
HAL Id: inria-00117018
https://hal.inria.fr/inria-00117018v4

Submitted on 6 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SONDe, Self-Organizing Replica Placement in
Large-Scale Dynamic Systems

Vincent Gramoli, Anne-Marie Kermarrec, Erwan Le Merrer, Didier Neveux

To cite this version:
Vincent Gramoli, Anne-Marie Kermarrec, Erwan Le Merrer, Didier Neveux. SONDe, Self-Organizing
Replica Placement in Large-Scale Dynamic Systems. [Research Report] RR-6052, INRIA. 2006, pp.26.
�inria-00117018v4�

https://hal.inria.fr/inria-00117018v4
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
99

99
--

F
R

+
E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

SONDe, Self-Organizing Replica Placement in
Large-Scale Dynamic Systems

Vincent Gramoli and Anne-Marie Kermarrec and Erwan Le Merrer and Didier Neveux

N° 6052

Novembre 2006

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

SONDe, Self-Organizing Replica Placement in

Large-Scale Dynamic Systems

Vincent Gramoli ∗ and Anne-Marie Kermarrec † and Erwan Le Merrer ‡ and

Didier Neveux §

Thème NUM — Systèmes numériques
Projet ASAP

Rapport de recherche n
�

6052 — Novembre 2006 — 24 pages

Abstract: Initially introduced in the context of file sharing systems, the peer to peer com-
munication paradigm goes far beyond and may be applied to a wide spectrum of distributed
applications. The scalability of peer to peer applications relies both on an even distribution
of the load between peers and the ability to react to system dynamics.

In this paper, we present the design, analysis, and evaluation of SONDe, a simple fully
decentralized replica placement algorithm. Given an object (service or data), SONDe pro-
vides a peer with a constant upper bound on the number of logical hops to access a replica
holder (provider), thus making tunable and predictable the communication latency between
a peer and any replica (if used with logical-physical layer mapping algorithms). In addition,
SONDe is able to adapt the number of replicas dynamically to reflect load variations in
localized portions of the system. Each peer decides individually whether it holds a replica,
based on the observation of its local neighborhood. We show theoretically that SONDe con-
verges and provides an independent-dominating set of providers. Finally simulation results,
conducted over different network topologies, demonstrate the efficiency of the approach.

Key-words: Large-scale dynamic overlays, Replica placement, Availability, Search
bounds, Independent-Dominating set, Self-Organization, load handling

∗ vgramoli@irisa.fr
† akermarr@irisa.fr
‡ erwan.lemerrer@orange-ftgroup.com
§ didier.neveux@orange-ftgroup.com

SONDe, Self-Organizing Replica Placement in

Large-Scale Dynamic Systems

Résumé : Présenté à l’origine dans le contexte des applications de partage de fichiers,
le paradigme de communication pair-à-pair a évolué et peut être aujourd’hui appliqué à un
large spectre d’applications distribuées. Le passage à l’échelle des applications P2P repose
à la fois sur une distribution juste de la charge des requêtes entre les pairs du réseau et sur
la capacité du système à réagir à la dynamique.

Nous présentons dans ce papier le design, l’analyse et l’évaluation de SONDe, un algo-
rithme simple et totalement décentralisé de placement de réplicas. Donné un objet (fonction
ou donnée), SONDe fourni à chaque pair une borne constante sur le nombre maximal de
sauts logiques à effectuer pour accéder au détenteur d’un réplica (fournisseur), rendant ainsi
paramétrables et prévisibles les latences de communications (dans le cas d’une utilisation
conjointe avec des algorithmes de convergence des couches physique/logique). SONDe est
également capable d’adapter le nombre de réplicas dynamiquement pour refléter les varia-
tions de charge dans les zones concernées du réseau. Chaque pair décide individuellement s’il
doit héberger un réplica, et ceci basé sur l’observation de son voisinage. Nous montrons de
façon théorique que SONDe converge et fourni un ensemble Indépendant-Dominant de four-
nisseurs. Enfin, des résultats basés sur des simulations conduites sur différentes topologies
réseau démontrent l’efficacité de l’approche.

Mots-clés : Réseaux logiques dynamiques large échelle, placement de réplicas, disponi-
bilité, bornes de recherche, ensemble Indépedant-Dominant, auto-organisation, répartition
de charge

SONDe 3

SONDe, Self-Organizing Replica Placement in

Large-Scale Dynamic Systems

December 6, 2006

1 Introduction

Motivations A peer to peer (P2P) overlay network organizes a large set of participants
(nodes), in a logical network on top of a physical topology. The scalability of P2P networks
relies on the fact that each node may act both as a client and a server. Therefore, the number
of potential servers grows linearly with the size of the system. For a given application to
provide a service, a subset of nodes may be elected to act as servers, to which nodes can
forward requests. One of the major challenges in P2P systems is how to place objects
of a given service at some provider making the object rapidly accessible. This problem
is known as the replica placement problem. Previous work on replica placement relies
on a static placement of replicas assuming that client access patterns can be known in
advance [10, 14, 3, 19]. However, to face the high dynamism of peer to peer systems,
dynamic and adaptive replica placement is required. Several issues shall be considered to
provide an efficient replica placement algorithm.

First, finding and accessing a replica in a P2P system should limit communications costs.
For the client sake, an efficient replica placement algorithm should leverage the physical
and/or logical network proximity so that client nodes direct their request to close replicas
therefore limiting both time and communication complexity. However, holding a replica,
and therefore serving client requests is a consuming task both bandwidth and computing
power-wise. Therefore, the goal of such an algorithm is to limit the number of nodes holding
a replica and yet to make sure the required guarantees are met.

Second, another crucial aspect is related to the amount of information one can use to
implement the algorithm. Gathering global information in a P2P system is simply unrealistic
due to the large-scale dimension of such systems but also to their dynamics which would

∗vgramoli@irisa.fr
†akermarr@irisa.fr
‡erwan.lemerrer@orange-ftgroup.com
§didier.neveux@orange-ftgroup.com

RR n
�

6052

4 Gramoli & Kermarrec & Le Merrer & Neveux

require frequent and massive updates. Instead, in a P2P system, each node is aware of a
small subset of other nodes, usually known as its neighbors. A scalable solution relies on
the exploitation of the local knowledge of the system.

