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Abstra
t: In this paper, we dis
uss and 
ompare several poli
ies to pla
e repli
as in tree networks,subje
t to server 
apa
ity and QoS 
onstraints. The 
lient requests are known beforehand, whilethe number and lo
ation of the servers are to be determined. The standard approa
h in theliterature is to enfor
e that all requests of a 
lient be served by the 
losest server in the tree.We introdu
e and study two new poli
ies. In the �rst poli
y, all requests from a given 
lient arestill pro
essed by the same server, but this server 
an be lo
ated anywhere in the path from the
lient to the root. In the se
ond poli
y, the requests of a given 
lient 
an be pro
essed by multipleservers.One major 
ontribution of this paper is to assess the impa
t of these new poli
ies on the totalrepli
ation 
ost. Another important goal is to assess the impa
t of server heterogeneity, both froma theoreti
al and a pra
ti
al perspe
tive. In this paper, we establish several new 
omplexity results,and provide several e�
ient polynomial heuristi
s for NP-
omplete instan
es of the problem. Theseheuristi
s are 
ompared to an absolute lower bound provided by the formulation of the problemin terms of the solution of an integer linear program.Key-words: Repli
a pla
ement, tree networks, a

ess poli
y, s
heduling, 
omplexity results,heuristi
s, heterogeneous 
lusters.



Stratégies de pla
ement de répliques sur des arbresRésumé : Dans 
e rapport nous présentons et 
omparons plusieurs politiques de pla
ement derépliques sur des arbres, prenant en 
ompte à la fois des 
ontraintes liées à la 
apa
ité de traitementde 
haque serveur et des 
ontraintes de type QoS (qualité de servi
e). Les requêtes des 
lientssont 
onnues avant exé
ution, alors que le nombre et l'empla
ement des répliques (serveurs) sontà déterminer par l'algorithme de pla
ement. L'appro
he 
lassique impose que toutes les requêtesd'un 
lient donné soient traitées par un seul serveur, à savoir le plus pro
he du 
lient dans l'arbre.Nous introduisons deux nouvelles politiques de pla
ement. Dans la première, 
haque 
lient atoujours un serveur unique, mais 
e dernier peut être situé n'importe où sur le 
hemin qui mènedu 
lient à la ra
ine dans l'arbre. Ave
 la deuxième politique, les requêtes d'un même 
lientpeuvent être traitées par plusieurs serveurs sur 
e même 
hemin.Nous montrons que 
es deux nouvelles politiques de pla
ement sont à même de réduire fortementle 
oût total de la répli
ation. Un autre obje
tif de 
e travail est l'analyse de l'impa
t del'hétérogénéité de la plate-forme, à la fois d'un point de vue théorique et pratique. Sur leplan théorique, nous établissons plusieurs résultats de 
omplexité, dans les 
adres homogèneet hétérogène, pour l'appro
he 
lassique et les nouvelles politiques. Sur le plan pratique, nous
on
evons des heuristiques polynomiales pour les instan
es 
ombinatoires du problème. Nous
omparons les performan
es de 
es heuristiques en les rapportant à une borne inférieure absoluesur le 
oût total de la répli
ation; 
ette borne est obtenue par relaxation d'un programme linéaireen nombre entiers qui 
ara
térise la solution optimale du problème.Mots-
lés : Pla
ement de répliques, réseaux en arbre, ordonnan
ement, 
omplexité, heuristiques,grappes de 
al
ul hétérogènes.
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4 A. Benoit, V. Rehn, Y. Robert1 Introdu
tionIn this paper, we 
onsider the general problem of repli
a pla
ement in tree networks. Informally,there are 
lients issuing requests to be satis�ed by servers. The 
lients are known (both theirposition in the tree and their number of requests), while the number and lo
ation of the serversare to be determined. A 
lient is a leaf node of the tree, and its requests 
an be served by oneor several internal nodes. Initially, there are no repli
a; when a node is equipped with a repli
a,it 
an pro
ess a number of requests, up to its 
apa
ity limit. Nodes equipped with a repli
a, also
alled servers, 
an only serve 
lients lo
ated in their subtree (so that the root, if equipped with arepli
a, 
an serve any 
lient); this restri
tion is usually adopted to enfor
e the hierar
hi
al natureof the target appli
ation platforms, where a node has knowledge only of its parent and 
hildren inthe tree.The rule of the game is to assign repli
as to nodes so that some optimization fun
tion isminimized. Typi
ally, this optimization fun
tion is the total utilization 
ost of the servers. Ifall the nodes are identi
al, this redu
es to minimizing the number of repli
as. If the nodes areheterogeneous, it is natural to assign a 
ost proportional to their 
apa
ity (so that one repli
a on anode 
apable of handling 200 requests is equivalent to two repli
as on nodes of 
apa
ity 100 ea
h).The 
ore of the paper is devoted to the study of the previous optimization problem, 
alledRepli
a Pla
ement in the following. Additional 
onstraints are introdu
ed, su
h as guarantee-ing some Quality of Servi
e (QoS): the requests must be served in limited time, thereby prohibitingtoo remote or hard-to-rea
h repli
a lo
ations. Also, the �ow of requests through a link in the tree
annot ex
eed some bandwidth-related 
apa
ity. We fo
us on optimizing the total utilization 
ost(or repli
a number in the homogeneous 
ase). There is a bun
h of possible extensions: dealing withseveral obje
t types rather than one, in
luding 
ommuni
ation time into the obje
tive fun
tion,taking into a

ount an update 
ost of the repli
as, and so on. For the sake of 
larity we devotea spe
ial se
tion (Se
tion 8) to formulate these extensions, and to des
ribe whi
h situations ourresults and algorithms 
an still apply to.We point out that the distribution tree (
lients and nodes) is �xed in our approa
h. Thiskey assumption is quite natural for a broad spe
trum of appli
ations, su
h as ele
troni
, ISP, orVOD servi
e delivery. The root server has the original 
opy of the database but 
annot serve all
lients dire
tly, so a distribution tree is deployed to provide a hierar
hi
al and distributed a

essto repli
as of the original data. On the 
ontrary, in other, more de
entralized, appli
ations (e.g.allo
ating Web mirrors in distributed networks), a two-step approa
h is used: �rst determinea �good� distribution tree in an arbitrary inter
onne
tion graph, and then determine a �good�pla
ement of repli
as among the tree nodes. Both steps are interdependent, and the problem ismu
h more 
omplex, due to the 
ombinatorial solution spa
e (the number of 
andidate distributiontrees may well be exponential).Many authors deal with theRepli
a Pla
ement optimization problem, and we survey relatedwork in Se
tion 9. The obje
tive of this paper is twofold: (i) introdu
ing two new a

ess poli
iesand 
omparing them with the standard approa
h; (ii) assessing the impa
t of server heterogeneityon the problem.In most, if not all, papers from the literature, all requests of a 
lient are served by the 
losestrepli
a, i.e. the �rst repli
a found in the unique path from the 
lient to the root in the distributiontree. This Closest poli
y is simple and natural, but may be unduly restri
tive, leading to a wasteof resour
es. We introdu
e and study two di�erent approa
hes: in the �rst one, we keep therestri
tion that all requests from a given 
lient are pro
essed by the same repli
a, but we allow
lient requests to �traverse� servers so as to be pro
essed by other repli
as lo
ated higher in thepath (
loser to the root). We 
all this approa
h the Upwards poli
y. The trade-of to explore is thefollowing: the Closest poli
y assigns repli
as at proximity of the 
lients, but may need to allo
atetoo many of them if some lo
al subtree issues a great number of requests. The Upwards poli
ywill ensure a better resour
e usage, load-balan
ing the pro
ess of requests on a larger s
ale; thepossible drawba
k is that requests will be served by remote servers, likely to take longer time topro
ess them. Taking QoS 
onstraints into a

ount would typi
ally be more important for theUpwards poli
y. INRIA



Strategies for Repli
a Pla
ement in Tree Networks 5In the se
ond approa
h, we further relax a

ess 
onstraints and grant the possibility for a 
lientto be assigned several repli
as. With thisMultiple poli
y, the pro
essing of a given 
lient's requestswill be split among several servers lo
ated in the tree path from the 
lient to the root. Obviously,this poli
y is the most �exible, and likely to a
hieve the best resour
e usage. The only drawba
kis the (modest) additional 
omplexity indu
ed by the fa
t that requests must now be tagged withthe repli
a server ID in addition to the 
lient ID. As already stated, one major obje
tive of thispaper is to 
ompare these three a

ess poli
ies, Closest , Upwards and Multiple.The se
ond major 
ontribution of the paper is to assess the impa
t of server heterogeneity,both from a theoreti
al and a pra
ti
al perspe
tive. Re
ently, several variants of the Repli
aPla
ement optimization problem with the Closest poli
y have been shown to have polynomial
omplexity. In this paper, we establish several new 
omplexity results. Those for the homogeneous
ase are surprising: for the simplest instan
e without QoS nor bandwidth 
onstraints, the Multiplepoli
y is polynomial (as Closest) while Upwards is NP-hard. The three poli
ies turn out to be NP-
omplete for heterogeneous nodes, whi
h provides yet another example of the additional di�
ultiesindu
ed by resour
e heterogeneity. On the more pra
ti
al side, we provide an optimal algorithmfor the Multiple problem with homogeneous nodes, and several heuristi
s for all three poli
ies inthe heterogeneous 
ase. We 
ompare these heuristi
s through simulations 
ondu
ted for probleminstan
es without QoS nor bandwidth 
onstraints. Another 
ontribution is that we are able toassess the absolute performan
e of the heuristi
s, not just 
omparing one to the other, owing to alower bound provided by a new formulation of the Repli
a Pla
ement problem in terms of aninteger linear program: the relaxation of this program to the rational numbers provides a lowerbound to the solution 
ost (whi
h is not always feasible).The rest of the paper is organized as follows. Se
tion 2 is devoted to a detailed presentation ofthe target optimization problems. In Se
tion 3 we introdu
e the three a

ess poli
ies, and we givea few motivating examples. Next in Se
tion 4 we pro
eed to the 
omplexity results for the simplestversion of the Repli
a Pla
ement problem, both in the homogeneous and heterogeneous 
ases.Se
tion 5 deals with the formulation for the Repli
a Pla
ement problem in terms of an integerlinear program. In Se
tion 6 we introdu
e several polynomial heuristi
s to solve the Repli
aPla
ement problem with the di�erent a

ess poli
ies. These heuristi
s are 
ompared throughsimulations, whose results are analyzed in Se
tion 7. Se
tion 8 dis
usses various extensions to theRepli
a Pla
ement problem while Se
tion 9 is devoted to an overview of related work. Finally,we state some 
on
luding remarks in Se
tion 10.2 FrameworkThis se
tion is devoted to a pre
ise statement of the Repli
a Pla
ement optimization problem.We start with some de�nitions and notations. Next we outline the simplest instan
e of the problem.Then we des
ribe several types of 
onstraints that 
an be added to the formulation.2.1 De�nitions and notationsWe 
onsider a distribution tree T whose nodes are partitioned into a set of 
lients C and a set ofnodes N . The set of tree edges is denoted as L. The 
lients are leaf nodes of the tree, while N isthe set of internal nodes. It would be easy to allow 
lient-server nodes whi
h play both the ruleof a 
lient and of an internal node (possibly a server), by dividing su
h a node into two distin
tnodes in the tree, 
onne
ted by an edge with zero 
ommuni
ation 
ost.A 
lient i ∈ C is making requests to database obje
ts. For the sake of 
larity, we restri
t thepresentation to a single obje
t type, hen
e a single database. We deal with several obje
t typesin Se
tion 8.A node j ∈ N may or may not have been provided with a repli
a of the database. Nodesequipped with a repli
a (i.e. servers) 
an pro
ess requests from 
lients in their subtree. In otherwords, there is a unique path from a 
lient i to the root of the tree, and ea
h node in this path iseligible to pro
ess some or all the requests issued by i when provided with a repli
a.RR n° 6012



6 A. Benoit, V. Rehn, Y. RobertLet r be the root of the tree. If j ∈ N , then 
hildren(j) is the set of 
hildren of node j. If k 6= ris any node in the tree (leaf or internal), parent(k) is its parent in the tree. If l : k → k′ = parent(k)is any link in the tree, then su

