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Mehanial Theorem Proving in Tarski'sGeometry.Julien NarbouxÉquipe LogiCal, LIXÉole Polytehnique, 91128 Palaiseau Cedex, FraneJulien.Narboux�inria.fr,http://www.lix.polytehnique.fr/Labo/Julien.Narboux/Abstrat. This paper desribes the mehanization of the proofs of the�rst height hapters of Shwabäuser, Szmielew and Tarski's book: Meta-mathematishe Methoden in der Geometrie. The goal of this developmentis to provide foundations for other formalizations of geometry and imple-mentations of deision proedures. We ompare the mehanized proofswith the informal proofs. We also ompare this piee of formalizationwith the previous work done about Hilbert's Grundlagen der Geome-trie. We analyze the di�erenes between the two axiom systems from theformalization point of view.1 IntrodutionEulid is onsidered as the pioneer of the axiomati method, in the Elements,starting from a small number of self-evident truths, alled postulates, or ommonnotions, he derives by purely logial rules most of the geometrial fats that weredisovered in the two or three enturies before him. But upon a loser readingof Eulid's Elements, we �nd that he does not adhere as stritly as he should tothe axiomati method. Indeed, at some steps in ertain proofs he uses a methodof �superposition of triangles� and this kind of justi�ations an not be derivedfrom his set of postulates.In 1899, in der Grundlagen der Geometrie, Hilbert proposed a new axiomsystem to �ll the gaps in Eulid's system.Reently, the task onsisting in mehanizing Hilbert's Grundlagen der Ge-ometrie has been partially ahieved. A �rst formalization using the Coq proofassistant [Coq04℄ was proposed by Christophe Dehlinger, Jean-François Dufourdand Pasal Shrek [DDS00℄. This �rst approah was realized in an intuitionistsetting, and onluded that the deidability of point equality and ollinearityis neessary to perform Hilbert's proofs. Another formalization using the Is-abelle/Isar proof assistant [Pau℄ was performed by Jaques Fleuriot and LauraMeikle [MF03℄. These formalizations have onluded that Hilbert proofs are infat not fully formal1, in partiular degenerated ases are often impliit in the1 Note that in the di�erent editions of die Grundlagen der Geometrie the axioms werehanged, but the proofs were note always hanged aordingly.



2presentation of Hilbert. The proofs an be made more rigorous by mahine as-sistane.In the early 60s, Wanda Szmielew and Alfred Tarski started the projet ofa treaty about the foundations of geometry based on another axiom system forgeometry designed by Tarski in the 20s2. A systemati development of eulideangeometry was supposed to onstitute the �rst part but the early death of WandaSzmielew put an end to this projet. Finally, Wolfram Shwabhäuser ontinuedthe projet of Wanda Szmielew and Alfred Tarski. He published the treaty in1983 in German: Metamathematishe Methoden in der Geometrie [SST83℄. In[Qua89℄, Art Quaife uses a general purpose theorem prover to automate the proofof some lemmas in Tarki's geometry. In this paper we desribe our formalizationof the �rst eight hapters of the book of Wolfram Shwabhäuser,Wanda Szmielewand Alfred Tarski in the Coq proof assistant.We will �rst desribe the di�erent axioms of Tarski's geometry and give anhistory of the di�erent versions of this axiom system. Then we present our for-malization of the axiom system and the mehanization of one example theorem.Finally we ompare our formalization with existing ones and ompare Tarski'saxiomati system with Hilbert's system from the mehanization point of view.2 MotivationsWe aim at two appliations: the �rst one is the use of a proof assistant in theeduation to teah geometry [Nar05℄, the seond one is the proof of programs inthe �eld omputational geometry.These two themes have already been addressed by the ommunity. FrédériqueGuilhot has realized a large Coq development about eulidean geometry as ittaught in frenh highshool [Gui05℄. Conerning the proof of programs in the�eld of omputational geometry we an ite the formalization of onvex hullsalgorithms by David Pihardie and Yves Bertot in Coq [PB01℄ and by LauraMeikle and Jaques Fleuriot in Isabelle [MF05℄. In [Nar04℄, we have presentedthe formalization and implementation in the Coq proof assistant of the areadeision proedure of Chou, Gao and Zhang [CGZ94℄.Formalizing geometry in a proof assistant has not only the advantage ofproviding a very high level of on�dene in the proof generated, it also permitsto ombine proofs about geometry with other kind of proofs suh as the proofof the orretness of a program for instane. The goal whih onsist in usingthe same formal development about geometry for di�erent purposes an only beahieved if we use the same axiomati system. This is not the ase for the timebeing.The goal of our mehanization is to do a �rst step in this diretion. We aimat providing very lear foundations for other formalizations of geometry andimplementations of deision proedures.2 These historial piees of information are taken from the introdution of the publi-ation by Givant in 1999 [TG99℄ of a letter from Tarski to Shwabhäuser (1978).



