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support on-demand computing and interactivity. A large contributor to

responsiveness is the Quality of Service (QoS) for the job execution

time. Grid scheduling is involved at two levels in order to provide
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contributions of this paper are as follows. First, we present a
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responsiveness. Second, we define and demonstrate a virtualization
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organized as a federation of batch-scheduled clusters. Last, we

examine two user-level schedulers located between the general

scheduling layer and the application layer. These are the DIANE

(DIstributed ANalysis Environment) framework, a general-purpose

overlay system, and a specialized, embedded scheduler for gPTM3D, an
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Abstract. In the 70s, the transition from batch systems to interactive computing
fueled the widespread diffusion of advances in integrated circuit technology. Grids
are facing a similar challenge, namely the seamless integration of the grid power
into everyday use. One critical component for this integration is responsiveness, the
capacity to support on-demand computing and interactivity. A large contributor
to responsiveness is the Quality of Service (QoS) for the job execution time. Grid
scheduling is involved at two levels in order to provide QoS: the policy level and
the implementation level. The main contributions of this paper are as follows. First,
we present a detailed analysis of the performance of the EGEE grid with respect to
responsiveness. Second, we define and demonstrate a virtualization scheme, which
achieves QoS, schedulability analysis, and coexistence of QoS and best-effort poli-
cies, within a brokering-based system organized as a federation of batch-scheduled
clusters. Last, we examine two user-level schedulers located between the general
scheduling layer and the application layer. These are the DIANE (DIstributed ANal-
ysis Environment) framework, a general-purpose overlay system, and a specialized,
embedded scheduler for gPTM3D, an interactive medical image analysis application.

Keywords: Responsiveness, Interactive Grids, Meta-scheduler, User-level Schedul-
ing

1. Introduction

We define responsive grids as grid infrastructures that support on-
demand computing and interaction. In the 70s, the transition from
batch systems to interactive computing fueled the widespread diffusion
of advances in integrated circuit technology. Grids are facing the same
challenge. The exponential increases in network performance and stor-
age capacity[39], together with ambitious national and international
efforts, have already enabled the virtualization and pooling of pro-
cessors and storage in advanced and relatively stable systems such
as the EGEE grid. However, it is more and more evident that the

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.
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2 Grid Scheduling for Interactive Analysis

exploitation model for these grids is somehow lagging behind. At a time
where industry acknowledges interactivity as a critical requirement for
enlarging the scope of high performance computing [33, 41, 6], grids
cannot anymore be envisioned only as very large computing centers
providing batch-oriented access to complex scientific applications with
high job throughput as the primary performance metric.

In this paper, we address the needs of a much larger range of grid us-
age scenarios. Seamless integration of the grid power into everyday use
calls for unplanned and interactive access to grid resources. This paper
describes a set of scheduling methods providing the different classes
of Quality of Service (QoS) required by responsiveness. Compared to
many recent proposals in this area, our methods take as a prerequisite
that responsiveness should be achieved on top of the traditional grid
scheduling tools, which are batch-oriented and dominated by fair-share
policies at institutional time-scales. We show that these methods can
be implemented within EGEE, the largest production grid worldwide,
comprising more than 20000 CPUs, 200 sites and 20000 jobs per day
and requiring the strongest constraints on dependability.

1.1. Motivation

Because asking for grid and responsivness may seem at the oppo-
site sides of the computing practice, we detail here two use cases.
The first one is grid-enabling medical image analysis [9, 43, 21]. In
a clinical context, medical image analysis (segmentation, registration)
and exploitation (augmented reality for intervention planning or intra-
operative support) require full interaction because computer programs
are not yet competitive with the human visual system for mining these
structured and noisy data. Analyzing large images at a sufficient speed
to support smooth visualization requires not only substantial comput-
ing power, which can be provided by the grid, but also unplanned access
and sophisticated interaction protocols. The second use case is digital
libraries. Most of the resource consumption in digital libraries manage-
ment is related to bulk, off-line tasks such as indexing. When humans
query this massive amount of data, various actions are triggered such
as feature extraction in a query-by-example scheme, which must take
place before the actual search can be carried out, or content protection
(e.g. watermarking). User satisfaction requires nearly instantaneous
response.

In the first example, a close interaction takes place, an example of the
so-called computational steering. The second one exemplifies the case
of a visualization/decision loop. This is a very common scheme, where
users require only on-line progress monitoring of their results to decide
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Scheduling for Responsive Grids 3

about further actions, which is also frequent in numerical computing
and physics analysis. Finally, in the larger perspective of ubiquitous
computing and ambient intelligence, multi-modal interfaces that are
capable of natural and seamless interaction with and among individual
human users are mandatory. Responsiveness is a key component for
grid-enabling the methods and technologies that form the back-end
of these interfaces, such as pattern analysis, statistical modeling and
computational learning.