(l) is the link k′ → parent(k′) (when it exists). Let An
estors(k)denote the set of an
estors of node k, i.e. the nodes in the unique path that leads from k up tothe root r (k ex
luded). If k′ ∈ An
estors(k), then path[k → k′] denotes the set of links in the pathfrom k to k′; also, subtree(k) is the subtree rooted in k, in
luding k.We introdu
e more notations to des
ribe our system in the following.� Clients i ∈ C � Ea
h 
lient i (leaf of the tree) is sending ri requests per time unit. For su
hrequests, the required QoS (typi
ally, a response time) is denoted qi, and we need to ensurethat this QoS will be satis�ed for ea
h 
lient.� Nodes j ∈ N � Ea
h node j (internal node of the tree) has a pro
essing 
apa
ity Wj , whi
his the total number of requests that it 
an pro
ess per time-unit when it has a repli
a. A
ost is also asso
iated to ea
h node, s
j , whi
h represents the pri
e to pay to pla
e a repli
aat this node. With a single obje
t type it is quite natural to assume that s
j is proportionalto Wj : the more powerful a server, the more 
ostly. But with several obje
ts we may usenon-related values of 
apa
ity and 
ost.� Communi
ation links l ∈ L � The edges of the tree represent the 
ommuni
ation linksbetween nodes (leaf and internal). We assign a 
ommuni
ation time 
omml on link l whi
his the time required to send a request through the link. Moreover, BWl is the maximumnumber of requests that link l 
an transmit per time unit.2.2 Problem instan
esFor ea
h 
lient i ∈ C, let Servers(i) ⊆ N be the set of servers responsible for pro
essing at leastone of its requests. We do not spe
ify here whi
h a

ess poli
y is enfor
ed (e.g. one or multipleservers), we defer this to Se
tion 3. Instead, we let ri,s be the number of requests from 
lient ipro
essed by server s (of 
ourse, ∑

s∈Servers(i) ri,s = ri). In the following, R is the set of repli
as:
R = {s ∈ N| ∃i ∈ C , s ∈ Servers(i)} .2.2.1 ConstraintsThree main types of 
onstraints are 
onsidered.Server 
apa
ity � The 
onstraint that no server 
apa
ity 
an be ex
eeded is present in all vari-ants of the problem:

∀s ∈ R,
∑

i∈C|s∈Servers(i) ri,s ≤ WsQoS � Some problem instan
es enfor
e a quality of servi
e: the time to transfer a request froma 
lient to a repli
a server is bounded by a quantity qi. This translates into:
∀i ∈ C, ∀s ∈ Servers(i), ∑

l∈path[i→s]


omml ≤ qi.Note that it would be easy to extend the QoS 
onstraint so as to take the 
omputation 
ostof a request in addition to its 
ommuni
ation 
ost. This former 
ost is dire
tly related tothe 
omputational speed of the server and the amount of 
omputation (in �ops) required forea
h request.Link 
apa
ity � Some problem instan
es enfor
e a global 
onstraint on ea
h 
ommuni
ation link
l ∈ L:

∑

i∈C,s∈Servers(i)|l∈path[i→s]

ri,s ≤ BWl

INRIA



Strategies for Repli
a Pla
ement in Tree Networks 72.2.2 Obje
tive fun
tionThe obje
tive fun
tion for the Repli
a Pla
ement problem is de�ned as:Min∑

s∈R

s
sAs already pointed out, it is frequently assumed that the 
ost of a server is proportional to its
apa
ity, so in some problem instan
es we let s
s = Ws.2.2.3 Simpli�ed problemsWe de�ne a few simpli�ed problem instan
es in the following:QoS=distan
e � We 
an simplify the expression of the 
ommuni
ation time in the QoS 
on-straint and only 
onsider the distan
e (in number of hops) between a 
lient and its server(s).The QoS 
onstraint is then
∀i ∈ C, ∀s ∈ Servers(i), d(i, s) ≤ qiwhere the distan
e d(i, s) = |path[i → s]| is the number of 
ommuni
ation links between iand s.No QoS � We may further simplify the problem, by 
ompletely suppressing the QoS 
onstraints.In this 
ase, the servers 
an be anywhere in the tree, their lo
ation is indi�erent to the 
lient.No link 
apa
ity � Wemay 
onsider the problem assuming in�nite link 
apa
ity, i.e. not bound-ing the total tra�
 on any link in an admissible solution.Only server 
apa
ities � The problem without QoS and link 
apa
ities redu
es to �nding avalid solution of minimal 
ost, where �valid� means that no server 
apa
ity is ex
eeded. Wename Repli
a Cost this fundamental problem.Repli
a 
ounting � We 
an further simplify the previous Repli
a Cost problem in the homo-geneous 
ase: with identi
al servers, the Repli
a Cost problem amounts to minimize thenumber of repli
as needed to solve the problem. In this 
ase, the storage 
ost s
j is set to 1for ea
h node. We 
all this problem Repli
a Counting.3 A

ess poli
iesIn this se
tion we review the usual poli
ies enfor
ing whi
h repli
a is a

essed by a given 
lient.Consider that ea
h 
lient i is making ri requests per time-unit. There are two s
enarios for thenumber of servers assigned to ea
h 
lient:Single server � Ea
h 
lient i is assigned a single server server(i), that is responsible for pro
essingall its requests.Multiple servers � A 
lient i may be assigned several servers in a set Servers(i). Ea
h server

s ∈ Servers(i) will handle a fra
tion ri,s of the requests. Of 
ourse ∑

s∈Servers(i) ri,s = ri.To the best of our knowledge, the single server poli
y has been enfor
ed in all previous ap-proa
hes. One obje
tive of this paper is to assess the impa
t of this restri
tion on the performan
eof data repli
ation algorithms. The single server poli
y may prove a useful simpli�
ation, but may
ome at the pri
e of a non-optimal resour
e usage.In the literature, the single server strategy is further 
onstrained to the Closest poli
y. Here,the server of 
lient i is 
onstrained to be the �rst server found on the path that goes from i upwardsto the root of the tree. In parti
ular, 
onsider a 
lient i and its server server(i). Then any otherRR n° 6012



8 A. Benoit, V. Rehn, Y. Robert
lient node i′ residing in the subtree rooted in server(i) will be assigned a server in that subtree.This forbids requests from i′ to �traverse� server(i) and be served higher (
loser to the root in thetree).We relax this 
onstraint in the Upwards poli
y whi
h is the general single server poli
y. Noti
ethat a solution to Closest always is a solution to Upwards , thus Upwards is always better thanClosest in terms of the obje
tive fun
tion. Similarly, the Multiple poli
y is always better thanUpwards , be
ause it is not 
onstrained by the single server restri
tion.The following se
tions illustrate the three poli
ies. Se
tion 3.1 provides simple examples wherethere is a valid solution for a given poli
y, but none for a more 
onstrained one. Se
tion 3.2 showsthat Upwards 
an be arbitrarily better than Closest , while Se
tion 3.3 shows that Multiple 
anbe arbitrarily better than Upwards . We 
on
lude with an example showing that the 
ost of anoptimal solution of the Repli
a Counting problem (for any poli
y) 
an be arbitrarily higherthan the obvious lower bound
⌈

∑

i∈C ri

W

⌉

,where W is the server 
apa
ity.3.1 Impa
t of the a

ess poli
y on the existen
e of a solutionWe 
onsider here a very simple instan
e of the Repli
a Counting problem. In this examplethere are two nodes, s1 being the unique 
hild of s2, the tree root (see Figure 1). Ea
h node 
anpro
ess W = 1 request.
(b)(a) (
) W = 1

1

s2

s1

1 1

s2

s1

s2

s1

2Figure 1: A

ess poli
ies.� If s1 has one 
lient 
hild making 1 request, the problem has a solution with all three poli
ies,pla
ing a repli
a on s1 or on s2 indi�erently (Figure 1(a)).� If s1 has two 
lient 
hildren, ea
h making 1 request, the problem has no more solution withClosest . However, we have a solution with both Upwards and Multiple if we pla
e repli
ason both nodes. Ea
h server will pro
ess the request of one of the 
lients (Figure 1(b)).� Finally, if s1 has only one 
lient 
hild making 2 requests, only Multiple has a solution sin
ewe need to pro
ess one request on s1 and the other on s2, thus requesting multiple servers(Figure 1(
)).This example demonstrates the usefulness of the new poli
ies. The Upwards poli
y allows to�nd solutions when the 
lassi
al Closest poli
y does not. The same holds true for Multiple versusUpwards . In the following, we 
ompare the 
ost of solutions obtained with di�erent strategies.3.2 Upwards versus ClosestIn the following example, we 
onstru
t an instan
e of Repli
a Counting where the 
ost ofthe Upwards poli
y is arbitrarily lower than the 
ost of the Closest poli
y. We 
onsider the treenetwork of Figure 2, where there are 2n + 2 internal nodes, ea
h with Wj = W = n, and 2n + 1
lients, ea
h with ri = r = 1.With the Upwards poli
y, we pla
e three repli
as in s2n, s2n+1 and s2n+2. All requests 
an besatis�ed with these three repli
as. INRIA
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s1

1 1

s2n

s2n+2

s2n+1

W = n

1Figure 2: Upwards versus ClosestWhen 
onsidering the Closest poli
y, �rst we need to pla
e a repli
a in s2n+2 to 
over its 
lient.Then,� Either we pla
e a repli
a on s2n+1. In this 
ase, this repli
a is handling n requests, but thereremain n other requests from the 2n 
lients in its subtree that 
annot be pro
essed by s2n+2.Thus, we need to add n repli
as between s1..s2n.� Otherwise, n−1 requests of the 2n 
lients in the subtree of s2n+1 
an be pro
essed by s2n+2in addition to its own 
lient. We need to add n + 1 extra repli
as among s1, s2, . . . , s2n.In both 
ases, we are pla
ing n+2 repli
as, instead of the 3 repli
as needed with the Upwards poli
y.This proves that Upwards 
an be arbitrary better than Closest on some Repli
a Countinginstan
es.3.3 Multiple versus UpwardsIn this se
tion we build an instan
e of the Repli
a Counting problem where Multiple is twi
ebetter than Upwards . We do not know whether there exist instan
es of Repli
a Countingwhere the performan
e ratio of Multiple versus Upwards is higher than 2 (and we 
onje
ture thatthis is not the 
ase). However, we also build an instan
e of the Repli
a Cost problem (withheterogeneous nodes) where Multiple is arbitrarily better than Upwards .We start with the homogeneous 
ase. Consider the instan
e of Repli
a Counting representedin Figure 3, with 3n + 1 nodes of 
apa
ity Wj = W = 2n. The root r has n + 1 
hildren, n nodeslabeled s1 to sn and a 
lient with ri = n. Ea
h node sj has two 
hildren nodes, labeled vj and wjfor 1 ≤ j ≤ n. Ea
h node vj has a unique 
hild, a 
lient with ri = n requests; ea
h node wj has aunique 
hild, a 
lient with ri = n + 1 requests.The Multiple poli
y assigns n + 1 repli
as, one to the root r and one to ea
h node sj . Therepli
a in sj 
an pro
ess all the 2n + 1 requests in its subtree ex
ept one, whi
h is pro
essed bythe root.For the Upwards poli
y, we need to assign one repli
a to r, to 
over its 
lient. This repli
a 
anpro
ess n other requests, for instan
e those from the 
lient 
hild of v1. We need to pla
e at leasta repli
a in s1 or in w1, and 2(n − 1) repli
as in vj and wj for 2 ≤ j ≤ n. This leads to a total of
2n repli
as, hen
e a performan
e fa
tor 2n

n+1 whose limit is to 2 when n tends to in�nity.We now pro
eed to the heterogeneous 
ase. Consider the instan
e of Repli
a Cost rep-resented in Figure 4, with 3 nodes s1, s2 and s3, and 2 
lients. The 
apa
ity of s1 and s2 isW1 = W2 = n while that of s3 is W3 = Kn, where K is arbitrarily large. Re
all that in theRepli
a Cost problem, we let s
j = Wj for ea
h node. Multiple assigns 2 repli
as, in s1 and s2,hen
e has 
ost 2n. The Upwards poli
y assigns a repli
a to s1 to 
over its 
hild, and then 
annotRR n° 6012
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n + 1 n n + 1

s1 s2

W = 2nr

v2v1

n + 1

s
n

v
n

n

w1 w2 w
n

n nFigure 3: Multiple versus Upwards , homogeneous platforms.