3Compared to Frédérique Guilhot formalization [Gui05℄, our developmentshould be onsidered low level. Our formalization has the advantage of beingbased on the axiom system of Tarski whih is of an extreme simpliity: twoprediates and eleven axioms. But this simpliity has a prie, our formalizationis not adapted to the ontext of eduation. Indeed, some intuitively simple prop-erties are hard to prove in this ontext. For instane, the proof of the existeneof the midpoint of segment is obtained only at the end of the eighth hapterafter about 150 lemmas and 4000 lines of proof. The small number of axiomsimpose a sheduling of the lemmas whih is not always intuitive (some simpleproperties an only be proved late in the development).3 Tarski's axiom systemAlfred Tarski worked on the axiomatization and meta-mathematis of eulideangeometry from 1926 until his death in 1983. Several axiom systems were produedby Tarski and his students. In this setion, we �rst give an informal desriptionof the propositions whih appeared in the di�erent versions of Tarski's axiomsystem, then we provide an history of these versions and �nally we present theversion we have formalized.The axioms are based on �rst order logi and two prediates: betweenessand equidistane (or ongruene). The ternary betweeness prediate β AB Cinformally states that B lies on the line AC between A and C. The quaternaryequidistane prediate AB ≡ CD informally means that the distane from A to
B is equal to the distane from C to D. In Tarski's geometry, only a set of pointsis assumed. In partiular, lines are de�ned by two distint points3.3.1 AxiomsWe reprodue here the list of propositions whih appear in the di�erent versionsof Tarski's axiom system. We adopt the same numbering as in [TG99℄. Freevariables are onsidered to be impliitly quanti�ed universally.
1 Re�exivity for equidistane

AB ≡ BA

2 Pseudo-transitivity for equidistane
AB ≡ PQ ∧ AB ≡ RS ⇒ PQ ≡ RS

3 Identity for equidistane
AB ≡ CC ⇒ A = B3 In Hilbert's axiom system lines and planes are not de�ned but assumed.
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4 Segment onstrution

∃X, β Q AX ∧ AX ≡ BCThe segment onstrution axiom states that one an build a point on a rayat a given distane.
bQ bAbB bC

bXFig. 1. Segment onstrution
5 Five segments

A 6= B ∧ β AB C ∧ β A′ B′ C′∧

⇒ CD ≡ C′D′

AB ≡ A′B′ ∧ BC ≡ B′C′ ∧ AD ≡ A′D′ ∧ BD ≡ B′D′

51 Five segments (variant)
A 6= B ∧ B 6= C ∧ β AB C ∧ β A′ B′ C′∧

⇒ CD ≡ C′D′

AB ≡ A′B′ ∧ BC ≡ B′C′ ∧ AD ≡ A′D′ ∧ BD ≡ B′D′This seond version di�ers from the �rst one only by the ondition B 6= C.
6 Identity for betweeness

β AB A ⇒ A = BThe original Pash axiom states that if a line intersets one side of a triangleand misses the three vertexes, then it must interset one of the other two sides.
7 Pash (inner form)

β AP C ∧ β B Q C ⇒ ∃X, β P X B ∧ β Q X A

71 Pash (outer form)
β AP C ∧ β Q C B ⇒ ∃X, β AX Q ∧ β B P X
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bXbTInner form Outer form Weak formFig. 2. Axioms of Pash

72 Pash (outer form) (variant)
β AP C ∧ β Q C B ⇒ ∃X, β AX Q ∧ β X P B

73 weak Pash
β AT D ∧ β B D C ⇒ ∃X, Y, β AX B ∧ β AY C ∧ β Y T XDimension axioms provide upper and lower bound for the dimension of thespae. Note that lower bound axioms for dimension n are the negation of upperbound axioms for the dimension n − 1.