1.2. Responsiveness and scheduling

Responsiveness is one type of Quality of Service guarantee. Just as
video rendering or music playback on a personal computer requires that
the associated computing tasks complete early enough to maintain a
specified delivery rate, interactive grid applications require a specific
grid guarantee, namely a bound on the overall turnaround time of
the grid jobs contributing to the application. Because such jobs have
typically a short execution time and require completion by a deadline,
we call them Short Deadline Jobs (SDJ) in the remainder of this paper.

As a shared resource, a grid supports a broad spectrum of workloads
ranging from long-running batch workloads executed under best-effort
policy to workflows [26, 18] or parallel applications for which specific
scheduling strategies have been proposed. Examples of these strategies
include static [16] or dynamic [45] gang-scheduling using advance reser-
vation and middleware mechanisms favoring simultaneous allocation
such as the EGEE DAG job type [36]. In a real-world, production grid,
complex policies are designed and tuned over time by site managers
in order to, for example, balance user requirements and institutional
constraints. There are two major challenges for grid scheduling for
responsiveness.

The first challenge is thus to provide Grid Differentiated Services,
including QoS for SDJ, under the following constraints:

− delays incurred by non-interactive jobs have a fixed multiplicative
bound,

− resource utilization is not degraded (e.g. by idling processors), and

− the local policies governing resource sharing (Virtual Organiza-
tions, advance reservation) are not impacted.

The second challenge is overcoming grid middleware latencies. Sub-
mitting, scheduling and mapping of jobs on a grid take at least one
order of magnitude more time than the execution time for SDJ even
in absence of competition for resources. (For instance, with the most
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4 Grid Scheduling for Interactive Analysis

recent and tuned EGEE middleware, gLite 3.0, the middleware latency
remains on the order of minutes. Ongoing developments may lower
this penalty to a few seconds.) Moreover, fault-tolerance should be
ensured transparently. User-level scheduling is the most promising way
to address the difference of scale between short execution times and
large grid middleware latencies.

It is not possible in general to guarantee the availability of Grid
resources with user-level scheduling techniques, because jobs instru-
mented with user-level scheduling obey the same resource allocation
rules as regular jobs. Unless middleware provides mechanisms for re-
source reservation or pre-emption, user-level schedulers provide only
best-effort service. On the other side, experience proves that user-level
scheduling does improve the quality of service on the Grid by reducing
the job turnaround time (makespan), providing a sustained job output
rate, and optimizing the failure recovery.

Differentiated services and user-level scheduling are thus comple-
mentary tools. Because Quality of Service in the strong sense requires
access control, users may opt to exploit only the improvements provided
by user-level scheduling, accepting potentially large delays in exchange
of a complete freedom for their workload. For applications with strong
interactivity requirements, user-level scheduling must be combined with
guaranteed QoS in order to fully hide the different grid latencies.

1.3. Organization

This paper is organized as follows. Section 2.1 presents the schedul-
ing architecture of the EGEE grid and an experimental study of the
EGEE application profiles of execution time and overhead. Section 3
presents the Virtual Reservation scheme, which allows for QoS schedul-
ing together with a hierarchical grid scheduling architecture. Section 4
presents two examples of user-level scheduling. The first one exemplifies
a generic overlay system. The second one is an application-dedicated
environment, which exemplifies grid-enabled computational steering in
visualization. Section 5 discusses related work, and Section 6 presents
the conclusions.

2. A case for responsiveness
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Scheduling for Responsive Grids 5

2.1. EGEE Scheduling

EGEE combines globally-distributed computational and storage re-
sources into a single production infrastructure available to EGEE users.
Each participating site configures, runs, and maintains a batch sys-
tem containing its computational resources and makes those resources
available to the grid via a gatekeeper. The scheduling policy for each
site is defined by the site administrator. Common scheduling policies
use either FIFO (often with per-user or per-group limits) or fair-share
algorithms. Consequently the overall EGEE scheduling policy at the
resource level is both highly-distributed and highly-variable.

The gLite middleware deployed on the EGEE infrastructure inte-
grates the sites’ computing resources through the Workload Manage-
ment System (WMS) [3]. The WMS is a set of middleware-level services
responsible for the distribution and management of jobs. Job require-
ments are exposed to the various services of the WMS via the Job
Description Language (JDL) [36], derived from the Condor ClassAd
language [37].