n + 1

s1, W1 = n

s2, W2 = n

s3, W3 = Kn

n − 1Figure 4: Multiple versus Upwards , heterogeneous platforms.use s2 to pro
ess the requests of the 
hild in its subtree. It must pla
e a repli
a in s3, hen
e a�nal 
ost n + Kn = (K + 1)n arbitrarily higher than Multiple.3.4 Lower bound for the Repli
a Counting problemObviously, the 
ost of an optimal solution of the Repli
a Counting problem (for any poli
y)
annot be lower than the obvious lower bound ⌈∑

i∈C
ri

W

⌉, where W is the server 
apa
ity. Indeed,this 
orresponds to a solution where the total request load is shared as evenly as possible amongthe repli
as.The following instan
e of Repli
a Counting shows that the optimal 
ost 
an be arbitrarilyhigher than this lower bound. Consider Figure 5, with n +1 nodes of 
apa
ity Wj = W , The root
r has n + 1 
hildren, n nodes labeled s1 to sn, and a 
lient with ri = W . Ea
h node sj has aunique 
hild, a 
lient with ri = W/n (assume without loss of generality that W is divisible by n).The lower bound is ⌈∑

i∈C
ri

W

⌉

= 2W
W = 2. However, ea
h of the three poli
ies Closest , UpwardsandMultiple will assign a repli
a to the root to 
over its 
lient, and will then need n extra repli
as,one per 
lient of sj , 1 ≤ j ≤ n. The total 
ost is thus n + 1 repli
as, arbitrarily higher than thelower bound. INRIA
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s1

W/n W/n

r

s
n

WFigure 5: The lower bound 
annot be approximated for Repli
a Counting.All the examples in Se
tions 3.1 to 3.4 give an insight of the 
ombinatorial nature of theRepli
a Pla
ement optimization problem, even in its simplest variants Repli
a Cost andRepli
a Counting. The following se
tion 
orroborates this insight: most problems are shownNP-hard, even though some variants have polynomial 
omplexity.4 Complexity resultsOne major goal of this paper is to assess the impa
t of the a

ess poli
y on the problem withhomogeneous vs heterogeneous servers. We restri
t to the simplest problem, namely the Repli
aCost problem introdu
ed in Se
tion 2.2.3. We 
onsider a tree T = C ∪ N , no QoS 
onstraint,and in�nite link 
apa
ities. Ea
h 
lient i ∈ C has ri requests; ea
h node j ∈ N has pro
essing
apa
ity Wj and storage 
ost s
j = Wj . This simple problem 
omes in two �avors, either withhomogeneous nodes (Wj = W for all j ∈ N ), or with heterogeneous nodes (servers with di�erent
apa
ities/
osts).In the single server version of the problem, we need to �nd a server server(i) for ea
h 
lient
i ∈ C. Let Servers be the set of servers 
hosen among the nodes in N . The only 
onstraint is thatserver 
apa
ities 
annot be ex
eeded: this translates into

∑

i∈C,server(i)=j

ri ≤ Wj for all j ∈ Servers.The obje
tive is to �nd a valid solution of minimal storage 
ost ∑

j∈Servers Wj . Note that withhomogeneous nodes, the problem redu
es to �nd the minimum number of servers, i.e. to theRepli
a Counting problem. As outlined in Se
tion 3, there are two variants of the single serverversion of the problem, namely the Closest and the Upwards strategies.In the Multiple poli
y with multiple servers per 
lient, let Servers be the set of servers 
hosenamong the nodes in N ; for any 
lient i ∈ C and any node j ∈ N , let ri,j be the number of requestsfrom i that are pro
essed by j (ri,j = 0 if j /∈ Servers). We need to ensure that
∑

j∈N

ri,j = ri for all i ∈ C.The 
apa
ity 
onstraint now writes
∑

i∈C

ri,j ≤ Wj for all j ∈ Servers,while the obje
tive fun
tion is the same as for the single server version.The de
ision problems asso
iated with the previous optimization problems are easy to formu-late: given a bound on the number of servers (homogeneous version) or on the total storage 
ost(heterogeneous version), is there a valid solution that meets the bound?RR n° 6012



12 A. Benoit, V. Rehn, Y. RobertHomogeneous HeterogeneousClosest polynomial [2, 9℄ NP-
ompleteUpwards NP-
omplete NP-
ompleteMultiple polynomial NP-
ompleteTable 1: Complexity results for the di�erent instan
es of the Repli
a Cost problem.Table 1 
aptures the 
omplexity results. These 
omplexity results are all new, ex
ept for theClosest/Homogeneous 
ombination. The NP-
ompleteness of the Upwards/Homogeneous 
ase
omes as a surprise, sin
e all previously known instan
es were shown to be polynomial, usingdynami
 programming algorithms. In parti
ular, the Closest/Homogeneous variant remains poly-nomial when adding 
ommuni
ation 
osts [2℄ or QoS 
onstraints [9℄. Previous NP-
ompletenessresults involved general graphs rather than trees, and the 
ombinatorial nature of the problem
ame from the di�
ulty to extra
t a good repli
a tree out of an arbitrary 
ommuni
ation graph.Here the tree is �xed, but the problem remains 
ombinatorial due to resour
e heterogeneity.4.1 With homogeneous nodes and the Multiple strategyTheorem 1. The instan
e of the Repli
a Counting problem with the Multiple strategy 
an besolved in polynomial time.Proof. We outline below an optimal algorithm to solve the problem. The proof of optimality isquite te
hni
al, so the reader may want to skip it at �rst reading.4.1.1 Algorithm for multiple serversWe propose a greedy algorithm to solve the Repli
a Counting problem. Let W be the totalnumber of requests that a server 
an handle.This algorithm works in three passes: �rst we sele
t the nodes whi
h will have a repli
a handlingexa
tly W requests. Then a se
ond pass allows us to sele
t some extra servers whi
h are ful�llingthe remaining requests. Finally, we need to de
ide for ea
h server how many requests of ea
h 
lientit is pro
essing.We assume that ea
h node i knows its parent parent(i) and its 
hildren 
hildren(i) in the tree.We introdu
e a new variable whi
h is the �ow 
oming up in the tree (requests whi
h are notalready ful�lled by a server). It is denoted by �owi for the �ow between i and parent(i). Initially,
∀i ∈ C �owi = ri and ∀i ∈ N �owi = −1. Moreover, the set of repli
as is empty in the beginning:
repl = ∅.Pass 1� We greedily sele
t in this step some nodes whi
h will pro
ess W requests and whi
hare as 
lose to the leaves as possible. We pla
e a repli
a on su
h nodes (see Algorithm 1).Pro
edure pass1 is 
alled with r (root of the tree) as a parameter, and it goes down the treere
ursively in order to 
ompute the �ows. When a �ow ex
eeds W, we pla
e a repli
a sin
ethe 
orresponding server will be fully used, and we remove the pro
essed requests from the�ow going upwards.At the end, if flowr = 0 or (flowr ≤ W and r /∈ repl), we have an optimal solution sin
eall repli
as whi
h have been pla
ed are fully used and all requests are satis�ed by adding arepli
a in r if flowr 6= 0. In this 
ase we skip pass 2 and go dire
tly to pass 3.Otherwise, we need some extra repli
as sin
e some requests are not satis�ed yet, and theroot 
annot satisfy all the remaining requests. To pla
e these extra repli
as, we go throughpass 2.Pass 2� In this pass, we need to sele
t the nodes where to add repli
as. To do so, while there aretoo many requests going up to the root, we sele
t the node whi
h 
an pro
ess the highestnumber of requests, and we pla
e a repli
a there. The number of requests that a nodeINRIA
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edure pass1 (node s ∈ N )begin
flows = 0;for i ∈ 
hildren(s) doif flowi == −1 then pass1(i); // Re
ursive 
all.

flows = flows + flowi;endif flows ≥ W then flows = flows −W; repl = {s} ∪ repl;end Algorithm 1: Pro
edure pass1
j ∈ N 
an eventually pro
ess is the minimum of the �ows between j and the root r, denoted
uflowj (for useful �ow). Indeed, some requests may have no server yet, but they might bepro
essed by a server on the path between j and r, where a repli
a has been pla
ed in pass 1.Algorithm 2 details this pass.If we exit this pass with finish = −1, this means that we have tried to pla
e repli
as onall nodes, but this solution is not feasible sin
e there are still some requests whi
h are notpro
essed going up to the root. In this 
ase, the original problem instan
e had no solution.However, if we su

eed to pla
e repli
as su
h that flowr = 0, we have a set of repli
as whi
hsu

eed to pro
ess all requests. We then go through pass 3 to assign requests to servers, i.e.to 
ompute how many requests of ea
h 
lient should be pro
essed by ea
h server.while flowr 6= 0 do
freenode = N \ repl;if freenode == ∅ then finish = −1; exit the loop;// At ea
h step, assign 1 repli
a and re-
ompute �ows.
child = 
hildren(r); uflowr = flowr;while child! = ∅ doremove j from child;

uflowj = min(flowj , uflowparent(j));
child = child ∪ 
hildren(j);end// The useful �ows have been 
omputed, sele
t the max.maxu�ow=0;for j ∈ freenode doif uflowj > maxuflow then maxuflow = uflowj; maxnode = j;endif maxuflow 6= 0 then
repl = repl ∪ {maxnode};// Update the �ows upwards.for j ∈ An
estors(maxnode) ∪ {maxnode} do flowj = flowj − maxuflow;endelse finish = −1; exit the loop;end Algorithm 2: Pass 2Pass 3� This pass is in fa
t straightforward, starting from the leaves and distributing the requeststo the servers from the bottom until the top of the tree. We de
ide for instan
e to a�e
trequests from 
lients starting to the left. Pro
edure pass3 is 
alled with r (root of the tree)as a parameter, and it goes down the tree re
ursively (
.f. Algorithm 3). For i ∈ C, r′iis the number of requests of i not yet a�e
ted to a server (initially r′i = ri). ws,i is thenumber of requests of 
lient i a�e
ted to server s ∈ N , and ws ≤ W is the total number ofRR n° 6012



14 A. Benoit, V. Rehn, Y. Robertrequests a�e
ted to s. C(s) is the set of 
lients in subtree(s) whi
h still have some requestsnot a�e
ted. Initially, C(i) = {i} for i ∈ C, and C(s) = ∅ otherwise.Note that a server whi
h was 
omputing W requests in pass 1 may end up 
omputing fewerrequests if one of its des
endants in the tree has earned a repli
a in pass 2. But this doesnot a�e
t the optimality of the result, sin
e we keep the same number of repli
as.pro
edure pass3 (node s ∈ N )begin
ws = 0;for i ∈ 
hildren(s) doif C(i) = ∅ then pass3(i); // Re
ursive 
all.

C(s) = C(s) ∪ C(i);endif s ∈ repl thenfor i ∈ C(s) doif r′(i) ≤ W− ws then C(s) = C(s) \ {i}; ws,i = r′i; ws = ws + r′i; r′i = 0;endif C(s) 6= ∅ then Let i ∈ C(s); x = W− ws; r′i = r′i − x; ws,i = x; ws = W;endend Algorithm 3: Pro
edure pass3The proof in Se
tion 4.1.3 shows the equivalen
e between the solution built by this algorithmand any optimal solution, thus proving the optimality of the algorithm. The following exampleillustrates the step by step exe
ution of the algorithm.4.1.2 ExampleFigure 6(a) provides an example of network on whi
h we are pla
ing repli
as with the Multiplestrategy. The network is thus homogeneous and we �x W = 10.Pass 1 of the algorithm is quite straightforward to unroll, and Figure 6(b) indi
ates the �owon ea
h link and the saturated repli
as are the bla
k nodes.During pass 2, we sele
t the nodes of maximum useful �ow. Figure 6(
) represents these useful�ows; we see that node n4 is the one with the maximum useful �ow (7), so we assign it a repli
aand update the useful �ows. All the useful �ows are then redu
ed down to 1 sin
e there is only 1request going through the root n1. The �rst node of maximum useful �ow 1 to be sele
ted is n2,whi
h is set to be a repli
a of pass 2. The �ow at the root is then 0 and it is the end of pass 2.Finally, pass 3 a�e
ts the servers to the 
lients and de
ides whi
h requests are served by whi
hrepli
a (Figure 6(d)). For instan
e, the 
lient with 12 requests shares its requests between n10 (10requests) and n2 (2 requests). Requests are a�e
ted from the bottom of the tree up to the top.Note that the root n1, even though it was a saturated repli
a of pass 1, has only 5 requests topro
eed in the end.4.1.3 Proof of optimalityLet Ropt be an optimal solution to an instan
e of the problem. The 
ore of the proof 
onsists intransforming this solution into an equivalent 
anoni
al optimal solution Rcan. We will then showthat our algorithm is building this 
anoni
al solution, and thus it is produ
ing an optimal solution.Ea
h server s ∈ Ropt is serving ws,i requests of 
lient i ∈ subtree(s) ∩ C, and
ws =