8(2) Dimension, lower bound 2
∃ABC,¬β AB C ∧ ¬β B C A ∧ ¬β C ABThere are three non ollinear points.

8(n) Dimension, upper bound n

∃ABCP1P2 . . . Pn−1,

∧

1≤i<j<n Pi 6= Pj∧
∧n−1

i=2
AP1 ≡ APi ∧ BP1 ≡ BPi ∧ CP1 ≡ CPi∧

¬β AB C ∧ ¬β B C A ∧ ¬β C AB

9(1) Dimension, upper bound 1
β AB C ∨ β B C A ∨ β C ABThree points are always on the same line.

9(n) Dimension, upper bound n
∧

1≤i<j≤n Pi 6= Pj∧
∧n

i=2
AP1 ≡ APi ∧ BP1 ≡ BPi ∧ CP1 ≡ CPi

⇒ β AB C ∨ β B C A ∨ β C AB
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91(2) Dimension, upper bound 2 (variant)4

∃Y, (ColXY A ∧ β B Y C) ∨ (ColXY B ∧ β C Y A) ∨ (ColXY C ∧ β AY B)

10 Eulid's axiom
β AD T ∧ β B D C ∧ A 6= D ⇒ ∃X, Y β AB X ∧ β AC Y ∧ β X T Y

101 Eulid's axiom (variant)
β AD T ∧ β B D C ∧ A 6= D ⇒ ∃X, Y β AB X ∧ β AC Y ∧ β Y T X

11 Continuity
∃a, ∀xy, (x ∈ X ∧ y ∈ Y ⇒ β a x y) ⇒ ∃b, ∀xy, x ∈ X ∧ y ∈ Y ⇒ β x b yShema 11 Elementary Continuity (shema)

∃a, ∀xy, (α ∧ β ⇒ β a x y) ⇒ ∃b, ∀xy, α ∧ β ⇒ β x b ywhere α and β are �rst order formulas, suh that a,b and y do not appear freein α; a,b and x do not appear free in β.A geometry de�ned by the elementary ontinuity axiom shema instead ofthe higher order ontinuity axiom is alled elementary.
12 Re�exivity of β

β AB B

B is always between A and B.
14 Symmetry of β

β AB C ⇒ β C B AIf B is between A and C then B is between C and A.
13 Compatibility of equality with β

A = B ⇒ β AB A

19 Compatibility of equality with ≡

A = B ⇒ AC ≡ BC4 ColABC is de�ned by β AB C ∨ β B C A ∨ β C A B
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15 Transitivity (inner) of β

β AB D ∧ β B C D ⇒ β AB C

16 Transitivity (outer) of β

β AB C ∧ β B C D ∧ B 6= C ⇒ β AB D

17 Connetivity (inner) of β

β AB D ∧ β AC D ⇒ β AB C ∨ β AC B

18 Connetivity (outer) of β

β AB C ∧ β AB D ∧ A 6= B ⇒ β AC D ∨ β AD C

20 Triangle onstrution uniity
AC ≡ AC′ ∧ BC ≡ BC′∧

β AD B ∧ β AD′ B ∧ β C D X∧

β C′ D′ X ∧ D 6= X ∧ D′ 6= X

⇒ C = C′

201 Triangle onstrution uniity (variant)
A 6= B∧

AC ≡ AC′ ∧ BC ≡ BC′∧

β B D C′ ∧ (β AD C ∨ β AC D)
⇒ C = C′

21 Triangle onstrution existene
AB ≡ A′B′ ⇒ ∃CX,

AC ≡ A′C′ ∧ BC ≡ B′C′∧

β C X P ∧ (β AB X ∨ β B X A ∨ β X AB)3.2 HistoryTarski began to work on his axiom system in 1926 and presented it during hisletures at Warsaw university5. He submitted it for publiation in 1940 andwas �rst published in his �rst form in 1967 [Tar67℄. This version ontains 20axioms and one shema. A seond version, a bit simpler was published in [Tar51℄.This �rst simpli�ation onsist only in onsidering a logi with built-in equality,axioms 13 and 19 are then useless. This seond version was further simpli�edby Eva Kallin, Sott Taylor and Tarski into a system of twelve axioms [Tar59℄.The last simpli�ation was obtained by Gupta in its thesis [Gup65℄, he gives theproof that two more axioms an be derived from the remaining ones.Figure 3 gives the list of axioms ontained in eah of these axiom systems.Figure 4 provides the �nal list of axioms that we used in our formalization.5 We use [TG99℄ and the footnotes in [Tar51℄ to give a quik history of the di�erentversions of Tarski's axiom system.