The site computational resources present a common interface to the
WMS, the Computing Element (CE) service. The CE specification is
one of the core parts of the Glue information model [4], which is the
current basis for interoperability between EGEE and other grids. From
the middleware point of view, a CE has multiple functions: running
jobs, staging the files required by the job, providing information about
resource availability, and notifying the WMS of the job-related events.
In the framework of this paper, a CE can be simply considered as a
batch queue, subject to the above-mentioned policies.

The core of the WMS is the Workload Manager which accepts jobs
from users and dispatches them to computational resources based on
the requirements defined by the user in JDL language, the capabilities
of the resources, and the state of the resources. The WM is implemented
as a distributed set of resource brokers, with some tens of them cur-
rently installed; all the brokers get an approximatively consistent view
of the resource availability through the grid information system. Each
broker reaches a decision of which resource should be used by a match-
making process between submission requests and available resources.
The users can rank acceptable resources (in JDL language) by using
an arbitrary expression which uses state information published by the
resources. In practice however, most jobs use the default ranking, which
chooses the resource advertising the minimum estimated traversal time
(ETT) from the list of acceptable resources. The ETT is an estimate of
the time a job from a particular virtual organization will spend in the
queue on a site before starting to execute. Once a job is dispatched,
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6 Grid Scheduling for Interactive Analysis

Figure 1. The number of jobs run per month on the EGEE grid in 2005 broken
down by the execution time of the job.

the broker only reschedules a job if it failed; it does not reschedule jobs
based on the changing state of the resources.

The relevant quantities for measuring the responsiveness of the grid
for interactive tasks are the execution time t, the actual running time
of the job, the queueing time at a site q, and and the scheduling time
s (including submission and notification times). The makespan m =
s + q + t is the total time from submission to notification that the
job has completed. For the study presented here, these quantities were
derived from information in the Logging and Bookkeeping service (LB).
This is a companion service to the resource broker which maintains the
state of all jobs managed by the resource broker.

2.2. EGEE usage

Fig. 1 shows the aggregated statistics of the execution times for the
whole of the EGEE grid in the year 2005. These statistics include only
successful jobs (which run to completion) and exclude the grid mon-
itoring jobs (technically the jobs of the dteam Virtual organization),
thus faithfully reflecting the actual grid use. The striking feature is the
very large fraction of short jobs which consume less than 5 minutes of
CPU time.

The next question is the efficiency of the EGEE grid at servicing
such jobs. Because the detailed LB data were not available for all jobs,
the analysis below is limited to a particular broker (grid09.lal.in2p3.fr).
These data cover one year (October 2004 to October 2005) and include
more than 50000 successful production jobs from 66 distinct users.
Fig. 2 shows the distribution of execution time from this trace. The
fraction of extremely short jobs is very large, partially due to the high
usage of this particular broker by the EGEE Biomed Virtual Organi-
zation. For more than 70% of jobs, the execution time is less than 10 s.

GCJv10.tex; 19/07/2006; 7:11; p.6



Scheduling for Responsive Grids 7

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

9.00E-01

1.00E-00

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06

C
um

ul
at

iv
e 

F
re

qu
en

cy

Execution time (seconds)

Figure 2. Integrated number of jobs versus the execution time of the job.

Figure 3. The overhead ratio as a function of execution time.

The second important point is the dispersion of t; the mean is 2 s, but
the standard deviation is of the order of 104 s.

Fig. 3 shows the dimensionless overhead ratio or = (m − t)/t as a
function of the execution time. Fig. 4 plots the distribution of the over-
head ratio for ultra short jobs, with execution time equal to 1 s. These
two figures show that for SDJ, the overhead is an order of magnitude

greater than the execution time.
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Figure 4. Integrated number of ultra-short jobs as a function of execution time.
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Figure 5. The queuing overhead ratio as a function of execution time.

Fig. 5 plots the queuing overhead ratio (q − t)/t. Thus, the queuing
component of the overhead is unacceptably high for SDJ. This behavior
was exhibited at an early stage of EGEE usage, where the pressure on
the resource was only starting to increase. Clearly, the EGEE infras-
tructure can make no claims for responsiveness using only the base
middleware services.

3. Grid differentiated services
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Scheduling for Responsive Grids 9

3.1. Analysis

Providing QoS either at the processor or network level usually relies on
some implementation of Generalized Processor Sharing (GPS). Let an
application i require a share φ(i) of the resource the service S(i, t, t′)
received by application i in the time interval [t, t′]. A GPS sched-
uler guarantees that for any application i and j (subject to admission
control), and any time t and t′ the following property holds

S(i, t, t′)

S(j, t, t′)
≥

φ(i)

φ(j)
.