∑

i∈subtree(s)∩C

ws,i ≤ W.For ea
h i ∈ C, ws,i = 0 if s ∈ N is not a repli
a, and, ∑

s∈Ancests(i) ws,i = ri. INRIA



Strategies for Repli
a Pla
ement in Tree Networks 15

��
��
��
��

������
��
��
��

����

(a) Initial network

n1

n2 n3 n4

2

2

n5

n6

n7 n8

n9

n10 n11

12

1

1

9

7

W = 10 n1

n2 n3 n4

2

2

n5

n6

n7 n8

n9

n10 n11

12

1

1

9

7 7

2 2

24

6

2 12

1

1

7 7

4

1

(b) Pass 1
3

7
4

8

4

37 3

3

4

2

2

12

1

1

9

7 7 3

4

n1

n2 n3 n4

2

2

n5

n6

n7 n8

n9

n10 n11

12

1

1

9

7 7

2 2

24

2 (
) Pass 2
3

(d) Pass 3
2

2

10

2

1

1

1

4

3

7 3
4

8

92

6
1

1

1

1

1

1

1 4 3

333

4

4

8

7

2

Figure 6: Algorithm for the Repli
a Counting problem with the Multiple strategy.We de�ne the �ow of node k, �owk, by the number of requests going through this node up toits parents. Thus, for i ∈ C, flowi = ri, while for a node s ∈ N ,
flows =

∑

i∈
hildren(s) flowi − ws.The total �ow going through the tree, tf low, is de�ned in a similar way, ex
ept that we do notremove from the �ow the requests pro
essed by a repli
a, i.e. tf lows =
∑

i∈
hildren(s) tf lowi. Wethus have
tf lows =

∑

i∈subtree(s)∩C

ri.These variables are 
ompletely de�ned by the network and the optimal solution Ropt.A �rst lemma shows that it is possible to 
hange request assignments while keeping an optimalsolution. The �ows need to be re
omputed after any su
h modi�
ation.Lemma 1. Let s ∈ N ∩ Ropt be a server su
h that ws < W.� If tf lows ≥ W, we 
an 
hange the request assignment between repli
as of the optimal solution,in su
h a way that ws = W.RR n° 6012



16 A. Benoit, V. Rehn, Y. Robert� Otherwise, we 
an 
hange the request assignment so that ws = tf lows.Proof. First we point out that the 
lients in subtree(s) 
an all be served by s, and sin
e Ropt isa solution, these requests are served by a repli
a somewhere in the tree. We do not modify theoptimality of the solution by 
hanging the ws,i, it just a�e
ts the �ows of the solution. Thus, fora given 
lient i ∈ subtree(s)∩C, if there is a repli
a s′ 6= s on the path between i and the root, we
an 
hange the assignment of the requests of 
lient i. Let x = max(ws′,i,W−ws). Then we move
x requests, i.e. ws′,i = ws′,i − x and ws,i = ws,i + x. From the de�nition of tf lows, we obtain theresult, if we move all possible requests to s until there are no more requests in the subtree or until
s is pro
essing W requests.We now introdu
e a new de�nition, 
ompletely independent from the optimal solution butrelated to the tree network. The 
anoni
al �ow is obtained by distinguishing nodes whi
h re
eivea �ow greater than W from the other nodes. We 
ompute the 
anoni
al �ow cflow of the tree,independently of the repli
a pla
ement, and de�ne a subset of nodes whi
h are saturated, SN . Wealso 
ompute the number of saturated nodes in subtree(k), denoted nsnk, for any node k ∈ C ∪Nof the tree.For i ∈ C, cflowi = ri and nsni = 0, and we then 
ompute re
ursively the 
anoni
al �ows fornodes s ∈ N . Let fs =

∑

i∈
hildren(s) cflowi and xs =
∑

i∈
hildren(s) nsni. If fs ≥ W then s ∈ SN ,
cflows = fs −W and nsns = xs + 1. Otherwise, s is not saturated, cflows = fs and nsns = xs.We 
an dedu
e from these de�nitions the following results:Proposition 1. A non saturated node always has a 
anoni
al �ow being less than W:
∀s ∈ N \ SN cflows < WLemma 2. For all nodes s ∈ C ∪ N , cflows = tf lows − nsns ×W.Corollary 1. For all nodes s ∈ C ∪ N , tf lows ≥ nsns ×W.Proof. Proposition 1 is trivial due to the de�nition of the 
anoni
al �ow.Lemma 2 
an be proved re
ursively on the tree.� This property is true for the 
lients: for i ∈ C, nsni = 0 and tf lowi = cflowi = ri.� Let s ∈ N , and let us assume that the proposition is true for all 
hildren of s. Then,

∀j ∈ 
hildren(s) cflowj = tf lowj − nsnj ×W.� If s /∈ SN , nsns =
∑

j∈
hildren(s) nsnj and
cflows =

∑

j∈
hildren(s) cflowj =
∑

j∈
hildren(s)(tf lowj − nsnj ×W) = tf lows − nsns ×W� If s ∈ SN , nsns =
(

∑

j∈
hildren(s) nsnj

)

+ 1 and
cflows =

∑

j∈
hildren(s) cflowj −W =
∑

j∈
hildren(s)(tf lowj − nsnj ×W) −W
= tf lows − (nsns − 1) ×W−W = tf lows − nsns ×Wwhi
h proves the result. Corollary 1 is trivially dedu
ed from Lemma 2 sin
e cflow is a positivefun
tion.We also show that it is always possible to move a repli
a into a free server whi
h is one of itsan
estors in the tree, while keeping an optimal solution:Proposition 2. Let Ropt be an optimal solution, and let s ∈ Ropt. If ∃s′ ∈ An
estors(s) \ Roptthen R′

opt = {s′} ∪ Ropt \ {s} is also an optimal solution.
INRIA
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ement in Tree Networks 17Proof. s′ 
an handle all requests whi
h were pro
essed by s sin
e s ∈ subtree(s′). We just needto rede�ne ws′,i = ws,i for all i ∈ C and then ws,i = 0.We are now ready to transform Ropt into a new optimal solution, Rsat, by redistributing therequests among the repli
as and moving some repli
as, in order to pla
e a repli
a at ea
h saturatednode, and a�e
ting W requests to this repli
a. This transformation is done starting at the leavesof the tree, and 
onsidering all nodes of SN . Nothing needs to be done for the leaves (the 
lients)sin
e they are not in SN .Let us 
onsider s ∈ SN , and assume that the optimal solution has already been modi�ed topla
e a repli
a, and assign it W requests, on all nodes in subSN = SN ∩ subtree(s) \ {s}.We need to di�erentiate two 
ases:1. If s ∈ Ropt, we do not need to move any repli
a. However, if ws 6= W, we 
hange theassignment of some requests while keeping the same repli
as in order to obtain a workloadof W on server s. We do not remove requests from the saturated servers of subSN whi
hhave already been �lled. Corollary 1 ensures that tf lows ≥ nsns ×W, and (nsns − 1) ×Wrequests should not move sin
e they are a�e
ted to the nsns − 1 servers of subSN . Thereare thus still more than W requests of 
lients of subtree(s) whi
h 
an possibly be moved on
s using Lemma 1.2. If s /∈ Ropt, we need to move a repli
a of Ropt and pla
e it in s without 
hanging theoptimality of the solution. We di�erentiate two sub
ases.(a) If ∃s1 ∈ subtree(s) ∩ Ropt \ SN , then the repli
a pla
ed on s1 
an be moved in s byapplying Proposition 2. Then, if ws 6= W, we apply 
ase 1 above to saturate the server.(b) Otherwise, all the repli
as pla
ed in subtree(s) are also in SN , and the �ow 
onsumedby the already modi�ed optimal algorithm is exa
tly (nsns − 1) ×W. It is easy to seethat the �ow (of the optimal solution) at s is exa
tly equal to the total �ow minus the
onsumed �ow. Therefore, flows = tf lows − (nsns − 1)×W, and with the appli
ationof Corollary 1, flows ≥ W.The idea now 
onsists in a�e
ting the requests of this �ow to node s by removing workfrom the repli
as upwards to the root, and rearrange the remaining requests to removeone repli
a. The �ow flows is going upwards to be pro
essed by some of the nrs repli
asin An
estors(s) ∩ Ropt, denoted s1, ..., snrs

, s1 being the 
losest node from s. We 
anremove W of these requests from the �ow and a�e
t them to a new repli
a pla
ed in
s. Let wsk,s =

∑

j∈subtree(s)∩C wsk,j. We have ∑

k=1..nrs
wsk,s = flows. We move theserequests from sk to s, starting with k = 1. Thus, after the modi�
ation, ws1,s = 0. Itis however possible that ws1

6= 0 sin
e s1 may pro
ess requests whi
h are not 
omingfrom subtree(s). In this 
ase, we are sure that we have removed enough requests from
sk, k = 2..nrs whi
h 
an instead pro
ess requests still in 
harge of s1. We 
an thenremove the repli
a initially pla
ed in s1.This way, we have not 
hanged the assignment on repli
as in subSN , but we havepla
ed a repli
a in s whi
h is pro
essing W requests. Sin
e we have at the same timeremoved the �rst repli
a on the path from s to the root (s1), we have not 
hanged thenumber of repli
as and the solution is still optimal.On
e we have applied this pro
edure up to the root, we have an optimal solution Rsat in whi
hall nodes of SN have been pla
ed a repli
a and are pro
essing W requests. We will not 
hange theassignment of these repli
as anymore in the following. Free nodes in the new solution are 
alledF-nodes, while repli
as whi
h are not in SN are 
alled PS-nodes, for partially saturated.In a next step, we further modify the Rsat optimal solution in order to obtain what we 
allthe 
anoni
al solution Rcan. To do so, we 
hange the request assignment of the PS-nodes: we�saturate� some of them as mu
h as we 
an and we integrate them into the subset of nodes SN ,rede�ning the cflow a

ordingly. At the end of the pro
ess, SN = Rcan.The cflow is still the �ow whi
h has not been pro
essed by a saturated node in the subtree,and thus we 
an express it in a more general way:

cflows = tf lows −
∑

s′∈SN∩subtree(s) ws′RR n° 6012



18 A. Benoit, V. Rehn, Y. RobertNote that this is totally equivalent to the previous de�nition while we have not modi�ed SN .We also introdu
e a new �ow de�nition, the non-saturated �ow of s, nsflows, whi
h 
ounts therequests going through node s and not served by a saturated server anywhere in the tree. Thus,
nsflows = cflows −

∑

i∈
hildren(s)∩C

∑

s′∈An
estors(s)∩SN

ws′,i.This �ow represents the requests that 
an potentially be served by s while keeping all nodes ofSN saturated.Lemma 3. In a saturated optimal solution, there 
annot exist a PS-node in the subtree of anotherPS-node.Proof. The non-saturated �ow is nsflows ≤ cflows sin
e we further remove from the 
anoni
al�ow some requests whi
h are a�e
ted upwards in the tree to some saturated servers.Let s ∈ Rsat \ SN be a PS-node. Its 
anoni
al �ow is cflows < W . It 
an potentially pro
essall the requests of the subtree whi
h are not a�e
ted to a saturated server upwards or downwardsin the tree, thus nsflows requests. Sin
e nsflows ≤ cflows < W , we 
an 
hange the requestassignment to assign all these nsflows requests to s, removing eventually some work from othernon-saturated repli
as upwards or downwards whi
h were pro
essing these requests. Thus, therepli
a on node s is pro
essing all the requests of subtree(s) whi
h are not pro
essed by saturatednodes.If there was a non saturated repli
a in subtree(s), it 
ould thus be removed sin
e all the requestsare pro
essed by s. This means that a solution with a PS-node in the subtree of another PS-nodeis not optimal, thus proving the lemma.At this point, we 
an move the PS-nodes as high as possible in Rsat. Let s be a PS-node. Ifthere is a free node s′ in An
estors(s) then we 
an move the repli
a from s to s′ using Proposition 2.Lemma 3 ensures that there are no other PS-nodes in subtree(s′).All further modi�
ations will only alter nodes whi
h have no PS-nodes in their an
estors. Wede�ne N ′ = {s|An
estors(s) \ SN = ∅}.Let s ∈ N ′. nsflows = cflows −
∑

i∈
hildren(s)∩C

∑

s′∈An
estors(s) ws′,i sin
e all an
estors of sare in SN . Thus,
nsflows =

∑

s′∈subtree(s)\SN

ws′ .By de�nition, ∀s ∈ N nsflows ≤ cflows. Moreover, if s /∈ SN , then nsflows = ws sin
esubtree(s) \ SN is redu
ed to s (no other PS-node under the PS-node s, from Lemma 3).We introdu
e a new �ow de�nition, the useful �ow, whi
h intuitively represents the number ofrequests that 
an possibly be pro
essed on s without removing requests from a saturated server.
uflows = min

s′∈An
estors(s)∪{s}
{cflows′}Lemma 4. Let s ∈ N ′. Then nsflows ≤ uflows.Proof. Let s′ ∈ An
estors(s). Sin
e s ∈ N ′, s′ ∈ SN .