Contributions In this paper, we propose a dynamic and fully decentralized replica place-
ment protocol, called SONDe (Self-Organizing Network Density) ensuring the availability
of a replica in a constant number of logical (overlay) hops from any network location, while
limiting as much as possible the number of providers of such a replica. Not only SONDe is
able to provide such guarantees but also may be tuned to handle load variations in localized
parts of the network. In the remaining of this paper, we assume that every node is able
to act as a server, therefore becoming a service provider (holding a replica) is achieved by
simply switching on this functionality. How to actually retrieve the last version of a replica
is out of the scope of this paper.

SONDe provides guarantees in terms of number of logical hops and ensures in most
configurations that each node will be able to access a replica, from any location of the
network in a constant number of hops, at most h. SONDe is fully decentralized and highly
scalable as nodes implement the replica placement algorithm based on the observation of
their direct neighborhood in the overlay network. The intuition is as follows: each node
observes its neighborhood and checks whether a replica can be found at most h hops away.
If this is not the case, then it switches on its own functionality and becomes a provider. In
order to control and bound the number of replicas, a provider able to reach another replica
in h hops which is “older” than itself, takes the decision to switch its own functionality off.
Theoretical results and simulations show that the distance (number of hops) required to
access a replica is bounded by h and that the algorithm converges.

Even though the density of replicas maps the requirements, it might happen that some
providers are overloaded. The extreme case to illustrate this situation is a star like topology
where the central node would ensure that the guarantees are met but yet is too overloaded
to actually serve the clients. To overcome this issue, each provider node in SONDe may
take actions to adapt to such situations and decrease the parameter h locally. Therefore,
SONDe, in a network-independent fashion, balances the load automatically between the
system nodes. If a burst of load occurs in a localized area of the overlay, the number of
providers is automatically increased in this specific area. Conversely, when the load decreases
the number of providers is reduced accordingly in order to limit the unnecessary resource
consumption.

Finally, the paper shows theoretically that SONDe provides an h-independent-dominating
sets of providers. An h-independent-dominating set of providers is a set of providers such
that each node is either provider or at most at distance h from a provider, but not both.
Independence limits the number of providers while dominance allows constant access time
from any system node.

A main guideline for SONDe is to provide a simple algorithm, that could be implemented
easily on any type of overlay, regardless of the underlying overlay structure.

INRIA

SONDe 5

Roadmap The rest of this paper is organized as follows. Section 2 provides some back-
ground on the replica placement problem. Section 3 introduces the system model and states
the problem we address in this paper. Section 4 presents the SONDe algorithm. Section 5
provides analysis that shows that SONDe solves the h-independent-dominating set problem.
We simulate results of SONDe in a large scale dynamic context and analyzes the results.
Finally, we discuss some open issues in Section 7 before concluding in Section 8.

2 Background on distributed replica placement

Many works in the peer to peer, parallel distributed systems and graph theory address to
some extent the replica placement issue.

Distributed Hash Tables (DHT) [15, 17, 16, 4] is a well-known solution to find an object
(data or service) in a P2P system. In DHT-based solutions, nodes share a global identifier
space and the same objects are isolated on providers of the same identifier subspace. That
is, any node can convey request message to a node closer to the provider. Isolating objects
presents, however, two limitations. First, when many requests to the same object are simul-
taneously received, congestion might occur in the targeted subspace. Second, a node might
be located too far from the targeted object, in terms of hops for some stringent application
requirements, and thus accessing the object might be costly. DHT-based replication have
proven efficient in some contexts but may suffer from a limited flexibility.

On the theoretical side, obtaining small dominating set in a graph remains an important
issue. The problem of finding the minimal dominating set has been shown to be NP-
hard [5] and an easier problem is to find a small (but not minimal) dominating set. In [9],
the authors propose an algorithm that constructs small dominating set in a logarithmic
number of rounds, while in [11], the authors construct a small dominating set in constant
time. Importance of dominating set for P2P systems have been outlined by some specific
applications [20]. These authors aim at maximizing the number of responses to an object
search in a P2P system. This approach does not focus on providing the object at a constant
number of hops. Finally, in [2] the authors focus on both independent and dominating sets,
and propose a centralized solution to this problem.

Replica placement has been widely studied in the past years. Various works proposing
Content Distribution Networks use tree-structured topologies like in [10]. The HotSpot [14]
and HotZone [19] propose a solution to place replicas of any object at the nodes generating
the highest traffic among all. Sortie [8] is providing a self organizing replication mechanism
based on the demand for a service; the replicas are also placed based on the requests.
Sortie does not take into account max hop bounds or latency limits between requesters and
providers. Other papers [7, 3] addresses other but related issues: the number of centers and
the centers placement. The former one consists of determining the number K of replicas
needed while the latter consists of determining the ideal locations of those K replicas.

RR n
�

6052

6 Gramoli & Kermarrec & Le Merrer & Neveux

3 Design Rationale

3.1 System Model

The system consists of a connected set of n nodes. 1 Each node is uniquely identified and
does not maintain any global information about the system. Nodes can join and leave the
system at any time. The P2P overlay network is represented as a communication graph,
denoted G, in which a node i can communicate directly with a subset of nodes called its
direct neighbors. More generally, we refer to the neighbors of i, as the set of nodes, N h

i ,
located at distance h from i, where h ∈ N

+ is a constant. In other words, the minimal
distance between i and any j ∈ N h

i is lower than or equal to h. G is an undirected graph
such that communication links are symmetric, formally if i ∈ N h

j then j ∈ N h
i .

We call a peer not holding a replica, a client and a peer, holding a replica, a provider. A
service or a data used in the system is equally referred to as an object. Objects are replicated
over all system nodes and a copy of this object is called a replica. In the remaining, we only
focus on a single replicated object. We refer to providers as the nodes providing this object.