Because GPS enforces max-min fair resource allocation on infinitesimal
time intervals, it can only be used as a reference for actual implemen-
tations, which enforce fairness at a discrete level. There is an immense
body of literature on the various scheduling algorithms targeting GPS.

For instance, since 1994, the predominant model for real-time execu-
tion is the so-called periodic task model, where long running tasks with
a QoS requirement, e.g. a multimedia application, receives a certain
fraction of resources during each period [5]. These scheduling algo-
rithms are largely inapplicable here because of a fundamental concept
required for schedulability analysis and schedule construction problem
in these frameworks. This concept is that the allocation of resources
may be broken along quanta of time. These quanta must have the
natural properties implied by their name: 1) be small with respect to
the task and 2) ideally identical in duration, or at least with small
variance. On a CPU, the ultimate time quantum is provided by clock
interrupts, while on a network, it might be provided by packets if they
are of equal size, or by bit-by-bit allocation.

The problem for grid scheduling is that such quanta do not exist.
Jobs are not partitionable. Except for checkpointable jobs, a job that
has started running cannot be suspended and restarted later. More-
over, as shown before, the execution times exhibit an extremely high
variance. These two features are in fact not specific to grids, but shared
with other high performance computing environments such as parallel
computing centers or large scale cluster resources. Such resources do
enforce weighted fair-share policies, but not at time-scales which aid
interactivity. The actual goal of these policies is related to accounting.
Users or institutions should receive some predefined share of the overall
resource in the long run.

GCJv10.tex; 19/07/2006; 7:11; p.9



10 Grid Scheduling for Interactive Analysis

3.2. Abstraction: Virtual Reservations

The previous discussion shows that some fraction of the resource should
be reserved to the exclusive use of SDJ. The site schedulers propose
easy implementation of advance reservation. The typical use of these
facilities in grid scheduling for QoS [17] proposes the user (or some
service on her behalf) apply for a reservation. Whatever might be the
level of sophistication for the anticipation and evaluation of the needs,
reservation-based policies suffer from two drawbacks. The first one is
that planning interactive work in advance is not consistent with the goal
of seamless integration with everyday computing practice, for instance
the use cases described in Section 1.1. The second drawback is that
reservation is inherently not work-conserving, meaning that processors
might idle while eligible jobs are queued. For instance, [44] reports
utilization ranging from 5% to 25% with hard reservation on supercom-
puter centers, and 80% to 90% with the experimental meta-scheduler
Ursala.

We have defined and implemented the concept of a Virtual Reser-

vation (VRes), which addresses both issues of advance reservation and
scheduling quanta. VRes allow controlled time-sharing, which transpar-
ently leverages the kernel multiplexing to jobs. At the site level (recall
that a site is a consistently managed entity), each of the p physical
processors is virtualized into k virtual processors, providing pk slots to
the site scheduler. A fraction of these slots can then be permanently
reserved for some class of applications.

Assuming that pkφ(i) is a non-negative integer n(i), n(i) slots must
be reserved for application i. In the example of Fig. 6, φ(1) = 1/4,
φ(2) = 1/3 and φ(3) = 5/12. The mapping of classes first to the virtual
processors, then onto the physical ones is obviously the key for full
processor utilization. This mapping must be controlled so that each
class maps to the full range of physical processors, as shown in Fig. 6.
Provided that the mapping is controlled, the reservation ensures both
application isolation with respect to computational bandwidth and full
processor utilization. When a virtual slot is unused, the computing
bandwidth is transparently returned to the other classes sharing the
same physical processor.

VRes permits the definition of time quanta and their exposure at
the grid level. All site schedulers are capable of enforcing various time
limitations, for example wall-clock time or CPU time limits. Thus the
dedicated slots for SDJ are time limited and provide time quanta that
can be used by higher-level grid schedulers.
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4 physical processors

processors
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3 3 3 3

2 2 2 2 12 virtual

Figure 6. Example of VRes

3.3. Hierarchical scheduling within EGEE

For simplicity, we consider only two classes of applications: batch and
SDJ applications. However, the extension to more classes is straight-
forward.