cflows′ ≥ nsflows′ =
∑

s′′∈subtree(s′)\SN

ws′′But sin
e s ∈ subtree(s′), subtree(s) \ SN ⊆ subtree(s′) \ SN , hen
e nsflows ≤ nsflows′ . Notethat nsflow is a non de
reasing fun
tion (when going up the tree).Thus, ∀s′ ∈ An
estors(s) ∪ {s}, nsflows ≤ cflows′ , and by de�nition of the useful �ow,
nsflows ≤ uflows. INRIA



Strategies for Repli
a Pla
ement in Tree Networks 19Now we start the modi�
ation of the optimal solution in order to obtain the 
anoni
al solution.At ea
h step, we sele
t a node s ∈ N \ SN maximizing the useful �ow. If there are several nodesof identi
al uflow, we sele
t the �rst one in a depth-�rst traversal of the tree. We will provethat we 
an a�e
t uflows requests to this node without unsaturating any server of SN. s is then
onsidered as a saturated node, we re
ompute the 
anoni
al �ows (and thus the useful �ows) andreiterate the pro
ess until cflowr = 0, whi
h means that all the requests have been a�e
ted tosaturated servers.Let us explain how to reassign the requests in order to saturate s with uflows requests. Theidea is to remove some requests from An
estors(s) in order to saturate s, and then to saturate thean
estors of s again, by a�e
ting them some requests 
oming from other non saturated servers.First, we note that uflows ≤ cflowr = nsflowr. Thus,
uflows ≤

∑

s′∈N\SN

ws′ = ws +
∑

s′∈PS

ws′where PS is the set of non saturated nodes without s. Let x = uflows −ws. If x = 0, s is alreadysaturated. Otherwise, we need to reassign x requests to s. From the previous equation, we 
an seethat ∑

s′∈PS ws′ ≥ uflows − ws = x. There are thus enough requests handled by non saturatednodes whi
h 
an be passed to s.The number of requests of subtree(s) ∩ C handled by An
estors(s) is
∑

s′∈An
estors(s) ∑

i∈subtree(s)∩C

ws′,i = cflows − nsflowsby de�nition of the �ow. Or cflows −nsflows ≥ uflows −ws = x so there are at least x requeststhat s 
an take from its an
estors.Let a1 = parent(s), ..., ak = r be the an
estors of s. xj =
∑

i∈subtree(s)∩C waj ,i is the amount ofrequests that s 
an take from aj . We 
hoose arbitrary where to take the requests if ∑

j xj > x,and do not modify the assignment of the other requests. We thus assume in the following that
∑

j xj = x. Sin
e these xj requests are 
oming from a 
lient in subtree(s), we 
an assign themto s, and there are now only W − xj requests handled by aj , whi
h means that aj is temporarilyunsaturated. However, we have given x extra requests to s, hen
e s is pro
essing ws +x = uflowsrequests.We �nally need to reassign requests to aj , j = 1..k in order to saturate these nodes again,taking requests out of nodes in PS (non saturated nodes other than s). This is done iterativelystarting with j = 1 and going up to the root ak. At ea
h step j, we assume that aj′ , j
′ < j havealready been saturated again and we should not move requests away from them. However, we 
anstill eventually take requests away from aj′′ , j

′′ > j.In order to saturate aj , we need to take:� either requests from subtree(aj)∩C whi
h are 
urrently handled by aj′′ , j
′′ > j, but withoutmoving requests whi
h are already a�e
ted to s (i.e. ∑

j′′>j xj′′ );� or requests from non saturated servers in subtree(aj), ex
ept requests from s and requestsalready given to s that should not be moved any more (i.e. ∑

j′<j xj′ ).The number of requests that we 
an potentially a�e
t to aj is therefore:
X =

∑

s′∈subtree(aj)\SN\{s}

ws′ +
∑

i∈subtree(aj)∩C

∑

s′∈An
estors(aj)

ws′,i −
∑

j′<j

xj′ −
∑

j′′>j

xj′′Let us show that X ≥ xj . Then we 
an use these requests to saturate aj again.
cflowaj

= nsflowaj
+

∑

i∈subtree(aj)∩C

∑

s′∈An
estors(aj)

ws′,i = ws+X+
∑

j′<j

xj′+
∑

j′′>j

xj′′ = X+ws+x−xjBut cflowaj
≥ uflows and uflows − ws = x so

X = cflowaj
− ws − x + xj ≥ uflows − ws − x + xj = xjRR n° 6012
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c1 c2 c3

n1

n2

n
m

c3mFigure 7: The platform used in the redu
tion for Theorem 2.It is thus possible to saturate s and then keep its an
estors saturated. At this point, s be
omesa node of SN and we 
an re
ompute the 
anoni
al and non saturated �ows. We have removed
uflows requests whi
h were pro
essed by non saturated servers, so the cflow and nsflow of allan
estors of s, in
luding s, should be de
reased by uflows.In parti
ular, at the root, cflowr = cflowr − uflows, whi
h proves that the 
ontribution of son cflowr is uflows.In the last step of the proof, we show that the number of repli
as in the modi�ed 
anoni
alsolution at the end of the iteration Rcan = SN has exa
tly the same number of repli
as than Rsat.In the saturated solution, ea
h PS-node s is pro
essing nsflows requests, while in the 
anoni
alsolution, it is uflows. However, at every step when adding a saturated node s, we have uflowsgreater than any of the nsflows. It is thus easy to see that the number of nodes in the 
anoni
alsolution is less or equal to the number of nodes in the saturated solution. Sin
e the saturatedsolution is optimal, |Rcan| = |Rsat|, whi
h 
ompletes the proof.Our algorithm builds Rcan in polynomial time, whi
h assesses the 
omplexity of the problem.4.2 With homogeneous nodes and the Upwards strategyTheorem 2. The instan
e of the Repli
a Counting problem with the Upwards strategy isNP-
omplete in the strong sense.Proof. The problem 
learly belongs to the 
lass NP: given a solution, it is easy to verify inpolynomial time that all requests are served and that no server 
apa
ity is ex
eeded. To establishthe 
ompleteness in the strong sense, we use a redu
tion from 3-PARTITION [3℄. We 
onsider aninstan
e I1 of 3-PARTITION: given 3m positive integers a1, a2, . . . , a3m su
h that B/4 < ai < B/2for 1 ≤ i ≤ 3m, and ∑3m

i=1 ai = mB, 
an we partition these integers into m triples, ea
h of sum
B? We build the following instan
e I2 of Repli
a Counting (see Figure 7):� 3m 
lients ci with ri = ai for 1 ≤ i ≤ 3m.� m internal nodes nj with Wj = s
j = B for 1 ≤ j ≤ m.- The 
hildren of n1 are all the 3m 
lients ci, and its parent is n2.- For 2 ≤ j ≤ m, the only 
hild of nj is nj−1. For 1 ≤ j ≤ m − 1, the parent of nj is nj+1(hen
e nm is the root).Finally, we ask whether there exists a solution with total storage 
ost mB, i.e. with a repli
alo
ated at ea
h internal node. Clearly, the size of I2 is polynomial (and even linear) in the size of
I1. INRIA
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n2 n
m

n1

Figure 8: The platform used in the redu
tion for Theorem 3.We now show that instan
e I1 has a solution if and only if instan
e I2 does. Suppose �rst that
I1 has a solution. Let (ak1

, ak2
, ak3

) be the k-triplet in I1. We assign the three 
lients ck1
, ck2and ck3

to server nk. Be
ause ak1
+ ak2

+ ak3
= B, no server 
apa
ity is ex
eeded. Be
ause the mtriples partition the ai, all requests are satis�ed. We do have a solution to I2.Suppose now that I2 has a solution. Let Ik be the set of 
lients served by node nk if thereis a repli
a lo
ated at nk: then ∑

i∈Ik
ai ≤ B. The total number of requests to be satis�ed is

∑3m
i=1 ai = mB, and there are at most m repli
as of 
apa
ity B. Hen
e no set Ik 
an be empty,and ∑

i∈Ik
ai ≤ B for 1 ≤ k ≤ m. Be
ause B/4 < ai < B/2, ea
h Ik must be a triple. This leadsto the desired solution of I1.4.3 With heterogeneous nodesTheorem 3. All three instan
es of the Repli
a Cost problem with heterogeneous nodes areNP-
omplete.Proof. Obviously, the NP-
ompleteness of the Upwards strategy is a 
onsequen
e of Theorem 2.For the other two strategies, the problem 
learly belongs to the 
lass NP: given a solution, itis easy to verify in polynomial time that all requests are served and that no server 
apa
ity isex
eeded. To establish the 
ompleteness, we use a redu
tion from 2-PARTITION [3℄. We 
onsideran instan
e I1 of 2-PARTITION: given m positive integers a1, a2, . . . , am, does there exist a subset

I ⊂ {1, . . . , m} su
h that ∑

i∈I ai =
∑

i/∈I ai. Let S =
∑m

i=1 ai. We build the following instan
e
I2 of Repli
a Cost (see Figure 8):� m + 1 
lients ci with ri = ai for 1 ≤ i ≤ m and rm+1 = 1.� m + 1 internal nodes:- m nodes nj , 1 ≤ j ≤ m, with Wj = s
j = aj .- A root node r with Wr = s
r = S/2 + 1. - The only 
hild of nj is cj . The parent of nj is

r. The parent of cn+1 is r.Finally, we ask whether there exists a solution with total storage 
ost S +1. Clearly, the size of I2is polynomial (and even linear) in the size of I1. We now show that instan
e I1 has a solution ifand only if instan
e I2 does. The same redu
tion works for both strategies, Closest and Multiple.Suppose �rst that I1 has a solution. We assign a repli
a to ea
h node ni, i ∈ I, and one in theroot r. Client ci is served by ni if i ∈ I, and by the root r otherwise, i.e. if i /∈ I or if i = m + 1.The total storage 
ost is ∑

j∈I Wj + Wr = S + 1. Be
ause Wr = S/2 + 1 =
∑

i/∈I ri + rn+1, the
apa
ity of the root is not ex
eeded. Note that the server allo
ation is 
ompatible both with theClosest and Multiple poli
ies. In both 
ases, we have a solution to I2.RR n° 6012



22 A. Benoit, V. Rehn, Y. RobertSuppose now that I2 has a solution. Ne
essarily, there is a repli
a lo
ated in the root, otherwise
lient cn+1 would not be served. Let I be the index set of nodes nj , 1 ≤ j ≤ n, whi
h have beenallo
ated a repli
a in the solution of I2. For j /∈ I, there is no repli
a in node nj , hen
e allrequests of 
lient cj are pro
essed by the root, whose storage 
apa
ity is S/2 + 1. We derive that
∑

j /∈I rj ≤ S/2. Be
ause the total storage 
apa
ity is S + 1, the total storage 
apa
ity of nodes in
I is S/2. The proof is slightly di�erent for the two server strategies:� For the Closest strategy, all requests from a 
lient cj ∈ I are served by nj , hen
e ∑

j∈I rj ≤
S/2. Sin
e ∑

j∈I rj +
∑

j /∈I rj = S, we derive ∑

j∈I rj =
∑

j /∈I rj = S/2, hen
e a solution to
I2.� For the Multiple strategy, 
onsider a server j ∈ I. Let r′j be the number of requests from
lient cj served by nj, and r′′j be the number of requests from cj served by the root r (of
ourse rj = r′j + r′′j ). All requests from a 
lient cj , j /∈ I, are served by the root. Let
A =