Each peer hosting a replica has finite computing resources; too many simultaneous access
queries may thus saturate it. A saturated replica will trigger a mechanism to distribute load
by creating other replicas.

The communication delay between two neighbors is bounded by δ.

3.2 Problem Statement

The algorithm presented in this paper addresses the issue of limiting the number of providers
of a single object x while providing any node with a object replica located nearby (in the
h-vicinity). Providing the object consumes computation resources, limiting the replication
of an object over the network saves resources for other objects. Second, providing any node
with a replica at a small distance helps finding it and accessing it quickly. To formalize
those two challenges we borrow two well-known definitions from graph theory: independent
and dominating sets.

The independence notion expresses the idea of restricting the number of providers. Con-
sider an undirected connected graph G = 〈V, E〉. A subset of vertices I ⊆ V of the graph G
is called an independent set if and only if there is no edge in E between two vertices of I.
Observe that a simple solution to this problem is I = ∅. Consider the communication graph
G. If the set of providers forms an independent set of G, then the object does not consume
computation resources of all nodes. Next, we recall the formal definition.

Definition 3.1 (Independent Set). Let G = 〈V, E〉 be an undirected connected graph. A
subset of vertices I ⊂ V is an independent set iff

∀(u, v) ∈ E ⇒ u /∈ I ∨ v /∈ I.

1The value n corresponds to an instantaneous observation and can vary over time.

INRIA

SONDe 7

The dominance notion expresses the notion of availability. Consider an undirected con-
nected graph G = 〈V, E〉. A subset of vertices D ⊆ V of the graph G is called a dominating
set if and only if it exists an edge between any vertex of V \ D and a vertex of D. Observe
that a solution to this problem is D = V . Like above, consider the communication graph
G. If the set of providers of x is dominant in G, then x is easily available from any location.
The formal definition follows.

Definition 3.2 (Dominating Set). Let G = 〈V, E〉 be an undirected connected graph. A
subset of vertices D ⊆ V is a dominating set iff

∀u ∈ V \ D, ∃v ∈ D s.t. (u, v) ∈ E.

Traditionally, those definitions apply to neighbors that are located at a single hop from
the source. Depending on the application requirements, this might be too restrictive. Here,
we relax such a constraint by letting the programmer define an edge between two nodes if
their distance is smaller than a constant number h of hops. Consequently, the parameter h
makes the replication degree and the availability degree of object x tunable.

Let an independent dominating set be a set S satisfying both Definitions 3.2 and 3.1. As
said before, we extend the aforementioned definition to the h-neighborhood. Let Eh as the
set of path composed of at most h consecutive edges of E. We do not mention definitions
of h-independent set and h-dominating set since they rely simply on Definition 3.1 and
Definition 3.2, respectively, with the augmented set of edges Eh. The formal definition is
the following.

Definition 3.3 (h-Independent-Dominating Set). Let G = 〈V, E〉 be an undirected connected
graph. A subset of vertices S ⊂ V is an h-independent-dominating set iff

{

∀(u, v) ∈ Eh ⇒ u /∈ S ∨ v /∈ S,
∀u ∈ V \ S, ∃v ∈ S s.t. (u, v) ∈ Eh.

Another interesting challenge would be to solve the Minimal Dominating Set (MDS)
problem. Nevertheless, this well-known problem is NP-hard [5]. For the sake of solution
efficiency, we rather focus on the independent dominating set problem. When a single node
is added to a graph with an independent-dominating set, it is likely that no global update
is necessary to retrieve an independent dominating set. Consequently, even though we do
not ensure maximal independent set or minimal dominating set, our solution guarantees
availability with a relatively low complexity. The goal of the SONDe algorithm is to provide
at least one replica in the neighborhood of any node. To conclude, SONDe is a simple
self-organizing replica placement algorithm making the set of providers to converge toward
an h-dominating-independent property.

4 SONDe Algorithm

In this section, we first present the initial version of the SONDe algorithm, which implements
a dominating independent set of providers in a fully decentralized way so that each node is

RR n
�

6052

8 Gramoli & Kermarrec & Le Merrer & Neveux

guaranteed to access a replica in at most h hops. Then we propose an extended version of
SONDe, able to automatically adapt the replication degree to the load variations in localized
parts of the network.

Each node decides locally whether to become a provider or not. For this purpose, every
node i communicates periodically (with period ρ ≤ δ or frequency τ = 1

ρ
) with all nodes of

its neighborhood N h
i , starting at its arrival on the overlay.

4.1 SONDe: h-hops max access replication algorithm

SONDe goal is to ensure that a node, at any time, can access a replica of a given service in
its neighborhood N h

i without global knowledge.
To converge towards this global property, each client in the system checks (called func-

tion check), after ρ has elapsed, whether a replica can be reached in, at most, h hops.
In order to limit the associated overhead, only the replicas providers send back a hello

message to a requesting node.
function check leads to a state change of the checking node in the cases summarized on

Figure 1.

Older replica in h hops

ProviderClient

No replica in h hops

Figure 1: Basic SONDe state changes

� If the checking node is a client:

– the node becomes a provider if no replica is found in N h
i

– otherwise no action is executed.

� If the checking node is a provider:

– nothing happens if no older replica is found in N h
i

– otherwise, the current node switches off its replica functionality and becomes a
client.

The age refers to the date at which the replica functionality was set. This info is piggy-
backed in the hello message sent to the requesting node.

The particular case where two peers in the same h-hops neighborhood have the same
exact arrival date is provoking conflictual function checks that are handled in a simple way

INRIA

SONDe 9

as follows: two regular peers will become provider after a first check, if no provider is already
in their N h

i ; during the second one, as the two providers have the same ρ, the discriminatory
factor is the unique ID (for example the replica with the greater ID is switched off). After
this last step, the fact that function checks are done at the same time is no longer an issue.