Application isolation

An implementation of VRes has been developed for the MAUI scheduler
and the gLite middleware. It can be downloaded from the EGEE SDJ
Working Group site http://egee-na4.ct.infn.it/wiki/index.php/ShortJobs.
The EGEE Job Description language (JDL) has been modified to in-
clude a Boolean attribute SDJ. Sites willing to accept SDJ jobs set
up a CE which permits running one job per SDJ slot. Jobs submitted
to this CE either are immediately scheduled or rejected. The broker is
notified in case of rejection and can either reschedule the job on another
resource or notify the user. These sites also configure their scheduler
with parameters controlling the computational bandwidth dedicated to
SDJ.

This work has exposed a problem with scheduling in the EGEE
middleware. The system does not permit a CE to provide access control
based on job type, which is required for application isolation in general
and for QoS in our case. As a temporary solution, a name-based dis-
patch has been set up in gLite 3.2. The SDJ-dedicated CEs are named

GCJv10.tex; 19/07/2006; 7:11; p.11
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Figure 7. Number of concurrent jobs on a single dual-processor node as a function
of time.

such that they have a trailing “sdj”. The job requirements modified
with an appropriate regular expression by the job management services
to select SDJ CEs for short deadline jobs and to prevent batch jobs
from being scheduled on SDJ CEs. It is worth mentioning that this
method can be adopted for early experiments of other classes, because
it requires only minor modifications of the gLite code. A more elegant
and general solution is being investigated. However, the Glue schema
must be modified and such modifications are a long process.

Tests that have been conducted at LAL to ensure the correct be-
haviour of the SDJ configuration. Fig. 7 shows a breakdown of the
occupation of one dual-processor node. On a background of batch jobs,
which never exceed 2 (one per processor), SDJ can run within the
same limit, and also concurrently with a third class (dteam) required
by EGEE operational monitoring. Hence there are five slots per dual-
processor node. Fig. 8 exemplifies control of the global computational
bandwidth at the site level dedicated to SDJ. In this configuration, a
maximum of ten concurrent SDJ were permitted.

The virtual reservation mechanism and the SDJ CE have been put in
production at LAL since May 2006. The SDJ slots are routinely used
in production by several biomedical applications and also for EGEE
demonstrations (one cannot wait in queues when the audience is waiting
for a live demonstration). This utilization run concurrently with batch
jobs with occupy a steady 100

Real-time Scheduling

In many cases, the requirement for SDJ is aperiodic. Scheduling an
individual SDJ by limited to access control, namely inquiring if a slot
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Figure 8. Number of concurrent jobs on the site as a function of time.

is available for it. However, arbitration could be performed inside the
computational bandwidth allocated to SDJ jobs. A typical example
would be a web portal [47, 10] where many users ask for a continuous
stream of SDJ. In order to differentiate the SDJ generator (here the web
portal) from actual grid jobs, we call it a dispatcher. This is a classical
case for real-time (either hard of soft) scheduling, but at the grid time-
scale. This situation can be modeled with the so-called period/slice
model used in soft real-time scheduling, where a fraction (slice) of each
period of time should be allocated to each user. Through requests to
the grid information system, the dispatcher can get information on the
available slots for SDJ and implement any of the earliest deadline first
algorithms proposed in the literature. We are currently implementing
a distributed scheduling service (DRes) on top of VRes, based on the
Deadline Fair Scheduling algorithm [13].

4. User-level scheduling

User-level (or application-level) scheduling is a virtualization layer on
the application side. Instead of being executed directly, the application
is executed via an overlay scheduling layer (user-level scheduler). The
overlay scheduling layer runs as a set of regular user jobs and therefore
it operates entirely inside user space.

User-level scheduling does not require modifications to the Grid
middleware and infrastructure nor the deployment of special services
in the Grid sites. Therefore it is much easier to setup and operate a
user-level scheduling system to exploit the full range of a Grid sites
which are available for a given user.
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14 Grid Scheduling for Interactive Analysis

The user-level scheduling approach has the following constraints:

− user jobs must be instrumented with the scheduling functionality,
and

− jobs with user-level scheduling must compete on the same basis
with all other jobs on the grid.

The second constraint imples that user-level scheduling cannot make
more guarantees of the resource availability that is provided by under-
lying middleware.

A user-level scheduler may be embedded into the application or ex-
ternal to it. A scheduler embedded into the application is developed and
optimized specifically for a given application, typically by re-factoring
and instrumenting the original application code. It allows fine tuning
and customizing the scheduling according to the specific execution pat-
terns of the application. Such a scheduler is intrusive at the application
source code level which means that the code reuse of the scheduler is
reduced and the development effort is high for each application. A
scheduler external to the application relies on the general properties
of the application such as a particular parallel decomposition pattern
(e.g. iterative decomposition, geometric decomposition or divide-and-
conquer). An application adapter connects the external scheduler to
the application at runtime. Depending on the decomposition pattern,
the application re-factoring at the source code level may or may not
be required. The disadvantage of external schedulers is that it may be
very hard to generalize execution patterns for irregular or speculative
parallelism. In this case, which occurs in various situations ranging from
medical image processing to portfolio optimization [48], a development
of a specialized embedded scheduler may be necessary.