∑

j∈I r′j , B =
∑

j∈I r′′j and C =
∑

j /∈I rj . The total storage 
ost is A + B + S/2 + 1,hen
e A + B ≤ S/2. We have seen that C ≤ S/2. But A + B + C = S, hen
e B = 0, and
A = C = S/2, hen
e a solution to I2.5 Linear programming formulationIn this se
tion, we express the Repli
a Pla
ement optimization problem in terms of an integerlinear program. We deal with the most general instan
e of the problem on a heterogeneous tree,in
luding QoS 
onstraints, and bounds on resour
e usage (both server and link 
apa
ities). Wederive a formulation for ea
h of the three server a

ess poli
ies, namely Closest , Upwards andMultiple. This is an important extension to a previous formulation due to [8℄.While there is no e�
ient algorithm to solve integer linear programs (unless P=NP), thisformulation is extremely useful as it leads to an absolute lower bound: we solve the integerlinear program over the rationals, using standard software pa
kages [1, 4℄. Of 
ourse the rationalsolution will not be feasible, as it assigns fra
tions of repli
as to server nodes, but it will providea lower bound on the storage 
ost of any solution. This bound will be very helpful to assess theperforman
e of the polynomial heuristi
s that are introdu
ed in Se
tion 6.5.1 Single serverWe start with single server strategies, namely the Upwards and Closest a

ess poli
ies. We needto de�ne a few variables:Server assignment� xj is a boolean variable equal to 1 if j is a server (for one or several 
lients)� yi,j is a boolean variable equal to 1 if j = server(i)� If j /∈ Ancests(i), we dire
tly set yi,j = 0.Link assignment� zi,l is a boolean variable equal to 1 if link l ∈ path[i → r] is used when 
lient i a

essesits server server(i)� If l /∈ path[i → r] we dire
tly set zi,l = 0.The obje
tive fun
tion is the total storage 
ost, namely ∑

j∈N s
jxj . We list below the 
on-straints 
ommon to the Closest and Upwards poli
ies: First there are 
onstraints for server andlink usage: INRIA



Strategies for Repli
a Pla
ement in Tree Networks 23� Every 
lient is assigned a server: ∀i ∈ C,
∑

j∈An
estors(i) yi,j = 1.� All requests from i ∈ C use the link to its parent: zi,i→parent(i) = 1� Let i ∈ C, and 
onsider any link l : j → j′ = parent(j) ∈ path[i → r]. If j′ = server(i) thenlink su

(l) is not used by i (if it exists). Otherwise zi,su

(l) = zi,l. Thus:
∀i ∈ C, ∀l : j → j′ = parent(j) ∈ path[i → r], zi,su

(l) = zi,l − yi,j′Next there are 
onstraints expressing that server 
apa
ities and link bandwidths 
annot beex
eeded:� The pro
essing 
apa
ity of any server 
annot be ex
eeded: ∀j ∈ N ,

∑

i∈C riyi,j ≤ Wjxj .Note that this ensures that if j is the server of i, there is indeed a repli
a lo
ated in node j.� The bandwidth of any link 
annot be ex
eeded: ∀l ∈ L,
∑

i∈C rizi,l ≤ BWl.Finally there remains to express the QoS 
onstraints:
∀i ∈ C, ∀j ∈ An
estors(i), dist(i, j)yi,j ≤ qi,where dist(i, j) =

∑

l∈path[i→j] 
omml. As stated previously, we 
ould take the 
omputational timeof a request into a

ount by writing (dist(i, j) + 
ompj)yi,j ≤ qi, where 
ompj would be the timeto pro
ess a request on server j.Altogether, we have fully 
hara
terized the linear program for the Upwards poli
y. We needadditional 
onstraints for the Closest poli
y, whi
h is a parti
ular 
ase of the Upwards poli
y(hen
e all 
onstraints and equations remain valid).We need to express that if node j is the server of 
lient i, then no an
estor of j 
an be theserver of a 
lient in the subtree rooted at j. Indeed, a 
lient in this subtree would need to beserved by j and not by one of its an
estors, a

ording to the Closest poli
y. A dire
t way to writethis 
onstraint is
∀i ∈ C, ∀j ∈ An
estors(i), ∀i′ ∈ C ∩ subtree(j), ∀j′ ∈ An
estors(j), yi,j ≤ 1 − yi′,j′ .Indeed, if yi,j = 1, meaning that j = server(i), then any 
lient i′ in the subtree rooted in j musthave its server in that subtree, not 
loser to the root than j. Hen
e yi′,j′ = 0 for any an
estor j′of j.There are O(s4) su
h 
onstraints to write, where s = |C| + |N | is the problem size. We 
anredu
e this number down to O(s3) by writing

∀i ∈ C, ∀j ∈ An
estors(i) \ {r}, ∀i′ ∈ C ∩ subtree(j), yi,j ≤ 1 − zi′,j→parent(j).5.2 Multiple serversWe now pro
eed to the Multiple poli
y. We de�ne the following variables:Server assignment� xj is a boolean variable equal to 1 if j is a server (for one or several 
lients)� yi,j is an integer variable equal to the number of requests from 
lient i pro
essed bynode j� If j /∈ Ancests(i), we dire
tly set yi,j = 0.Link assignment� zi,l is an integer variable equal to the number of requests �owing through link l ∈path[i → r] when 
lient i a

esses any of its servers in Servers(i)RR n° 6012



24 A. Benoit, V. Rehn, Y. Robert� If l /∈ path[i → r] we dire
tly set zi,l = 0.The obje
tive fun
tion is un
hanged, as the total storage 
ost still writes ∑

j∈N s
jxj . But the
onstraints must be modi�ed. First those for server and link usage:� Every request is assigned a server: ∀i ∈ C,
∑

j∈An
estors(i) yi,j = ri.� All requests from i ∈ C use the link to its parent: zi,i→parent(i) = ri� Let i ∈ C, and 
onsider any link l : j → j′ = parent(j) ∈ path[i → r]. Some of the requestsfrom i whi
h �ow through l will be pro
essed by node j′, and the remaining ones will �owupwards through link su

(l):
∀i ∈ C, ∀l : j → j′ = parent(j) ∈ path[i → r], zi,su

(l) = zi,l − yi,j′The other 
onstraints on server 
apa
ities, link bandwidths and QoS are slightly modi�ed:� Servers: ∀j ∈ N ,

∑

i∈C yi,j ≤ Wjxj . Note that this ensure that if j is the server for one ormore requests from i, there is indeed a repli
a lo
ated in node j.� Bandwidths: ∀l ∈ L,
∑

i∈C zi,l ≤ BWl� QoS: ∀i ∈ C, ∀j ∈ An
estors(i), dist(i, j)yi,j ≤ qiyi,jAltogether, we have fully 
hara
terized the linear program for the Multiple poli
y.5.3 An ILP-based lower boundThe previous linear programs 
ontain boolean or integer variables, be
ause it does not make senseto assign half a request or to pla
e one third of a repli
a on a node. However, we 
an still relaxthe 
onstraints and solve the linear program assuming that all variables take rational values. Theoptimal solution of the relaxed program 
an be obtained in polynomial time (in theory using theellipsoid method [11℄, in pra
ti
e using standard software pa
kages [1, 4℄), and the value of itsobje
tive fun
tion provides an absolute lower bound on the 
ost of any valid (integer) solution.Of 
ourse the relaxation makes the most sense for the Multiple poli
y, be
ause several fra
tions ofservers are assigned by the rational program. While not likely to be a
hievable, this lower boundwill provide an absolute referen
e for the performan
e of the polynomial heuristi
s des
ribed inSe
tion 6.6 Heuristi
s for the Repli
a Cost problemIn this se
tion several heuristi
s for the Closest , Upwards and Multiple poli
ies are presented.As previously stated, our main obje
tive is to provide an experimental assessment of the relativeperforman
e of the three a

ess poli
ies. Our �rst attempt targets heterogenous trees withoutQoS nor bandwidth 
onstraints, thus 
onsidering the Repli
a Cost problem, but further workwill be devoted to analyzing the impa
t of the additional 
onstraints (and in parti
ular of the QoS
onstraints) on the repli
a 
osts a
hieved by ea
h poli
y.All the eight heuristi
s des
ribed below have polynomial, and even worst 
ase quadrati
 
om-plexity O(s2), where s = |C|+ |N | is the problem size. Indeed, all heuristi
s pro
eed by traversingthe tree, and the number of traversals is bounded by the number of internal nodes (and is mu
hlower in pra
ti
e).We assume that ea
h node k ∈ N ∪ C \ {root} knows its parent(k). Additionally, an internalnode j ∈ N knows its 
hildren(j), and the set 
lients(j) of the 
lients in its subtree subtree(j). Atany step of the heuristi
s, we denote by inreqj the number of requests in subtree(j) rea
hing j withthe 
urrent repli
as already pla
ed (initially, with no repli
a, inreqj =
∑

i∈
lients(j) ri). We use aboolean variable treatedj to mark if a node j has been treated during a tree traversal. The set ofrepli
as is initialized by repli
a = ∅. INRIA



Strategies for Repli
a Pla
ement in Tree Networks 256.1 ClosestThe �rst two heuristi
s enfor
e the Closest poli
y through a top-down approa
h, whereas the thirdheuristi
 uses a bottom-up approa
h.Closest Top Down All (CTDA) � The basi
 idea is to perform a breadth-�rst traversal of thetree. Every time a node is able to pro
ess the requests of all the 
lients in its subtree, the node is
hosen as a server, and we do not explore further that subtree. The pro
edure ClosestTopDownAll(CTDA) is presented in Algorithm 4. It is 
alled until no more servers are added in a tree traversal.pro
edure CTDA (root, repli
a)Fifo �fo;�fo.push(root);while �fo 6= ∅ do
s = �fo.pop();if s /∈ repli
a thenif Ws ≥ inreqs & inreqs > 0 thenrepli
a = repli
a ∪ {s};forea
h a ∈ An
estors(s) do inreqa = inreqa − inreqs;elseforea
h i ∈ 
hildren(s) doif i ∈ N then �fo.push(i);endendendend Algorithm 4: Pro
edure CTDAClosest Top Down Largest First (CTDLF) � The tree is traversed in breadth-�rst manneras in CTDA. However, we treat the subtree whi
h 
ontains the most requests �rst when 
onsideringthe 
hildren of the tree (we sort the 
hildren by in
reasing number of requests inreq to performthe ��fo.push(i)�). Also, instead of adding all possible servers in a single step, the tree traversalis stopped as soon as a server that 
an pro
ess all the requests in its subtree has been found.This is done by adding an instru
tion return ea
h time a server has been found in the pro
edureCTDA (Algorithm 4), just after the update of the inreq values of the server's an
estors. As forthe previous heuristi
, the pro
edure is 
alled until no more server is 
hosen. In fa
t CTDLF is
alled exa
tly |R| times, where R is the �nal set of repli
a.Closest Bottom Up (CBU) � The last heuristi
 for the Closest poli
y performs a bottom-uptraversal of the tree. A node is 
hosen as a server if it 
an pro
ess all the requests of the 
lientsin its subtree. Algorithm 5 des
ribes a re
ursive implementation of ClosestBottomUp (CBU). Thepro
edure is initially 
alled with the root of the tree; while we do not rea
h the bottom of the tree,we go down. On
e arrived at the bottom, i.e. when the 
urrent node s has only 
lients as 
hildren(test atBottom(s)) or when all its 
hildren have already been treated (test allChildrenTreated(s)),the node is marked as treated and added to the set repli
a if Ws ≥ inreqs. Then we go up in thetree until all nodes are treated, performing re
ursive 
alls.Ea
h of these three heuristi
s is pla
ing a number of repli
as, but none is ensuring whether avalid solution has been found or not. We need to 
he
k the �nal value of inreqroot. If there stillare some pending requests at the root, there is no valid solution. However, if inreqroot = 0, theheuristi
 has found a solution.RR n° 6012