This simple organisation leads each peer to have at least one replica in its neighborhood
N h

i , thus reaching the dominating set. The independent set is observed when there is no
more replica deletion, as no provider sees another one in its neighborhood. In the case
where a peer has more than one provider in its neighborhood, the selection may rely on
various parameters such as providers occupation state or minimum communication latency
for example.

So far, we have made the assumption that the providers could, at any time, provide
the service to any peer in their neighborhood. In practice, as peers have finite computing
resources, some providers may be overloaded if too many peers, connected to the same
provider, use the service simultaneously. This situation has a higher probability of occurring
if h is high, as the provider has to handle more peers than at a lower level. To prevent service
unavailability, we now introduce an extension of the base algorithm taking into account load
variations.

4.2 Load reactive replication algorithm

The basic idea is that although the h-Independant-Dominating set property is ensured, some
nodes might not be able to cope with request load. The pseudocode of the load reactive
algorithm is provided in Algorithm 1. A provider may be overloaded if its connected clients
are using too heavily its ressources. Such load pattern may affect the application as the
provider may not be able to provide additional resources to its current clients or resources
to new requesting clients. To avoid this situation, in addition to the h-hops parameter of the
previous algorithm (global system max bound), we associate a second parameter nbHops
with each peer. nbHops represents the peer current search bound (nbHops ≤ h), and varies
facing load variations as described bellow.

We assume that the occupation rate of the computing resources of a provider is repre-
sented as a percentage, returned by the peer operating system. In addition, two parameters
are added to the peer hosting a replica: underloadedThreshold and overloadedThreshold
(0 < underloadedThreshold < overloadedThreshold < 100). They indicate respectively the
load threshold over which a replication mechanism should be triggered and under which
replicas could be suppressed to free wasted resources:

� If the occupation rate of a provider remains over overloadedThreshold during a pre-
defined period of time (maxOverloadedRounds), the provider launches the following
process, leading to other replica creations: it notifies a fixed constant number of direct
neighbors so that each neighbor changes its nbHops with the provider current one
decremented by one; so does the provider itself. Each reached peer forwards the order
to that constant number of direct neighbors, with a depth equal to nbHops from the
originating overloaded peer. The next check, some of the nodes which nbHops has

RR n
�

6052

10 Gramoli & Kermarrec & Le Merrer & Neveux

been modified are likely to create replicas as they are not able to find other replicas at
this reduced level. This action has a global consequence on the increase of the number
of replicas in an overloaded area.

� On the contrary, a provider that remains under a fixed threshold (underloadedThreshold),
for a given period (maxUnderloadedRounds), notifies its neihborhood at nbHops (as
in the overloaded case) to set their nbHops with its own, incremented by one, and
does the same. This process naturally decreases the number of providers in the former
provider neighborhood.

When a response to a load event should occur, the heuristic does not simply tells N nbHops
i

to change their nbHops (but instead each peer forwards this order to a constant number of
direct neighbors). In the case of a highly connected overlay, many peers received a change
order, increasing convergence time. That constant can be set for example to approxima-
tively log(N). The aim of maxUnderloadedRounds and maxOverloadedRounds values is to
create a hysteresis phenomena and stabilize the replica distribution by avoiding immediate
duplication or deletion based on temporary non representative load events.

With the load handling heuristic, and during the function check, a peer switches off
it replica capability only if it finds in N nbHops

i , another replica with the same nbHops
parameter, in order to preserve the previous nbHops changes; contrarywise, a peer does not
create a replica even if another one is found with a different nbHops parameter. This keeps
the locality of the load variation events, and thus does not disturb the balance of the replica
distribution in the neighborhood. These phenomenons are detailed in Section 6.

Note that when nbHops changes, the new value given by the replica to the nodes reached
is based on the one of the replica. The solution consisting in simply decreasing each node
current value leads to unstable replica creation: in an overloaded region, where peers have
more than one replica in their nbHops range, several change orders from the providers could
really quickly set the nbHops value of the peers to 0, triggering too much replica creations (a
peer at 0 obviously directly become a replica). Due to their number, those providers often
reach an under load case by sharing local load among then, bringing on suppressions, and
so on, increasing convergence time.

Back to a homogeneous distribution After SONDe has handled load variations in
affected parts of the network, the replica distribution is no longer homogeneous. The orders
of changing the value of nbHops , sent by the replicas to their neighbors, are non symmetrical
in the sense that replicas with a high nbHops value obviously reach more peers than in the
reverse case. This leads to the situation where when a network load occurs thus triggering
replica creations, many peers get a lowered nbHops . When the load decreases, even if there
are more replicas in the network due to the previous load handle, the sum of peers reached
by the successive increases of nbHops is inferior to the total number of peers which nbHops
has previously been modified. Therefore, some peers may stay at a nbHops value that is
not representative of the network load anymore; that is why after a number of consecutive
nbHops unchanged, the peer could simply query the current value of their neighbors and take

INRIA

SONDe 11

the average as new nbHops . This simple heuristic allows all the network peers to smoothly
converge toward the max search bound h when there is no or a low load on the overlay.

5 Convergence to an h-Independent-Dominating set of

Providers

In this section, we show that the SONDe algorithm converges.
Here are some preliminary notations for the proof. We refer to c-providers (standing

for confirmed providers) as the providers that set their state to provider at least ∆ > 2δ
time ago and that did not revert their state since then. Let L be the set of all legitimate
configurations where the communication graph G admits a set S of c-providers such that
S forms an h-independent-dominating set. Next, we define two specific subgraphs in which
the h-independent-dominating property does not hold. Let a provider-graph (resp. client-
graph) be a subgraph of G such that its nodes are a set of connected providers (resp. clients)
of G, its edges are the edges of G between those nodes, and it is maximal (i.e. no other
provider-graph and client-graph, respectively, contains it). By abuse of notation, we say
that a graph is h-independent-dominating if and only if the set of its providers represent an
h-independent-dominating set.

Assume that the system stabilizes such that dynamics stop and providers are neither
overloaded nor underloaded. Consequently, for any node, nbHops does not change over time
and remains equal to h. We show that starting from any possible configuration, the algorithm
converges to a configuration of L. The following Lemma shows that a non-independent
subgraph converges to an h-independent-dominating set.