In the next sections we examine two user-level schedulers: an exter-
nal scheduler for generic master-worker applications (DIANE) and an
embedded scheduler for medical image processing (gPTM3D).

4.1. DIANE: a generic, external scheduler

4.1.1. Overview

DIANE (DIstributed ANalysis Environment) is a R&D project devel-
oped in Information Technology Department at CERN, Geneva. It is
a generic user-level scheduler based on the extended task farm (mas-
ter/slave) processing [34]. The runtime behavior of the framework, such
as failure recovery or task dispatching, may be customized with a set of
hot-pluggable policy functions. This enables fine-tuning of the scheduler
according to the needs of particular application and provides support
for other parallel decomposition patterns (e.g. divide-and-conquer).
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4.1.2. Applications

DIANE provides a python-based framework and enables a rapid inte-
gration with existing applications. Both transparent and intrusive ap-
plication integrations have been demonstrated. Data analysis in Athena
framework for Atlas experiment [1], is an example of transparent appli-
cation integration; the application adapters in the form of python pack-
ages have been developed without modifying the original application
code. The examples of intrusive integrations include the particle simu-
lation in medical physics using Geant 4 toolkit [20]. The parallelization
of these applications has been based on the iterative decomposition and
master/worker processing model with fully independent tasks.

4.1.3. Execution model

In the DIANE execution model, a temporary virtual master/worker
overlay network is created for each user job and is destroyed when
the job terminates. This is compatible with the multi-user fair-share
scheduling on the grid and guarantees that the resources are not mo-
nopolized by a single user.

The job is split into a number of tasks which are executed by a
number of worker agents in the Grid. The worker agents run as regular
grid jobs. Each task is defined by a set of application-specific parame-
ters. The dispatching of tasks is the process of allocating the tasks to
workers by sending appropriate parameters to the worker agents. The
communication overhead is typically much smaller than in the systems
based on checkpointing and task migration. It allows scheduling with a
high rate of incoming and outgoing tasks. For example the DIANE Mas-
ter routinely achieves peaks of 110-120 Hz. This means that scheduling
overhead is negligable for N ∗120 worker agents if average task duration
is N seconds.

The scheduling algorithm is currently based on dynamic pull ap-
proach also known as self-load-balancing.

The following sections present three examples of improved QoS char-
acteristics with DIANE User Level Scheduling: the job turnaround
time, job completion rate, and error recovery.

4.1.4. Job turnaround time with high-granularity splitting

DIANE supports high-granularity job splitting, i.e. partitioning a job
into a large number of short or very short tasks. For example, the
radio-frequency compatibility analysis jobs for ITU RRC06 conference
[30], have been split into approximately 40 000 tasks performed simul-
taneously by around 200 worker agents at 6 EGEE Grid sites across
Europe.
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Figure 9. High-granularity splitting with exponential distribution of the task exe-
cution time. Most of 40000 tasks execute in less then 10 seconds, with individual
tasks executing in 1000 seconds.

Task duration was highly variable (Fig. 9) lasting from few seconds
(majority of the tasks) to 20 minutes (few individual tasks). The exact
distribution of the task duration was not known until the job was fully
executed. Consequently, it was not possible to a priori aggregate short
tasks and isolate long tasks. The efficiency of user-level scheduling was
high with the number of tasks executing in parallel very close to the
size of the worker pool (Fig. 10). As shown in previous sections (Figs. 3
and 4) the job turnaround time is orders of magnitude higher in a plain
grid environment.

4.1.5. Job completion rate

User-level scheduling provides a more sustained job completion rate.
Fig. 11 shows the job completion rate for a Geant 4 release validation
application [32]. The job has been split in 207 tasks and average task
duration was around 400 seconds. In the Grid, the load on the Com-
puting Elements (queuing time) and the load on the Resource Broker
(efficiency of matchmaking) may change dynamically in short periods
of time resulting in a job completion curve which is less predictable (B1

and B3) or jobs being stuck in the Grid for a very long time and appear
as incomplete (B2). The user-level scheduler assures that, even if the
number of effectively available resources is low and varying, the job
output throughput is stable if splitting granularity is correctly chosen.
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Figure 10. Comparison of the number of concurrently processed tasks (the number
of busy workers) and the number of available workers (the worker pool size). The
difference represents the scheduling overhead, including the network communication
cost. Currently, the scheduler does not remove excessive workers from the pool,
hence the number of idle workers increases at 4000s due to few long-lasting tasks.