26 A. Benoit, V. Rehn, Y. Robertpro
edure CBU (s ∈ N , repli
a)if atBottom(s) || allChildrenTreated(s) thentreateds = true;if Ws ≥ inreqs & inreqs > 0 then/* node 
an treat all 
hildren's requests */repli
a = repli
a ∪ {s};forea
h a ∈ An
estors(s) do inreqa = inreqa − inreqs;else/* node 
annot treat all 
hildren's requests, go up in the tree */if An
estors(s) 6= ∅ then 
all CBU (parent(s), repli
a);endelseforea
h i ∈ 
hildren(s) do/* not yet at the bottom of the tree, go down */if i ∈ N & ¬treatedi then 
all CBU (i, repli
a);endend Algorithm 5: Pro
edure CBU6.2 UpwardsWe propose two heuristi
s for the Upwards poli
y, the �rst one using a top-down approa
h, theother 
onsidering the 
lients one by one, by non-in
reasing order of their number of requests.Upwards Top Down (UTD) � The top down approa
h works in two passes. In the �rst pass(see Algorithm 7), ea
h node s ∈ N whose 
apa
ity is exhausted by the number of requests in itssubtree (Ws ≤ inreqs) is 
hosen by traversing the tree in depth-�rst manner. When a server is
hosen, we delete as mu
h 
lients as possible in non-in
reasing order of their number of requests ri,until the server 
apa
ity is rea
hed or no other 
lient 
an be deleted. This delete pro
edure isdes
ribed in Algorithm 6. If not all requests 
an be treated by the 
hosen servers, a se
ond passis started. In this UTDSe
ondPass-pro
edure (see Algorithm 8) servers with remaining requestsare added. Note that all these servers are non-exhausted by the remaining requests (inreqs < Ws).These two pro
edures are ea
h 
alled only on
e, with s = root as a parameter.Similarly to the Closest heuristi
s, we need to 
he
k that inreqroot = 0 at the end of UTD to�nd out whether a valid solution has been found.pro
edure deleteRequests (s ∈ N , numToDelete)
lientList = sortDe
reasing(
lients(s));forea
h i ∈ 
lientList doif ri ≤ numToDelete thennumToDelete = numToDelete - ri;forea
h a ∈ An
estors(i) do inreqa = inreqa − ri;
hildren(parent(i)) = 
hildren(parent(i)) \ {i};if numToDelete == 0 then return;endend Algorithm 6: Pro
edure deleteRequestsUpwards Big Client First (UBCF) � The se
ond heuristi
 for the Upwards poli
y works ina 
ompletely di�erent way than all the other heuristi
s. The basi
 idea here is to treat all 
lients innon-in
reasing order of their ri values. For ea
h 
lient we identify the server with minimal 
urrent
apa
ity (in the path from the 
lient to the root) that 
an treat all its requests. The 
apa
ity of aserver is de
reased ea
h time it is assigned some requests to pro
ess. If there is no valid server toINRIA
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a Pla
ement in Tree Networks 27pro
edure UTDFirstPass (s ∈ N , repli
a)if inreqs ≥ Ws & inreqs > 0 thenrepli
a = repli
a ∪ {s};treateds = true;deleteRequests(s, Ws);endforea
h i ∈ 
hildren(s) doif i ∈ N then UTDFirstPass (i, repli
a);end Algorithm 7: Pro
edure UTDFirstPasspro
edure UTDSe
ondPass (s ∈ N , repli
a)if s /∈ repli
a& inreqs > 0 thenrepli
a = repli
a ∪ {s};deleteRequests(s, inreqs);elseforea
h i ∈ 
hildren(s) doif i ∈ N & inreqi > 0 then UTDSe
ondPass (i, repli
a);endend Algorithm 8: Pro
edure UTDSe
ondPassassign to a given 
lient, the heuristi
 has failed to �nd a valid solution. Please refer to Algorithm 9for details.pro
edure UBCF (s ∈ N , repli
a)
clientList = sortDe
reasing(
lients(s);forea
h i ∈ 
lientList do

V alidAncests = {a ∈ An
estors(i)|Wa ≥ ri};if V alidAncests 6= ∅ then
a = MinWj

{j ∈ V alidAncests};if a /∈ repli
a then repli
a = repli
a ∪ {a};
Wa = Wa − ri;endelse return no solution;end Algorithm 9: Pro
edure UBCF6.3 MultipleWe propose three heuristi
s for the Multiple poli
y. The �rst one uses a top-down approa
h, these
ond one a bottom-up approa
h. The last one performs a greedy bottom-up traversal of thetree.Multiple Top Down (MTD) � The top-down approa
h for the Multiple poli
y is similar tothe top-down approa
h for Upwards , with one signi�
ant di�eren
e: the delete pro
edure. ForUpwards , requests of a 
lient have to be treated by a single server, and it may o

ur that afterthe delete pro
edure a server still has some 
apa
ity left to treat more requests, but all remaining
lients have a higher amount of requests than this leftover 
apa
ity. For Multiple, requests of a
lient 
an be treated by multiple servers. So if at the end of the delete pro
edure the server stillhas some 
apa
ity, we delete this amount of requests from the 
lient with the largest ri. Thismodi�ed delete pro
edure is des
ribed in Algorithm 10.RR n° 6012



28 A. Benoit, V. Rehn, Y. Robertpro
edure deleteRequestsInMTD (s ∈ N , numToDelete)
clientList = sortDe
reasing(
lients(s));forea
h i ∈ 
lientList doif ri ≤ numToDelete thennumToDelete = numToDelete - ri;forea
h a ∈ An
estors(i) do inreqa = inreqa − ri;
hildren(parent(i)) = 
hildren(parent(i)) \ {i};else

ri = ri - numToDelete;forea
h a ∈ An
estors(i) do inreqa = inreqa − ri;return;endend Algorithm 10: Pro
edure deleteRequestsInMTDMultiple Bottom Up (MBU) � The �rst pass of this heuristi
 performs a bottom-up traversalof the tree, as in CBU. During this traversal, nodes s ∈ N are added to the set repli
a if their
apa
ity is exhausted (Ws ≤ inreqs), similarly to the �rst pass of the MTD pro
edure. The deletepro
edure is identi
al to the MTD delete pro
edure (Algorithm 10), ex
ept that 
lients are deletedin non-de
reasing order of their ri values (instead of the non-in
reasing order). Intuitively, we aimat deleting many small 
lients rather than fewer demanding ones. The MBUFirstPass is des
ribedin Algorithm 11, and the MBUSe
ondPass, whi
h adds extra servers if required (similarly to these
ond pass of MTD), is des
ribed in Algorithm 12.pro
edure MBUFirstPass (s ∈ N , repli
a)if atBottom(s) || allChildrenTreated(s) thentreateds = true;if Ws ≤ inreqs & inreqs > 0 then/* node is exhausted by the requests of its 
lients */repli
a = repli
a ∪ {s};deleteRequestsInMBU(s, Ws);else/* node is not exhausted, go up the tree */if An
estors(s) 6= ∅ then 
all MBU (parent(s), repli
a);endelse/* not yet at the bottom of the tree, go down */forea
h i ∈ 
hildren(s) doif i ∈ N & ¬treatedi then 
all MBU (i, repli
a);endend Algorithm 11: Pro
edure MBUFirstPassMultiple Greedy (MG) � The last heuristi
 performs a greedy bottom-up assignment ofrequests, similarly to Pass 3 of the optimal algorithm for the homogeneous 
ase (see Algorithm 3in Se
tion 4.1). We add a repli
a whenever there are some requests a�e
ted to a server. Forheterogeneous platforms, we may often return a 
ost far from the optimal, but we ensure that wealways �nd a solution to the problem if there exists one.It might be parti
ularly interesting to use MG only for problem instan
es for whi
h MBU orMTD fail to �nd a solution. INRIA
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a Pla
ement in Tree Networks 29pro
edure MBUSe
ondPass (s ∈ N , repli
a)if s /∈ repli
a & inreqs > 0 thenrepli
a = repli
a ∪ {s};deleteRequestsInMBU(s, inreqs);elseforea
h i ∈ 
hildren(s) doif i ∈ N & inreqi > 0 then UTDSe
ondPass (i, repli
a);endend Algorithm 12: Pro
edure MBUSe
ondPass7 Experiments: 
omparisons of di�erent a

ess poli
iesWe have done some experiments to assess the impa
t of the di�erent a

ess poli
ies, and theperforman
e of the polynomial heuristi
s des
ribed in Se
tion 6. We obtain an absolute lowerbound of the solution for ea
h tree platform with a linear program similar to those of Se
tion 5,but modi�ed so as to solve larger problems. Se
tion 7.1 details how we 
ompute this lower bound.We outline the experimental plan in Se
tion 7.2. Results are given and 
ommented in Se
tion 7.3.In the following, we denote by s the problem size: s = |C| + |N |.7.1 Obtaining a lower boundThe linear programs exposed in Se
tion 5 must be solved in integer values if we wish to obtain anexa
t solution to an instan
e of the problem. This 
an be done for ea
h a

ess poli
y, but due tothe large number of variables, the problem 
annot be solved for platforms of size s > 50. Thus we
annot use this approa
h for large-s
ale problems.For all pra
ti
al values of the problem size, the rational linear program returns a solution ina few minutes. We tested up to several thousands of nodes and 
lients, and we always found asolution within ten se
onds.However, we 
an obtain a more pre
ise lower bound for trees with up to s = 400 nodes and
lients by using a rational solution of theMultiple instan
e of the linear program with fewer integervariables. We treat the yi,j and zi,l as rational variables, and only require the xj to be integervariables. These variables are set to 1 if and only if there is a repli
a on the 
orresponding node.Thus, forbidding to set 0 < xj < 1 allows us to get a realisti
 value of the 
ost of a solution of theproblem. For instan
e, a server might be used only at 50% of its 
apa
ity, thus setting x = 0.5would be enough to ensure that all requests are pro
essed; but in this 
ase, the 
ost of pla
ingthe repli
a at this node is halved, whi
h is in
orre
t: while we 
an pla
e a repli
a or not but it isimpossible to pla
e half of a repli
a.In pra
ti
e, this lower bound provides a drasti
 improvement over the unrea
hable lower boundprovided by the fully rational linear program. The good news is that we 
an 
ompute the re�nedlower bound for problem sizes up to s = 400, using GLPK [4℄. We used the re�ned bound for allour experiments.7.2 Experimental planThe important parameter in our tree networks is the load, i.e. the total number of requests
ompared to the total pro
essing power:
λ =

∑

i∈C ri
∑

j∈N WiWe have performed experiments on 30 trees for ea
h of the nine values of λ sele
ted (λ =
0.1, 0.2, ..., 0.9). The trees have been randomly generated, with a problem size 15 ≤ s ≤ 400.RR n° 6012



30 A. Benoit, V. Rehn, Y. RobertWhen λ is small, the tree has a light request load, while large values of λ implies a heavy load onthe servers. We then expe
t the problem to have a solution less frequently.We have 
omputed the number of solutions for ea
h lambda and ea
h heuristi
. The numberof solutions obtained by the linear program indi
ates whi
h problems are solvable. Of 
ourse we
annot expe
t a result with our heuristi
s for those intra
table problems.To assess the relative 
ost of ea
h heuristi
, we have studied the distan
e of the result (in termsof repli
a 
ost) of the heuristi
 to the lower bound. This allows to 
ompare the 
ost of the di�erentheuristi
s, and thus to 
ompare the di�erent a

ess poli
ies. For ea
h λ, the 
ost is 
omputed onthe trees for whi
h the linear program has a solution. Let Tλ be the subset of trees with a solution.Then, the relative 
ost for the heuristi
 h is obtained by:
rcost =

1

|Tλ|

∑

t∈Tλ

costLP (t)

costh(t)where costLP (t) is the lower bound 
ost returned by the linear program on tree t, and costh(t) isthe 
ost involved by the solution proposed by heuristi
 h. In order to be fair versus heuristi
s whohave a higher su

ess rate, we set costh(t) = +∞ if the heuristi
 did not �nd any solution.Experiments have been 
ondu
ted both on homogeneous networks (Repli
a Counting prob-lem) and on heterogeneous ones (Repli
a Cost problem).7.3 ResultsA solution 
omputed by a Closest or Upwards heuristi
 always is a solution for the Multiplepoli
y, sin
e the latter is less 
onstrained. Therefore, we 
an mix results into a new heuristi
 forthe Multiple poli
y, 
alled MixedBest (MB), whi
h sele
ts for ea
h tree the best 
ost returned bythe previous eight heuristi
s for this parti
ular problem instan
e. Sin
e MG never fails to �nd asolution if there is one, MB will neither fail either.Figure 9 shows the per
entage of su

ess of ea
h heuristi
 for homogeneous platforms. Theupper 
urve 
orresponds to the result of the linear program, and to the 
ost of the MG andMB heuristi
s, whi
h 
on�rms that they always �nd a solution when there is one. The UBCFheuristi
 seems very e�
ient, sin
e it �nds a solution more often than MTD and MBU, the othertwo Multiple poli
ies. On the 
ontrary, UTD, whi
h works in a similar way to MTD and MBU,�nds less solutions than these two heuristi
s, sin
e it is further 
onstrained by the Upwards poli
y.As expe
ted, all the Closest heuristi
s �nd fewer solutions as soon as λ rea
hes higher values:the bottom 
urve of the plot 
orresponds to CTDA, CTDLF and CBU, whi
h all �nd the samesolutions. This is inherent to the limitation of the Closest poli
y: when the number of requestsis high 
ompared to the total pro
essing power in the tree, there is little 
han
e that a server 
anpro
ess all the requests 
oming from its subtree, and requests 
annot traverse this server to beserved higher in the tree. These results 
on�rm that the new poli
ies have a striking impa
t onthe existen
e of a solution to the Repli
a Counting problem.Figure 10 represents the relative 
ost of the heuristi
s 
ompared to the LP-based lower bound.As expe
ted, the hierar
hy between the poli
ies is respe
ted, i.e. Multiple is better than Upwardswhi
h in turn is better than Closest . For small values of λ, it happens that some Closest heuristi
sgive a better solution than those for Upwards or Multiple, due to the fa
t that the latter heuristi
sare not well optimized for small values of λ. Also, UBCF is better than all the Multiple heuristi
sfor λ = 0.6. Altogether, the use of the MixedBest heuristi
 MB allows to always pi
k up the bestresult, thereby resulting in a very satisfying relative 
ost for the Multiple instan
e of the problem.The greedy MG should not be used for small values of λ, but proves to be very e�
ient for largevalues, sin
e it is the only heuristi
 to �nd a solution for su
h instan
es. To 
on
lude, we point outthat MB always a
hieves a relative 
ost of at least 85%, thus returning a repli
a 
ost within 17% ofthat of the LP-based lower bound. This is a very satisfa
tory result for the absolute performan
eof our heuristi
s.The heterogeneous results (see Figure 11 and Figure 12) are very similar to the homogeneousones, whi
h 
learly shows that our heuristi
s are not mu
h sensitive to the heterogeneity of theINRIA