Lemma 5.1. A subgraph P of l nodes that is provider-subgraph becomes h-independent-
dominating at the latest at 2δl time after stabilization.

Proof. The longest convergence time is reached when all nodes react simultaneously: they
all send messages and receive them at the same time, they all discover providers in their
neighborhood... Indeed, a provider-subgraph P contains smaller provider-subgraphs when
larger than two nodes. Consequently, included subgraphs can be solved in parallel which
might speed up the convergence to the h-independent-dominating set (and at least not slow
it down). We focus on the worst case that is when all nodes react simultaneously. By the
tie-breaker node ID, all nodes of P become clients except the node i that owns the largest
ID. Later on, the neighbors of i remain client while other nodes switch back simultaneously
to the provider state, and so on. Clearly, the worst case scenario is when P is a line of size
l where nodes are ordered with increasing IDs. Since the delay to send a message is upper
bounded by δ so as its transmission delay, this leads to an h-independent-dominating set at
the latest at time 2δl after stabilization time.

Next Lemma says that an initially non-independent subgraph that becomes h-dominating-
independent remains h-dominating-independent.

RR n
�

6052

12 Gramoli & Kermarrec & Le Merrer & Neveux

Lemma 5.2. If a provider-subgraph P becomes h-independent-dominating, its c-providers
form an h-independent-dominating after a finite amount of time.

Proof. On the one hand, when a provider becomes client, one of its neighbor j outside of P
(and originally a client) may switch to the provider state. However, this potential change
does not affect the rest of the graph P and the conflicting region induced by P is still solved.
On the other hand, by definition of the provider-subgraph, any neighbor k (outside of P) of
a remaining provider of P can only be a client. Consequently, it will never switch its state to
provider since it already knows a provider in its neighborhood. Finally, after an additional
delay of ∆ all providers become c-providers.

The following Lemma states that a non-dominating subgraph converges to a stable h-
independent-dominating set.

Lemma 5.3. If a subgraph C is a client-subgraph at time t = 2δn after stabilization, then
its c-providers form an h-independent-dominating set at the latest at time t + ∆.

Proof. By definition, the client-subgraph is independent at time t. Moreover, Lemma 5.1
and Lemma 5.2 show that there is no non-independent subgraph in G at time t. There are
two cases: either C is already a dominating set because all of its nodes are neighbors of some
providers in G (but outside graph C), or C is non-dominating. In the former case, the proof
is straightforward, while in the latter case at least one node switches its state to become a
provider. More precisely, after a timeout, some nodes become providers, say at time t. At
time t + δ all have sent a message and by time t + 2δ they all have successfully received
all messages sent by their neighbors. Consequently, at time t + ∆, at most one provider
(the one with the lowest ID) among all its neighbors becomes a c-provider and C becomes
h-independent-dominating.

Finally, the following Theorem concludes the proof that SONDe converges to an h-
independent-dominating set after system stabilization.

Theorem 5.4. SONDe converges.

Proof. By Lemma 5.1 and Invariant 5.2, we know that an initially non-independent sub-
graph converges to a set of c-providers forming an h-independent-dominating set. Finally,
Lemma 5.3 shows that a non-dominant subgraph converges also to a set of c-providers form-
ing an h-independent-dominating set in a finite amount of time. To conclude this shows
that the SONDe converges to a legitimate configuration.

6 Evaluation

6.1 Experimental setup

To evaluate SONDe performance, we implemented SONDe using PeerSim [13], a discrete
event/cycle based simulator, well-suited for large-scale networks. To assess the independence

INRIA

SONDe 13

of SONDe to the underlying structure, we created undirected unstructured peer to peer
overlays using three different topologies. We do not model the queuing delays nor packet
losses.

Topologies The Figures presented in the following of this paper are based on three types of
well known topologies. Experiments were driven up to 1,000,000 nodes; for practical consid-
erations the following results are based on 10,000 node networks. Scalability considerations
are specifically addressed in Section 7.

The first topology we consider is a simple 2-dimensional overlay, where each peer is
connected to 3 to 6 (average of 3.8) other peers that are ”close” (in terms of the cartesian
distance) from itself in the 2-D space. This topology is particularly useful to visually validate
the homogeneous repartition of the replicas and to observe the impact of local load events on
the rest of the overlay in terms of replication reaction. More generally, the mapping between
the logical and physical topologies would minimize in practice the overall communication
latencies in a real world implementation.

The second considered topology is a homogeneous random network, where each node
has a constant number of neighbors, chosen uniformly at random. A node chooses another
one as neighbor (selected uniformly at random) if the contacted node does not have already
the maximum number of edges. Otherwise, the process keeps going until each node fills its
view. We use a view of size 4.

The last topology is representative of the so-called scale free topologies and is based
on the Barabási and Albert model [1]. Large scale networks with node degrees following a
power law, as the Internet, are nowadays intensively used to validate practical approaches.
Peers have between 2 and 230 neighbors, with an average of 3.99.

For the three considered topologies, each peer has log N neighbors on average, leading
to an equivalent number of edges (around 20,000). This provides a fair comparison on the
output results.

We call a round the time needed by all peers of the overlay to accomplish their func-
tion check.

We evaluate the algorithms along three metrics: (i) the number of rounds required to
converge to a stabilized configuration; (ii) the reaction to load variations in term of number
of created replicas; (iii) the percentage of peers able to access a non overloaded replica under
their current nbHops (satisfied peers), despite load variations, or constant arrival/departure
of overlay nodes (churn).

6.2 h-hops max access replication algorithm

h (the predefined max hop bound) is set to 4 in the following simulations.
Figure 2 presents the convergence starting from a replica-free network to a stable number

of replicas, under an extreme scenario where 20% of the overlay peers run their function check
simultaneously at each round (the rest of the peers act asynchronously). Despite such an
extreme setting, only a few number of rounds are necessary to reach a stable state. Recall

RR n
�

6052

14 Gramoli & Kermarrec & Le Merrer & Neveux

that a stable state is reached when a h-independent-dominating set is achieved, thus any
peer i has a replica in N h

i and when no replica has another one in N h
i ; As predicted by the

proof of Section 5, the experimental analysis shows that SONDe converges. The cumulative
distribution function presented on Figure 3 confirms this; a distance of 0 hop, simply means
that the current peer is itself a replica and therefore uses its own replica when needed.