8 Year : 1940 1951 1959 1965 1983Referene : [Tar67℄ [Tar51℄ [Tar59℄ [Gup65℄ [SST83℄Axioms : 1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
51 51 5 5 5
6 6 6 6
72 72 71 71 7

8(2) 8(2) 8(2) 8(2) 8(2)
91(2) 91(2) 9(2) 9(2) 9(2)
10 10 101 101 10
11 11 11 11 11
12 12
13
14 14
15 15 15 15
16 16
17 17
18 18 18
19
20 → 201

21 21Nb of axioms : 20 18 12 10 10
+ + + + +1 shema 1 shema 1 shema 1 shema 1 shemaFig. 3. History of Tarski's axiom systems.Identity β A B A ⇒ (A = B)Pseudo-Transitivity AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EFRe�exivity AB ≡ BAIdentity AB ≡ CC ⇒ A = BPash ∃X, β A P C ∧ β B QC ⇒ β P x B ∧ β Qx AEulid ∃XY, β A D T ∧ β B D C ∧ A 6= D ⇒

β P x B ∧ β Qx A5 segments AB ≡ A′B′ ∧ BC ≡ B′C′∧

AD ≡ A′D′ ∧ BD ≡ B′D′∧

β AB C ∧ β A′ B′ C′ ∧ A 6= B ⇒ CD ≡ C′D′Constrution ∃E,β AB E ∧ BE ≡ CDLower Dimension ∃ABC,¬β AB C ∧ ¬β B C A ∧ ¬β C ABUpper Dimension AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q

⇒ β AB C ∨ β B C A ∨ β C A BContinuity ∀XY, (∃A, (∀xy, x ∈ X ∧ y ∈ Y ⇒ β Ax y)) ⇒
∃B, (∀xy,x ∈ X ⇒ y ∈ Y ⇒ β x B y).Fig. 4. Tarski's axiom system (Formalized version - 11 axioms).



94 Formalization in CoqThe mehanization of the proof we have realized prove formally that the simpli�-ations of the �rst version of Tarski's axiom system are orret. The unneessaryaxioms are derived from the remaining ones.Now, we provide a quik overview of the ontent of eah hapter. We willonly detail an example proof in the next setion.The �rst hapter ontains the axioms and the de�nition of the ollinearityprediate (noted Col).The seond hapter ontains some basi properties of the equidistane pred-iate (noted Cong). It ontains also the proof of the uniity of the pointonstruted thanks to the segment onstrution axiom.The third hapter ontains some properties of the betweeness prediate (no-ted Bet). It ontains in partiular the proof of the axioms 12, 14 and 16.The fourth hapter ontains the proof of several properties of Cong, Col andBet.The �fth hapter ontains some pseudo-transitivity properties of betweenessand the de�nition of the length omparison prediate (noted le) with someassoiated properties. It inludes in partiular the proofs of the axioms 17and 18.The sixth hapter de�nes the out prediate whih means that a point lies ona line out of a segment. This prediate is used to prove some other propertiesof Cong, Col and Bet suh as transitivity properties for Col.The seventh hapter de�nes the midpoint of a segment and symmetri points.It has to be noted that at this step the existene of the midpoint is not de-rived yet.The eighth hapter ontains the de�nition of the perpendiular prediate (no-ted Perp), and the proof of some related properties suh as the existene ofthe foot of the perpendiular. Finally, the existene of the midpoint of asegment is derived.4.1 Two ruial lemmasOur formalization follows stritly the lines of the book by Shwabhäuser, Szmielewand Tarski exept in the �fth hapter where we introdue two ruials lemmaswhih do not appear in the original text. These two lemmas allows to deduethe equality of two points whih lie on a segment under an hypotheses involvingdistanes.
∀ABC, β AB C ∧ AC ≡ AB ⇒ C = B

b b b

A B C
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∀ABDE, β AD B ∧ β AE B ∧ AD ≡ AE ⇒ D = E.