Strategies for Repli
a Pla
ement in Tree Networks 31platform. Therefore, we have an e�
ient way to �nd in polynomial time a good solution to all theNP-hard problems stated in Se
tion 4.
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Strategies for Repli
a Pla
ement in Tree Networks 338 ExtensionsIn this paper we have 
onsidered a simpli�ed instan
e of the repli
a problem. In this se
tion,we outline two important generalizations, namely dealing with several obje
ts, and 
hanging theobje
tive fun
tion.8.1 With several obje
tsIn this paper, we have restri
ted the study of the problem to a single obje
t, whi
h means thatall repli
as are identi
al (of the same type). We 
an envision a system in whi
h di�erent typesof obje
ts need to be a

essed. The 
lients are then having requests of di�erent types, whi
h 
anbe served only by an appropriate repli
a. Thus, for an obje
t of type k, 
lient i ∈ C issues r
(k)
irequests for this obje
t. To serve a request of type k, a node must be provided with a repli
aof that type. Nodes 
an be provided with several repli
a types. A given 
lient is likely to havedi�erent servers for di�erent obje
ts. The QoS may also be obje
t-dependent (q(k)

i ).To re�ne further, new parameters 
an be introdu
e su
h as the size of obje
t k and the 
ompu-tation time involved for this obje
t. Nodes parameters be
ome obje
t-dependent too, in parti
ularthe storage 
ost and the time required to answer a request.The server 
apa
ity 
onstraint must then be a sum on all the obje
t types, while the QoS mustbe satis�ed for ea
h obje
t type. The link 
apa
ity also is a sum on the di�erent obje
t types,taking into a

ount the size of ea
h obje
t.There remains to modify the obje
tive fun
tion: we simply aim at minimizing the 
ost of allrepli
as of di�erent types that have been assigned to the nodes in the solution to get the extendedrepli
a 
ost for several obje
ts.Be
ause the 
onstraints add up linearly for di�erent obje
ts, it is not di�
ult to extend thelinear programming formulation of Se
tion 5 to deal with several obje
ts. Also, the three a

esspoli
ies Closest , Upwards and Multiple 
ould naturally be extended to handle several obje
ts.However, designing e�
ient heuristi
s for various obje
t types, espe
ially with di�erent 
om-muni
ation to 
omputation ratios and di�erent QoS 
onstraints for ea
h type, is a 
hallengingalgorithmi
 problem.8.2 More 
omplex obje
tive fun
tionsSeveral important extensions of the problem 
onsist in having a more 
omplex obje
tive fun
tion.In fa
t, either with on or with several obje
ts, we have restri
ted so far to minimizing the 
ost ofthe repli
as (and even their number in the homogeneous 
ase). However, several other fa
tors 
anbe introdu
ed in the obje
tive fun
tion:Communi
ation 
ost � This 
ost is the read 
ost, i.e. the 
ommuni
ation 
ost required toa

ess the repli
as to answer requests. It is thus a sum on all obje
ts and all 
lients ofthe 
ommuni
ation time required to a

ess the repli
a. If we take this 
riteria into a

ountin the obje
tive fun
tion, we may prefer a solution in whi
h repli
as are 
lose to the 
lients.Update 
ost � The write 
ost is the extra 
ost due to an update of the repli
as. An update mustbe performed when one of the 
lients is modifying (writing) some of the data. In this 
ase,to ensure the 
onsisten
y of the data, we need to propagate the modi�
ation to all otherrepli
as of the modi�ed obje
t. Usually, this 
ost is dire
tly related to the 
ommuni
ation
osts on the minimum spanning tree of the repli
a, sin
e the repli
a whi
h has been modi�edsends the information to all the other repli
as.Linear 
ombination � A quite general obje
tive fun
tion 
an be obtained by a linear 
ombina-tion of the three di�erent 
osts, namely repli
a 
ost, read 
ost and write 
ost. Informally,su
h an obje
tive fun
tion would write
α

∑servers, obje
ts repli
a 
ost+ β
∑requests read 
ost+ γ

∑updateswrite 
ostRR n° 6012



34 A. Benoit, V. Rehn, Y. Robertwhere the appli
ation-dependent parameters α, β and γ would be used to give priorities tothe di�erent 
osts.Again, designing e�
ient heuristi
s for su
h general obje
tive fun
tions, espe
ially in the 
on-text of heterogeneous resour
es, is a 
hallenging algorithmi
 problem.9 Related workEarly work on repli
a pla
ement by Wolfson and Milo [13℄ has shown the impa
t of the write 
ostand motivated the use of a minimum spanning tree to perform updates between the repli
as. Inthis work, they prove that the repli
a pla
ement problem in a general graph is NP-
omplete, evenwithout taking into a

ount storage 
osts. Thus they address the 
ase of spe
ial topologies, andin parti
ular tree networks. They give a polynomial solution in a fully homogeneous 
ase and asimple model with no QoS and no server 
apa
ity. Their work uses the 
losest server a

ess poli
y(single server) to a

ess the data.Using this Closest poli
y, Cidon et al [2℄ studied an instan
e of the problem with multipleobje
ts. In this work, the obje
tive fun
tion has no update 
ost, but integrates a 
ommuni
ation
ost. Communi
ation 
ost in the obje
tive fun
tion 
an be seen as a substitute for QoS. Thus,they minimize the average 
ommuni
ation 
ost for all the 
lients rather than ensuring a givenQoS for ea
h 
lient. They target fully homogeneous platforms sin
e there are no server 
apa
ity
onstraints in their approa
h. A similar instan
e of the problem has been studied by Liu et al [9℄,adding a QoS in terms of a range limit (QoS=distan
e), and the obje
tive being the Repli
aCounting problem. In this latter approa
h, the servers are homogeneous, and their 
apa
ity isbounded.Cidon et al [2℄ and Liu et al [9℄ both use the Closest a

ess poli
y. In ea
h 
ase, the optimizationproblems are shown to have polynomial 
omplexity. However, the variant with bidire
tional linksis shown NP-
omplete by Kalpakis et al [5℄. Indeed in [5℄, requests 
an be served by any nodein the tree, not just the nodes lo
ated in the path from the 
lient to the root. The simpleproblem of minimizing the number of repli
as with identi
al servers of �xed 
apa
ity, without any
ommuni
ation 
ost nor QoS 
ontraints, dire
tly redu
es to the 
lasi
al bin pa
king problem.Kalpakis et al [5℄ show that a spe
ial instan
e of the problem is polynomial, when 
onsideringno server 
apa
ities, but with a general obje
tive fun
tion taking into a

ount read, write andstorage 
osts. In their work, a minimum spanning tree is used to propagate the writes, as wasdone in [13℄. Di�erent methods 
an however be used, su
h as a minimum 
ost Steiner tree, inorder to further optimize the write strategy [6℄.All papers listed above 
onsider the Closest a

ess poli
y. As already stated, most problemsare NP-
omplete, ex
ept for some very simpli�ed instan
es. Karlsson et al [8, 7℄ 
ompare di�erentobje
tive fun
tions and several heuristi
s to solve these 
omplex problems. They do not take QoS
onstraints into a

ount, but instead integrate a 
ommuni
ation 
ost in the obje
tive fun
tion aswas done in [2℄. Integrating the 
ommuni
ation 
ost into the obje
tive fun
tion 
an be viewed asa Lagrangian relaxation of QoS 
onstraints.Tang and Xu [12℄ have been one of the �rst authors to introdu
e a
tual QoS 
onstraints in theproblem formalization. In their approa
h, the QoS 
orresponds to the laten
y requirements of ea
h
lient. Di�erent a

ess poli
ies are 
onsidered. First, a repli
a-aware poli
y in a general graph isproven to be NP-
omplete. When the 
lients do not know where the repli
as are (repli
a-blindpoli
y), the graph is simpli�ed to a tree (�xed routing s
heme) with the Closest poli
y, and in this
ase again it is possible to �nd a polynomial algorithm using dynami
 programming.To the best of our knowledge, there is no related work 
omparing di�erent a

ess poli
ies,either on tree networks or on general graphs. Most previous works impose the Closest poli
y.The Multiple poli
y is enfor
ed by Rodolakis et al [10℄ but in a very di�erent 
ontext. In fa
t,they 
onsider general graphs instead of trees, so they fa
e the 
ombinatorial 
omplexity of �ndinggood routing paths. Also, they assume an unlimited 
apa
ity at ea
h node, sin
e they 
an addnumerous servers of di�erent kinds on a single node. Finally, they in
lude some QoS 
onstraintsINRIA
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a Pla
ement in Tree Networks 35in their problem formulation, based on the round trip time (in the graph) required to serve the
lient requests. In su
h a 
ontext, this (very parti
ular) instan
e of the Multiple problem is shownto be NP-hard.10 Con
lusionIn this paper, we have introdu
ed and extensively analyzed two important new poli
ies for therepli
a pla
ement problem. The Upwards andMultiple poli
ies are natural variants of the standardClosest approa
h, and it may seem surprising that they have not already been 
onsidered in thepublished literature.On the theoreti
al side, we have fully assessed the 
omplexity of the Closest , Upwards andMultiple poli
ies, both for homogeneous and heterogeneous platforms. The polynomial 
omplexityof the Multiple poli
y in the homogeneous 
ase is quite unexpe
ted, and we have provided anelegant algorithm to 
ompute the optimal 
ost for this poli
y. Not surprisingly, all three poli
iesturn out to be NP-
omplete for heterogeneous nodes, whi
h provides yet another example of theadditional di�
ulties indu
ed by resour
e heterogeneity.On the pra
ti
al side, we have designed several heuristi
s for the Closest , Upwards andMultiplepoli
ies, and we have 
ompared their performan
e for a simple instan
e of the problem, withoutQoS 
onstraints nor bandwidth limitations. In the experiments, the 
onstraints were only relatedto server 
apa
ities, and the total 
ost was the sum of the server 
apa
ities (or their number inthe homogeneous 
ase). Even in this simple setting, the impa
t of the new poli
ies is impressive:the number of trees whi
h admit a solution is mu
h higher with the Upwards and Multiple poli
iesthan with the Closest poli
y. Finally, we point out that the absolute performan
e of the heuristi
sis quite good, sin
e their 
ost is 
lose to the lower bound based upon the solution of the integerlinear program.There remains mu
h work to extend the results of this paper, in several important dire
tions.In the short term, we need to 
ondu
t more simulations for the Repli
a Cost problem, varyingthe shape of the trees, the distribution law of the requests and the degree of heterogeneity of theplatforms. We also aim at designing e�
ient heuristi
s for more general instan
es of the Repli
aPla
ement problem, taking QoS and bandwidth 
onstraints into a

ount. It will be instru
tiveto see whether the superiority of the new Upwards and Multiple poli
ies over Closest remains soimportant in the presen
e of QoS 
onstraints. Also, in
luding bandwidth 
onstraints may requirea better global load-balan
ing along the tree, thereby favoring Multiple over Upwards .In the longer term, designing e�
ient heuristi
s for the problem with various obje
t types, allwith di�erent 
ommuni
ation to 
omputation ratios and di�erent QoS 
onstraints is a demandingalgorithmi
 problem. Also, we would like to extend this work so as to handle more 
omplexobje
tive fun
tions, in
luding 
ommuni
ation 
osts and update 
osts as well as repli
a 
osts; thisseems to be a very di�
ult 
hallenge to ta
kle, espe
ially in the 
ontext of heterogeneous resour
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