The left part of Figure 4 visually depicts the homogeneity of the replica distribution
(bigger dots), on the 2-dimensional generated overlay, where peers are homogeneously dis-
tributed.

The second point highlighted in Figure 2 is that the number of created replicas, which
satisfies the h-independent-dominating set, varies according to the underlying topology, even
with a similar average of neighbors (and same number of edges). This is directly related
to the diameter of the overlays: small diameter overlays trigger less replica creation than
larger diameter overlays, because a function check in N h

i reaches more peers. Indeed, it is
verified experimentally, starting from the scale free topology (lowest diameter overlay of our
experiments) to the largest one (2-D): lowest diameter overlays, for an equivalent number
of peers and connectivity, have higher degree nodes. These nodes act as gateways, as they
provide their important set of neighbors and give access to more peers within the same
hop-radius.

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10

re

pl
ic

as

Time

2−D
Homogeneous

Scale Free

Figure 2: Convergence toward a stable state, 20% of peers simultaneously checking N h
i to create/remove

a replica, 10,000 2-D peer unstructured overlay

6.3 Load reactive replication algorithm

In order to simulate the load on each replica, we associate each replica with the number of
maximal simultaneous access it can handle. We also apply a load pattern to the overlay,

INRIA

SONDe 15

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

P
er

ce
nt

ag
e

of
 p

ee
rs

Number of hops to a replica

cdf

Figure 3: CDF of the distance between the peers and their replica, h=4, 10,000 2-D peer unstructured
overlay

Figure 4: Distribution of the replicas on a 2-D overlay; Left: no load applied, Right overloaded region in
the square overlay, h=4, 10,000 peer unstructured overlay

RR n
�

6052

16 Gramoli & Kermarrec & Le Merrer & Neveux

by increasing and decreasing the number of peers using the provided service. Figure 5
depicts the number of replicas created in response to the load variation (gradual increase
from round 1000 to round 5500 where all peers are simultaneously querying a replica). We
considered three replica capacities: 5, 10 and 25 active clients per replica. The number of
clients that are likely to use a replica (client attached to this replica) is not upper bounded,
as messages that simply check the presence or the availability of a replica are not resource
consuming. underloadedThreshold and overloadedThreshold are set to 30% and 70% of the
previous value, that is 3 and 7 peers simultaneously use the service as the maximum replica
capacity is set to 10. As expected, when a replica is able to serve many peers, it takes more
time to saturate it as illustrated by the evolution of the replication rate. When the load
decreases, the reactive algorithm suppresses underloaded replicas for the sake of resources
saving. Once load picks have disappeared, the system reaches a stabilized configuration
quickly.

Reactivity highly depends on the parameters overloadThreshold . The lower its value, the
more reactive the system is to load increase, preventing earlier replicas to be fully saturated.
Obviously, this comes at the price of potentially more resource wastes, due to the creation
of not fully used replicas.

In the rest of the experiments, we keep 10 active clients per replica. Figure 6 shows
the increase of the number of replicas under the same load pattern, for the three topologies
introduced earlier. underloadedThreshold is set to 10%. This value allows a quicker conver-
gence towards a stable state (around t=6500) for the 2-D compared to Figure 5. This leaves
more replicas in the system when load decreases as the load has to be very low to trigger
replica deletion for resources saving.

We observe that the curves based on 2-D and homogeneous topologies evolve nearly
similarly. The scale free curve is a bit noisier: the stabilization time is increased. This
is due to the fact that the configuration of replicas placement is harder to reach on this
topology in presence of an important number of replicas, as the neighborhood of each peer
is wider.

We observe on Figure 7, a similar evolution of the load for the three topologies. We
focus on the percentage of peers which are able to find a non overloaded replica in N nbHops

i .
Note that this is a constraint, as the percentage is theoretically higher in N h

i (recall that
nbHops ≤ h). We observe that the percentage of satisfied peers is close to 100% at any
time, despite sudden increases. The unavailability peaks are noticeable in the scale free
case, corresponding in large decreases of the number of replicas that can be observed on
Figure 6.

This overall good behavior comes from the fact that the peers generally have several
replicas in N nbHops

i (thus have a greater chance to find a non saturated provider), coupled
with the high reactivity of the replication algorithm.

An important parameter as far as load increase is concerned is to what extent the repli-
cation degree remains localized to the overloaded part of the network. We observed on the
right hand side of Figure 4 that the increase of replica density is circumvented to the affected
area only. Replicas are naturally created in the loaded zone, while no impact on the rest of

INRIA

SONDe 17

the overlay is observed. More specifically, a load event in a part of the overlay is absorbed
by its direct neighborhood and thus do not trigger, as a side-effect, a global reorganization
of the overlay replicas over the system.

Churn To illustrate the behavior of the algorithm under churn, we impose a constant
peer arrival and departure in the system. Stutzbach et al. [18] highlighted that session
lengths in P2P system are consistent across systems such as Gnutella, Kad, BitTorrent:
almost all nodes have left after one day. In order to apply a realistic churn in our cycle-
based simulations, we take the session length for half of the peers; after 30 minutes, all the
peers have left the overlay, constantly replaced by new ones. A cycle in our simulations
correspond to 1 second, we have thus a churn of 0.055% the peers per round. When the
number of neighbors of a peer falls under the predefined minimum value, the peer looks for
another contact peer as new neighbor. Figure 8 shows the impact of such a configuration on
the proportion of node having a replica in their h-vicinity in the three considered topologies.
The curves present the percentage of peers that have found a replica within N h

i , starting
from a network replica-free. We observed that only a few rounds are required in make the
rate of unsatisfied peers to lie within 1%, regardless of the topologie. The churn is stopped
at round 1000 and we observe that the system converges quickly to a stable configuration
in which all peers are satisfied.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000
 0

