green), or
not (in red). The algorithm uses a single Gaussian kernel
function of variance 0.15.

COMPARISON WITH OTHER METHODS

We compared the results obtained by the following al-
gorithms:

e continuous TD()\) with gradient descent on a
parametric BFN: 15 x 15 grid of Gaussian bases.

e Gaussian Process TD, with a Gaussian kernel of
variance 0.15 and a limit of 200 bases.

e Equi-gradient TD(A) with the same single kernel
and use of symmetry.

GPTD shows a fast convergence but the asymptotic
quality is very variable. TD()) is robust, but the
convergence is slow and the asymptotic quality is not
optimal. Equi-gradient TD(\) shows both fast con-
vergence and robustness, and reaches better qualities.
See Fig. 9

COMPLEXITY

Considering the complexity of an episode-update:

e TD()) is linear in the number of features.

e GPTD is quadratic in the number of features.
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Figure 9. We plot the cumulated rewards of three different
algorithms along the episodes. We can see the very good
performance of the EGTD.

e Equi-gradient TD()) is linear in the number of
candidates and quadratic in the number of se-
lected features (which are a few).

When comparing convergences wrt. computation time,
the preference goes even more to Equi-gradient TD()),
as it starts with no features and keeps the number
small. See Fig. 10.
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Figure 10. We plot the cumulated rewards against the
amount of computational times for the three algorithms
compared in Fig. 9 (notice the time log-scale). We see that
the EGTD obtains its good performance while using the
less computation time.

CAR ON THE HILL

Experiments were also quickly run on the car on the
hill problem, but to this day only a few tests were
made, with no formal estimation of the quality. It
seems to show that equi-gradient TD converges faster
again, and is less sensible than TD to the choice of .
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6. Summary and future work

We formulated a variant of TD(\) in which the gra-
dient descent is replaced by what we called an equi-
gradient descent. The first takes an approximatively
good direction on all parameters, whereas the second
takes a succession of optimal directions on the most
correlated parameters, including more and more of
them on the way. This allows to use TD()) on a
non-parametric basis function network, where bases
are smartly selected in a large set of candidates, with
various centers, shapes and ranges of effect.

Good results in terms of quality, fast convergence, and
computation complexity have been obtained on the in-
verted pendulum problem. Further experiments will
be made on problems of higher dimension: acrobot,
swimmer (Coulom, 2002), octopuss arm (Engel, 2005),
etc. Future work will include

e going further in non-parametricity, by automating
the construction of the set of candidates and the
stopping criterion for the equi-gradient descent.

e exploring ways of altering existing features by a
gradient backpropagation, and possibly mix with
multi-layer perceptron.

e studying other schemes than episode-updates.
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