b bb b

A BD E4.2 A omparison between the formal and informal proofsWe reprodue here one of the non trivial proofs: the proof due to Gupta [Gup65℄that axiom 18 an be derived from the remaining ones. We translate the prooffrom [SST83℄ and provide in parallel the mehanized proof as a Coq sript.For the reader not familiar with the Coq proof assistant, we provide a quikinformal explanation of the role of the main tatis we use in this proof.assert is used to state what we want to prove. When it is followed by �. . . � thismeans that this assertion an be proved automatially.DeompExAnd , given an existential hypotheses, introdues the witness of theexistential and deompose the knowledge about it.apply is used to apply a lemma or theorem.Tarski,sTarski,Between,. . . are automati tatis whih try to prove the ur-rent goal. Informally this an be read as �by simple properties of betweeness�or �by diret appliation of one of the axioms�.unfold replaes something by its de�nition.ases_equality perform a reasoning by ases on the equality of two points.
b b

b

b

b

b

b

bA B D C' B'B�C D'E
Fig. 5. Proof of axiom 18Theorem 1 (Gupta). A 6= B ∧ β AB C ∧ β AB D ⇒ β AC D ∨ β AD CPreuve: Let C′ and D′ be points suh that :

β AD C′ ∧ DC′ ≡ CD and β AC D′ ∧ CD′ ≡ CD



11assert (exists C', Bet A D C' /\ Cong D C' C D)...DeompExAnd H2 C'.assert (exists D', Bet A C D' /\ Cong C D' C D)...DeompExAnd H2 D'.We have to show that C = C′ or D = D′.Let B and B′′ points suh that :
β AC′ B′ ∧ C′B′ ≡ CB and β AD′ B′′ ∧ D′B′′ ≡ DBassert (exists B', Bet A C' B' /\ Cong C' B' C B)...DeompExAnd H2 B'.assert (exists B'', Bet A D' B'' /\ Cong D' B'' D B)...DeompExAnd H2 B''.Using the lemma 2.116 we an dedue that BC′ ≡ B′′C and that BB′ ≡ B′′B.assert (Cong B C' B'' C).eapply l2_11.3:apply ong_ommutativity.3:apply ong_symmetry.3:apply H11.Between.Between.esTarski.assert (Cong B B' B'' B).eapply l2_11;try apply H2;Between.By uniity of the segment onstrution, we know that B′′ = B′.assert (B''=B').apply onstrution_uniity with(Q:=A) (A:=B) (B:=B'') (C:=B) (x:=B'') (y:=B');Between...smart_subst B''.We know that FSC

(

BCD′C′

B′C′DC

) (The points form a �ve segments on�guration).assert (FSC B C D' C' B' C' D C).unfold FSC;repeat split;unfold Col;Between;sTarski.2:eapply ong_transitivity.2:apply H7.2:sTarski.apply l2_11 with (A:=B) (B:=C) (C:=D') (A':=B') (B':=C') (C':=D);Between;sTarski;esTarski.Hene C′D′ ≡ CD (beause if B 6= C the �ve segments axiom gives the onlu-sion and if B = C we an use the hypotheses).6 The lemma 2.11 states that β A B C ∧ β A′ B′ C′ ∧ AB ≡ A′B′ ∧ BC ≡ B′C′ ⇒

AC ≡ A′C′.



12assert (Cong C' D' C D).ases_equality B C.(* First ase *)treat_equalities.eapply ong_transitivity.apply ong_ommutativity.apply H11.Tarski.(* Seond ase *)apply ong_ommutativity.eapply l4_16;try apply H3...Using the axiom of Pash, there is a point E suh that :
β C E C′ ∧ β D E D′assert (exists E, Bet C E C' /\ Bet D E D').eapply inner_pash;Between.DeompExAnd H13 E.We an dedue that IFS

(

ded′c

ded′c′

) and IFS

(

cec′d

cec′d′

).assert (IFSC D E D' C D E D' C').unfold IFSC;repeat split;Between;sTarski.eapply ong_transitivity.apply ong_ommutativity.apply H7.sTarski.assert (IFSC C E C' D C E C' D').unfold IFSC;repeat split;Between;sTarski.eapply ong_transitivity.apply ong_ommutativity.apply H5.sTarski.Hene EC ≡ EC′ and ED ≡ ED′.assert (Cong E C E C').eapply l4_2;eauto.assert (Cong E D E D').eapply l4_2;eauto.Suppose that C 6= C′. We have to show that D = D′7.7 Note that this step uses the deidability of equality between two points.