 1000

 2000

 3000

 4000

 5000

 6000

pe

er
s

us
in

g
th

e
se

rv
ic

e

re

pl
ic

as

Time

peers
5

10
25

Figure 5: Replica creations in reaction to load varaiations, under different replica capacities, h=4, in a
10,000 node, 2-D unstructured overlay

RR n
�

6052

18 Gramoli & Kermarrec & Le Merrer & Neveux

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000
 0

 1000

 2000

 3000

 4000

 5000

 6000

pe

er
s

us
in

g
th

e
se

rv
ic

e

re

pl
ic

as

Time

peers
2−D

Homogeneous
Scale Free

Figure 6: Evolution of the number of replicas in the overlay under replica usage variation, h=4 in a 10,000
node unstructured overlay

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000
 0

 20

 40

 60

 80

 100

pe

er
s

us
in

g
th

e
se

rv
ic

e

%
 o

f p
ee

rs
 w

ith
 a

 n
on

 o
ve

rlo
ad

ed
 r

ep
lic

a

Time

peers
2−D

Homogeneous
Scale Free

Figure 7: Percentage of satisfied peers (able to reach a replica within nHops) under usage variation, h=4
in a 10,000 node unstructured overlay

INRIA

SONDe 19

 90

 92

 94

 96

 98

 100

 0 200 400 600 800 1000 1200

%
 o

f p
ee

rs
 w

ith
 a

 r
ep

lic
a

in
 h

Time

2−D
Scale Free

Homogeneous
No churn

Figure 8: Percentage of satisfied peers (able to reach a replica within N h
i) under constant peer arrivals

and departures (Churn stopped at t=1000)in a 10,000 node unstructured overlay

7 Discussion

SONDe has been designed with simplicity in mind and does not require any specific overlay
structure. We presented the algorithm in the context of a single service duplication. We
believe however that several replicas could be launched in parallel in order to provide the
access to different services or data on the same overlay network. In this section, we discuss
some of the open issues related to the deployment of SONDe.

Scalability Although we presented the results obtained in a 10,000 nodes in the paper, we
scaled up the simulation to 100,000 and 1,000,000 peers in the 2-D topology. The number
of created replicas on a non loaded network was respectively 2434 and 24363 (249 replicas
on a 10,000 peers network for the plotted runs), and show a linear increase of the number
of replicas in the size of the system.

Neighborhood exploration In this paper, we did not make any specific assumption on
the exploring method used to search a replica in a peer neighborhood during a function check.
Several approaches could be considered differing by the traditional trade-off between latency
and overhead. Basic search techniques such as flooding in unstructured peer to peer overlays,
are expensive in terms of overhead [12], techniques like Expanding Ring [12] or Random
Breadth-First-Search [6] with a fixed TTL could for example be used to significantly improve
the overall performance. As an alternative, in order to reduce the number of messages,
replicas could advertise their presence in N h

i , carrying a distance information increased at

each hop, in order from their neighbors to evaluate if the N nbHops
i condition is satisfied. Such

RR n
�

6052

20 Gramoli & Kermarrec & Le Merrer & Neveux

a reactive heuristic would avoid each standard peer to periodically perform a neighborhood
check. Obviously the value of h impacts on the performance of the neighborhood exploration.

Adaptivity to system characteristics Our experiments showed that SONDe, regardless
of the topology, provides a good resilience to churn. The plotted experiment (Figure 9)
represents a worst case scenario, as it was driven on a network without peers accessing
replicas (without load); the overlay thus contains a minimal replica number, compared to
a loaded network where replicas are added to keep the accurate level of quality of service.
The number of replicas created by the Load reactive replication algorithm thus increases
the probability of finding a replica facing connectivity losses induced by churn. Part of
the future work includes the study of the complexity of SONDe to target stringent 100%
availability at any time.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000
 0

 1000

 2000

 3000

 4000

 5000

 6000

pe

er
s

us
in

g
th

e
se

rv
ic

e

re

pl
ic

as
Time

peers
whole neighborhood
minimum load 10%

Figure 9: Evolution of the number of replicas in the overlay under service usage variation, on a 10,000
peer scale free overlay

In the context of low diameter overlays, represented in our experiments by the scale free
graph, Figure 9 highlights two points:

� Without the bound on the number of direct neighbors to which an order of nbHops-
change is forwarded (highest curve), the number of created replicas is more important.
No mechanism for resource saving is triggered in the system, as the occupation rate
of the replicas stays just above the minimal load threshold of 10%. The system thus
reaches a stable state, but with a useless number of replicas, that justifies our heuristic.

� The second curve has to be compared to the scale free curve of Figure 6. The minimal
load threshold is set to 10%, instead of 30%, thus triggering less replicas deletion.

INRIA

SONDe 21

This helps the system to react more smoothly to the load variations, and to decrease
convergence time.

To conclude on parameter setting, the general idea is that the more we look for replication
optimality, that is minimizing the number of replicas while accessing a sufficient level of
quality of service, the higher the complexity, and the longer the convergence to reach such
a state.

The fact that SONDe does not make any assumption on the underlying topology, because
only reacting based on a neighborhood observation, it can thus be implemented on any
type of overlay, and adapts gracefully to connectivity and load pattern changes. However,
studying heuristics for specific network topologies could be an interesting future research
direction.

8 Conclusion

In this paper, we have presented the design, analysis and evaluation of the replica placement
algorithm SONDe for large-scale dynamic systems. SONDe provides a h-hops max access
algorithm, intended to enable a peer to find a replica in a maximum of h hops away from
itself. SONDe also implements a load reactive algorithm, intended to avoid the replica
saturation under service load variations. SONDe ensures the automatic creation and deletion
of replicas following the load variations in the network. The algorithms ensures that the
impact remains limited to the network area affected by the load variation, while preserving
the max search bound for any peer to a service provider. Simulations results demonstrate
the ability of the algorithms to adapt to variations occurring in the peers environment.
To conclude, SONDe is a simple and efficient system to distribute a set of highly accessed
replicas, in a fully self-adaptive fashion regardless of the underlying network infrastructure.