4.1.6. Error recovery

Efficient and accurate failure recovery is an important factor for Quality
of Service. Large distributed systems such as the grid are prone to
diverse configuration and system errors. A generic strategy of handling
errors does not exist and the specific strategies depend on the applica-
tion as well as the environment. An application-oriented scheduler such
as DIANE is capable of distinguishing application and system errors
and reacting appropriately via customizable error recovery methods.
Crashing worker agents are automatically taken out of the worker
pool. Transient connectivity problems in the WAN are detected; the
failed tasks are automatically re-dispatched to another worker agents.
The mechanism uses a direct, highly efficient communication links in
the virtual master/worker network and is much more efficient than a
standard metascheduling techniques implemented in the middleware
(JDL RetryCount parameter) which involve the full submission cycle.

A part of recent Avian Flu Drug Search [27] have been performed
using DIANE scheduler. A master agent spanning several weeks was
taking care of efficient error recovery so the system could be oper-
ated by a single person. Because of the long duration of the job, the
worker agents were often aborted because they exceeded the time limits
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Figure 11. Comparison of job completion rate between user-level scheduling based
on DIANE (A) and plain Grid scheduling(B). Geant 4 validation jobs were run
simultaneously in both scheduling modes. Equal number of available computing
resources (85 worker nodes) within EGEE Grid in each mode was guaranteed. The
figure shows three selected jobs with typical behaviour. This figure has been taken
from [32].

in the queues at the Computing Elements. The operator was adding
new worker agents to the system so that at least 200 were available
at any time. DIANE was able to dynamically reconfigure the virtual
master/worker network to accommodate the new worker agents. The
overall efficiency of DIANE user-level scheduling was 84%, compared
to 38.4% efficiency of pure grid scheduling.

4.2. gPTM3D

PTM3D [40] is a fully-featured DICOM image analyzer developed at
LIMSI. PTM3D transfers, archives and visualizes DICOM-encoded data.
Besides moving independently along the usual three axes, the user is
able to view the cross-section of the DICOM image along an arbitrary
plane and to move it. PTM3D provides computer-aided generation of
three-dimensional (3D) representations from CT, MRI, PET-scan, or
echography 3D data. A reconstructed volume (organ, tumor) is dis-
played inside the 3D view. The reconstruction also provides the volume
measurement required for therapeutic decisions. The system currently
runs on standard PC computers and it is used online in radiology
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centers. Clinical motivation for grid-enabled volume reconstruction is
described in [19].

The first step in grid-enabling PTM3D (gPTM3D) is to speedup
compute-intensive tasks such as the volume reconstruction of the whole
body used in percutaneous nephrolithotomy planning [35]. The volume
reconstruction algorithm includes a semi-automatic segmentation com-
ponent based on an active contours method where the user initiates
the segmentation, and can correct it at anytime. It also includes a
tessellation component which is the compute-intensive part of the al-
gorithm. The gPTM3D application requires fine-grained parallelism.
The parallel tasks are the reconstruction of one slice; in the examples
presented Fig. 12, the execution time of the majority of the tasks is in
the order of a few hundreds of milliseconds but with high variability.
When the geometry of the volume becomes complex, the reconstruction
of the critical slices can last for 20 seconds or more.

The architecture has two components: scheduler/worker agents at
the user-level and the Interaction Bridge (IB) as an external service.
The IB acts as a proxy between the PTM3D workstation, which is
not EGEE-enabled and the EGEE world. When opening an interactive
session, the PTM3D workstation connects to the IB. In turn, the IB
launches a scheduler and a set of workers on an EGEE site, through
fully standard requests to an EGEE User Interface. A stream is estab-
lished between the scheduler and the PTM3D front-end through the
IB. When the actual volume reconstruction is required, the scheduler
receives contours. The scheduler/worker agents follow a pull model with
each worker computing one slice of the reconstructed volume at a time,
and sending it back to the scheduler, which forwards them to IB from
where they finally reach the front-end.