13ases_equality C C'.smart_subst C'.assert (E=C).eTarski.smart_subst E.unfold IFSC, FSC,Cong_3 in *;intuition.From the hypotheses, we an infer that C 6= D′.assert (C<>D').unfold not;intro.treat_equalities...Using the segment onstrution axiom, we know that there are points P , Q and
R suh that :

β C′ C P ∧ CP ≡ CD′ and β D′ C R ∧ CR ≡ CE and β P R Q ∧ RQ ≡ RPassert (exists P, Bet C' C P /\ Cong C P C D')...DeompExAnd H21 P.assert (exists R, Bet D' C R /\ Cong C R C E)...DeompExAnd H21 R.assert (exists Q, Bet P R Q /\ Cong R Q R P)...DeompExAnd H21 Q.Hene FSC

(

D′CRP

PCED′

), so RP ≡ ED′ and RQ ≡ ED.assert (FSC D' C R P P C E D').unfold FSC;unfold Cong_3;intuition...eapply l2_11.apply H25.3:apply H26.Between.sTarski.assert (Cong R P E D').eapply l4_16.apply H21.auto.assert (Cong R Q E D).eapply ong_transitivity.apply H28.eapply ong_transitivity.apply H22.sTarski.We an infer that FSC

(

D′EDC

PRQC

),



14assert (FSC D' E D C P R Q C).unfold FSC;unfold Cong_3;intuition...eapply l2_11.3:eapply ong_ommutativity.3:eapply ong_symmetry.3:apply H22.Between.Between.sTarski.so using lemma 2.11 we an onlude that D′D ≡ PQ and CQ ≡ CD (beausethe ase D′ 6= E is solved using the �ve segments axiom, and in the other asewe an dedue that D′ = D and P = Q).ases_equality D' E.(* First ase *)treat_equalities...sTarski.(* Seond ase *)eapply l4_16;eauto.Using the theorem 4.178, as R 6= C and R, C and D′ are ollinear we anonlude that D′P ≡ D′Q.assert (R<>C).unfold not;intro.treat_equalities...assert (Cong D' P D' Q).apply l4_17 with (A:=R) (B:=C) (C:=D').assumption.3:apply H32.unfold Col;left;Between.sTarski.As C 6= D′, Col CD′B and Col CD′B′, we an also dedue that BP ≡ BQand B′P ≡ B′Q.assert (Cong B P B Q).eapply l4_17; try apply H20;auto.unfold Col;right;right;Between.(* *)assert (Cong B' P B' Q).eapply l4_17 with (C:=B').apply H20.8 The theorem 4.17 states that A 6= B ∧ ColABC ∧ AP ≡ AQ ∧ BP ≡ BQ ⇒ CP ≡

CQ.



15unfold Col.Between.assumption.assumption.As C 6= D′, we have B 6= B′ and as Col BC′B′ we have C′P ≡ C′Q.ases_equality B B'.subst B'.unfold IFSC,FSC, Cong_3 in *;intuition.lean_dupliated_hyps.lean_trivial_hyps.assert (Bet A B D').Between.assert (B=D').eTarski.treat_equalities.Tarski.assert (Cong C' P C' Q).eapply l4_17.apply H37.unfold Col;right;left;Between.auto.auto.As C 6= C′ and Col C′CP we have PP ≡ PQ.assert (Cong P P P Q).eapply l4_17.apply H19.unfold Col;right;right;Between.auto.auto.Using the identity axiom for equidistane, we an dedue that P = Q.assert (P=Q).eapply ong_identity.apply ong_symmetry.apply H39.As PQ ≡ D′D, we also have D = D′.subst Q.assert (D=D').eapply ong_identity with (A:=D) (B:=D') (C:=P).unfold IFSC,FSC, Cong_3 in *;intuition.