References

[1] R. Albert. Statistical mechanics of complex networks. PhD thesis, University of Notre
Dame, Notre Dame, Indiana 46556, 2001.

[2] Paola Alimonti and Tiziana Calamoneri. Improved approximations of independent
dominating set in bounded degree graphs. In Workshop on Graph-Theoretic Concepts
in Computer Science, pages 2–16, 1996.

[3] Yan Chen, Randy H. Katz, and John D. Kubiatowicz. Dynamic replica placement
for scalable content delivery. In Peer-to-Peer Systems: First International Workshop,
(IPTPS’02), pages 306–318, Cambridge, MA, USA, March 2002.

[4] Peter Druschel and Antony Rowstron. Past: A large-scale, persistent peer-to-peer
storage utility. In HOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems, page 75, Washington, DC, USA, 2001. IEEE Computer Society.

RR n
�

6052

22 Gramoli & Kermarrec & Le Merrer & Neveux

[5] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[6] Fletcher G.H.L., Sheth H.A., and Borner K. Unstructured peer-to-peer networks: Topo-
logical properties and search performance, 2004.

[7] S. Jamin, Cheng Jin, Yixin Jin, D. Raz, Y. Shavitt, and Lixia Zhang. On the placement
of internet instrumentation. In Proceedings of the 19th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM’00), volume 1, pages 295–
304. IEEE, 2000.

[8] H. Jamjoom, S. Jamin, and K. Shin. Self-organizing network services, 1999.

[9] Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient distributed algorithm
for constructing small dominating sets. Distrib. Comput., 15(4):193–205, 2002.

[10] Xiaohua Jia, Deying Li, Xiaodong Hu, and DingZhu Du. Optimal placement of web
proxies for replicated web servers in the internet. The Computer Journal, 44(5):329–339,
2001.

[11] Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating set ap-
proximation. Distrib. Comput., 17(4):303–310, 2005.

[12] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured
peer-to-peer networks. In Proc. 2002 ACM SIGMETRICS conference (2-page poster),
2002.

[13] http://peersim.sourceforge.net/.

[14] Lili Qiu, V.N. Padmanabhan, and G.M. Voelker. On the placement of web server
replicas. In 20th Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings (INFOCOM’01, volume 3, pages 1587–1596. IEEE, 2001.

[15] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.
A scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer com-
munications, pages 161–172, New York, NY, USA, 2001. ACM Press.

[16] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In Middleware ’01: Proceedings of
the IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg,
pages 329–350, London, UK, 2001. Springer-Verlag.

[17] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In SIGCOMM
’01: Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 149–160, New York, NY, USA, 2001.
ACM Press.

INRIA

SONDe 23

[18] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. In
Internet Measurement Conference, Rio de Janeiro, Brazil, October 2006. Proceedings
of ACM SIGCOMM/USENIX.

[19] M. Szymaniak, G. Pierre, and M. van Steen. Latency-driven replica placement. In
Proceedings of the Symposium on Applications and the Internet, pages 399–405, 2005.

[20] Chunlin Yang and Jie Wu. Dominating-set-based searching in peer-to-peer networks.
In Grid and Cooperative Computing, pages 332–339, 2003.

RR n
�

6052

24 Gramoli & Kermarrec & Le Merrer & Neveux

Algorithm 1 SONDe algorithm at node i

1: Prerequisite Functions:
2: setNbHops(k)i notifies its neighbors at nbHops and sets
3: the communication range of node i, nbHops , to k.
4: overloaded()i , underloaded()i, and provider()i return true if
5: the node i is overloaded, underloaded, or its status is provider ,
6: respectively, false otherwise.
7: findProvider(nbHops)i returns true if there is a node in
8: Ni

nbHops , false otherwise.
9: findOlderProvider(nbHops)i returns true if there is an older node

10: in Ni
nbHops, false otherwise.

11: becomeRegular()i sets the status of node i to a non-provider.
12: becomeProvider()i sets the status of node i to provider .
13: getNbrAvg()i returns the average of the nbHops values of the peer’s neighbors

14: Initial State:
15: h, nbHops ← 4
16: overloadedRounds ,underloadedRounds ,unchangedRounds ← 0
17: overloadedThreshold ← 0.7
18: underloadedThreshold ← 0.3
19: maxOverloadedThreshold ← 1
20: maxUnderloadedThreshold ← 2
21: unchangedThreshold ← 5

22: Algorithm:
23: if ¬replica() then
24: if ¬findProvider(nbHops) then
25: becomeProvider()
26: else
27: unchangedRounds ← unchangedRounds + 1

28: if unchangedRounds > unchangedThreshold then
29: nbHops ← getNbrAvg()

30: else
31: if findOlderProvider(nbHops) then
32: becomeRegular()
33: else
34: if overloaded() then
35: overloadedRounds ← overloadedRounds + 1
36: underloadedRounds ← 0
37: else if underloaded() then
38: underloadedRounds ← underloadedRounds + 1
39: overloadedRounds ← 0
40: else
41: overloadedRounds ← 0 // normal state

42: underloadedRounds ← 0
43: if overloadedRounds > maxOverloadedRounds then
44: setNbHops(nbHops − 1)
45: overloadedRounds ← 0
46: else if underloadedRounds > maxUnderloadedRounds then
47: setNbHops(nbHops + 1)
48: underloadedRounds ← 0

INRIA

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)��������� �	��
�

���������� ��� ���

ISSN 0249-6399

	Introduction
	Background on distributed replica placement
	Design Rationale
	System Model
	Problem Statement

	SONDe Algorithm
	SONDe: h-hops max access replication algorithm
	Load reactive replication algorithm

	Convergence to an h-Independent-Dominating set of Providers
	Evaluation
	Experimental setup
	h-hops max access replication algorithm
	Load reactive replication algorithm

	Discussion
	Conclusion