The overall response time is compatible with user requirements (less
than 2 minutes), while the sequential time on a 3GHz PC with 2GB
of memory can reach 20 minutes and more than 30 minutes on less
powerful front-ends. So far, the only bottleneck is the rate at which
the front-end is able to generate contours. Fig. 12 presents the speedup
achieved on EGEE, with one scheduler and up to 14 workers in the
largest case. For small reconstructions, the grid is obviously not neces-
sary; we have included them to prove that there is no penalty (in fact
a small advantage) in this case. Thus there is no need to switch from a
local mode to a grid one in an interactive session. For the largest recon-
struction, the speedup is nearly optimal. Lowering the execution time to
this point has strictly no impact on the local interaction scheme, which
includes stopping, restarting and improving locally the segmentation.
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Figure 12. gPTM3D performance

5. Related work

Existing approaches to grid scheduling for QoS follow three distinct
paths: Virtual Machines (VM) encapsulation, statistical prediction,
and service level agreements. Virtual machines provide a powerful new
layer of abstraction in centralized computing environments in order to
ensure fault isolation. Distributed scheduling based on VM encapsu-
lation has been explored as a general tool in the PlanetLab project
[7]. The Virtuoso project has more specifically explored virtualiza-
tion for differentiated services [28, 29], and the Virtual Workspaces
[25] investigates the large-scale deployment of VM inside the Globus
middleware. Virtual machines provide complete freedom of scheduling
and even migrating an entire OS and associated computations which
considerably eases time-sharing between deadline-bound short jobs and
long running batch jobs. On the other hand, the virtual machines
strategy is extremely invasive. All of, or a significant fraction of, the
computations must be run inside virtual machines to provide scheduling
opportunities—something for which traditional batch users have little
incentive. Another issue is that VM interactivity follows the remote
desktop model. In this model, which has been often been adopted for
grid-enabling computational steering [42, 22, 24, 38], the user front-end
is a passive terminal. With Grid Differentiated Services and user-level
scheduling, we provide a much more modular environment that can
support any combination of local and remote computations.

Accurate statistical prediction of the workloads is possible in large
range of situations including shared clusters [14] and batch-scheduled
parallel machines [11]. In particular, [46] shows that statistical predic-
tion allows efficient support of interactive computations in unreserved
cluster environments. At the grid scale, in the current status where
time-sharing is possible only through control mechanisms such as VRes,
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predictive methods would apply for instance to the availability of SDJ
slots provided by VRes.

Service level agreements (SLAs) are the standard to represent the
agreed constraints between service consumers and service providers on
a grid [2]. SLAs by themselves do not provide scheduling solutions,
but allow expressing flexible requirements and incorporating multi-
criteria approaches. SLAs could be applied to differentiated services
in our context. For instance proposing a choice between a quick and
reliable turnaround time, with strong completion constraints, and a
more unreliable turnaround time without constraints. SLAs also offer
the perspective of a general framework for renegotiation of resources
[31] by running jobs. In our context this could be used to switch from
the first mode to the second one, for instance when a SDJ approaches
the end of its allocated time and must be prorogated.

User-level scheduling has been proposed in many other contexts,
and a case for it has been made in the AppLeS [12, 8] project. In a
production grid framework, the DIRAC [49] project has proposed a
permanent grid overlay where scheduling agents pull work from a cen-
tral dispatching component. Our work differs from DIRAC on a major
point: both for DIANE and gPTM3D, the scheduling and execution
agents are launched just as any EGEE job, and are thus subject to all
regulations related to sharing. For instance, if these agents are SDJ,
thus will be aborted if they exceed the limits of this type of jobs.

6. Conclusion

We have presented complementary strategies to address the QoS re-
quirements of a responsive grid: Grid Differentiated Services and user-
level schedulers. Grid Differentiated Services provide a general frame-
work for the isolation of classes of applications and the realization
at the grid level of the concepts required for hard or soft real-time
scheduling. User-level schedulers cope with high latencies associated
with grid middleware. Equally important is a clean separation be-
tween two optimization problems: at the grid level, the optimization
is related to fair-share and load balancing, while at the user-level, the
optimization is for a specific application workload. Depending on the
application requirements, Grid Differentiated Services and user-level
schedulers can be used separately or combined. In the example of
gPTM3D, combining Grid Differentiated Services and an embedded
user-level scheduler provides a fully transparent coupling of the grid
resources with an augmented reality desktop software. The scope of
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applications deployed on top of the DIANE generic scheduler exemplify
the impact of user-level scheduling for a number of QoS characteristics.

Both strategies have been deployed on the EGEE grid, as autonomous
site decisions (for the Grid Differentiated Services) or as regular user
jobs (for the user-level schedulers). They are fully compatible with
gLite, the existing EGEE middleware. Their architecture and to a
large extent their implementation depend only on generic grid concepts.
We are convinced that this non-intrusiveness is a key to a progressive
convergence of QoS and grid technology.
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