16The proof is �nished.assert (E=D).eTarski.unfold IFSC,FSC, Cong_3 in *;intuition.4.3 About degenerated asesEvery paper about the formalization of geometry, in partiular those aboutHilbert's foundations of geometry [DDS00,MF03℄ emphasizes the problem ofthe degenerated ases. The degenerated ases are limit ases suh as when twopoints are equals, three points are ollinear or two lines are parallel. The for-mal proof of the theorems in the degenerated ases is often tedious and evensometimes di�ult. These ases often do not even appear in the informal proof9.In order to limit the size of the proofs, we tried to automate some tasks. Thesepiees of automation should not be ompared with the highly suessfull deisionproedures for geometry, the goal is just to automate some easy but very tediousproofs and as our goal is to build foundations for the implementation of deisionproedures we an not use these more powerful proedures.The main tati to deal with degenerated ases is alled treat_equalities.The basi idea is to propagate information about degenerated ases. For instane,if we know that A = B and AB ≡ CD we an dedue that C = D. This is verysimple but it shortens the proofs of the degenerated ases quite e�etively.Moreover, we think that a soure of degenerated ases ome from the axiomsystem. In our personal experiene the formalization of geometry using Hilbertaxioms lead to far more degenerated ases beause the axioms are not alwaysstated in the most general and uniform way. We think that Tarski's geometry isa good andidate to mehanization beause it is very simple, it has good meta-mathematial properties (f [Tar51℄) and it produes few degenerated ases.4.4 Classial vs intuitionist logi.Our formalization of Tarski's geometry is performed in the system Coq. As thelogi behind Coq is onstrutive, we need to tell Coq expliitly when we needlassial logi. This is the ase in this development. It appears quite often inthe proofs that we need to distinguish between two ases suh that A = Band A 6= B or ColABC and ¬ColABC. This kind of reasoning relies on thedeidability of point equality and ollinearity. We proved these two fats usingthe exluded middle rule.9 It seems that degenerated ases play the same role in geometry as α-onversion inlambda alulus: they are a great soure of di�ulties in the ontext of a meha-nization.



175 Future workA natural extension of our work onsist in mehanizing the remaining haptersof [SST83℄ and proving the axioms of Hilbert. This work is under progress. Wealso plan to enrih our formalization to use it as a foundation for other formalCoq developments about geometry suh as Frédérique Guilhot formalization ofgeometry as it is presented in the frenh urriulum [Gui05℄ and our implementa-tion in Coq of the area method of Chou, Gao and Zhang [Nar04℄. A longer-termhallenge would be to perform a systemati development of geometry similar tothe book of Shwabhäuser, Szmielew and Tarski but in the ontext of a on-strutive axiom system suh as the axiom system of von Plato [vP95℄ whih hasalready been formalized in the Coq proof assistant by Gilles Khan [Kah95℄6 ConlusionWe have presented the mehanisation of the proofs of over 150 lemmas in the on-text of Tarski's geometry. This inludes the formal proof that the simpli�ationsof the �rst version of Tarski's axiom system are orrets. Our main onlusionis that Tarski axiom system lead to more uniform proofs than Hilbert's axiomsystem and so it is better suited for a formalization.AvailabilityThe full Coq development with the formal proofs and hypertext links to easenavigation an be found at the following url :http://www.lix.polytehnique.fr/Labo/Julien.Narboux/tarski.htmlReferenes[CGZ94℄ Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. Mahine Proofsin Geometry. World Sienti�, Singapore, 1994.[Coq04℄ Coq development team, The. The Coq proof assistant referene manual, Ver-sion 8.0. LogiCal Projet, 2004.[DDS00℄ Christophe Dehlinger, Jean-François Dufourd, and Pasal Shrek. Higher-order intuitionisti formalization and proofs in Hilbert's elementary geometry.In Automated Dedution in Geometry, pages 306�324, 2000.[Gui05℄ Frédérique Guilhot. Formalisation en Coq et visualisation d'un ours degéométrie pour le lyée. Revue des Sienes et Tehnologies de l'Information,Tehnique et Siene Informatiques, Langages appliatifs, 24:1113�1138, 2005.Lavoisier.[Gup65℄ Haragauri Narayan Gupta. Contributions to the axiomati foundations ofgeometry. PhD thesis, University of California, Berkley, 1965.[Kah95℄ Gilles Kahn. Construtive geometry aording to Jan von Plato. Coq ontri-bution, 1995. Coq V5.10.
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