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Abstract: Computing good polynomial approximations to usual functions is an important topic
for the computer evaluation of those functions. These approximations can be good under several
criteria, the most desirable being probably that the relative error is as small as possible in the L∞

sense, i.e. everywhere on the interval under study.
In the present paper, we investigate a simpler criterion, the L2 case. Though finding a best

polynomial L2-approximation with real coefficients is quite easy, we show that if the coefficients
are restricted to be floating point numbers to some precision, the problem becomes a general
instance of the CVP problem, and hence is NP-hard.

We investigate the practical behaviour of exact and approximate algorithms for this problem.
The conclusion is that it is possible in a short amount of time to obtain a relative or absolute
best L2-approximation. The main applications are for large dimension, as a preliminary step
of finding L∞-approximations and for functions with large variations, for which relative best
approximation is by far more interesting than absolute.

Key-words: Floating-point arithmetic, efficient approximation, L2 norm, L∞ norm, lattice
basis reduction, closest vector problem.
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Approximation flottante au sens L2

Résumé : Calculer de bons polynômes d’approximation pour les fonctions usuelles est un sujet
important, par exemple pour obtenir des méthodes performantes d’évaluation de ces fonctions.
La qualité desdites approximations peut être mesurée à l’aune de plusieurs critères. Le critère
le plus intéressant pour les applications est probablement la minimisation de l’erreur relative au
sens L∞, c’est-à-dire uniformément sur l’intervalle considéré.

Dans ce travail, nous étudions un critère plus simple, à savoir la minimisation au sens L2.
Bien que la recherche de l’optimum à coefficients réels soit une tâche aisée, nous montrons que,
si les coefficients sont des nombres flottants de précision fixée, le problème devient une instance
générale du problème CVP, et est donc NP-difficile.

Nous étudions néanmoins le comportement pratique des algorithmes exacts et approchés pour
ce problème. Notre conclusion est qu’il est possible, de façon efficace, d’obtenir la meilleure
approximation au sens L2, absolu ou relatif. Les principales applications sont la recherche
d’approximants en grande dimension, l’utilisation comme étape préliminaire pour trouver des
apporximations L∞, ou pour les fonctions avec de grandes variations, pour lesquelles l’approxi-
mation relative est de loin préférable.

Mots-clés : Arithmétique flottante, approximation efficace, norme L2, norme L∞, réduction
de réseaux, recherche de vecteur le plus proche.
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1 Introduction

Computing elementary or special functions is a central topic in modern computer arithmetic.
One common way of doing this is, given a continuous real-valued function f , to split the domain
of f in sufficiently many small intervals; and then, over each of those intervals I , to compute a
polynomial PI such that the distance between PI and f over I is less than the accuracy expected.
That distance is usually measured with the supremum norm (or L∞ norm or absolute error)

||PI − f ||∞ = sup
x∈I
|PI(x)− f(x)|,

or the relative error

||PI − f ||rel = sup
x∈I

1

|f(x)| |PI(x)− f(x)|.

The classical theorem of Stone-Weierstraß (see eg. [5]) tells us that, for any ε > 0, we can
find a polynomial such that maxx∈I ||f(x)− P (x)||∞ ≤ ε, but it gives no way of computing it.
Remes’ algorithm [17] gives an efficient way of computing this polynomial; however, this best
approximant will not have machine number coefficients, except in very special cases. Of course,
one can choose to round the coefficients of the polynomial computed by Remes’ algorithm so
that they fit the imposed finite-precision arithmetic format but this is not at all optimal: we are
interested in getting the best accuracy possible with an approximation having the least degree
and the smallest number of bits for representing the coefficients possible and this naive rounding
process may give very poor results in that direction. A recent work [4] has made progresses
towards the computation of best approximations with machine number as coefficients.

In this paper, we propose to investigate approximation by polynomials with machine-number
as coefficients, but in the L2 sense, ie. we are trying to minimize an expression

||f − PI ||2 =

(
∫

I

(f − PI)
2dµ

)1/2

for some positive measure dµ over I . Not only interesting in itself, a motivation for studying it is
that very good L2-approximations may constitute good approximations with respect to L∞ norm
or relative error. This is very useful since in several applications, one is not interested in getting
the best approximation but rather a good enough one and also since a better estimate beforehand
of the optimal error may to lead to a significant speedup of the method presented in [4].

This L2 context is a simpler situation since it comes with a lot of mathematical structure,
and allows thus to devise simpler algorithms. In that case, finding the best polynomial of degree
≤ n with real coefficients is simply a matter of projecting the function f over the vector space
generated by monomials 1, x, . . . , xn. This is discussed in Section 2, in a sligthly more general
setting which might be of use in some applications. Then, in Section 3, we introduce the problem
we address in that article. In Section 4, we shall prove that finding the best polynomial (or, more
generally, approximation over any family of L2-functions) with machine numbers as coefficients
is a (general) instance of the so-called CVP problem. We shall review briefly algorithms to solve
CVP and give practical results in Section 5. Finally, we shall give some examples and compare
the L2/L∞ approaches in Section 6, before concluding our paper.
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4 N. Brisebarre and G. Hanrot

2 L2-approximation

Let I be an interval of R, and dµ a positive measure on I . We define the classical scalar product
on H = L2(I, dµ) as

(f |g) =

∫

I

f(t)g(t)dµ.

Notice that dµ needs not be the Lebesgue measure.
In particular, for any nonnegative weight function w(x) we can consider the measure w(x)dx.

This allows one to “fine-tune” the accuracy of the approximation in some parts of the interval.
For instance if I = [−a, a], the classical kernel w(x) = (a2−x2)1/2 will make the approximation
sharper in the center of the interval, and more sloppy close to the bounds.

Let now (ei)0≤i≤n be a linearly independent family of elements of H , and put E = ⊕n
i=0Rei.

The following Lemma is elementary.

Lemma 1 Let f ∈ H . The element pE(f) of E which is closest to f in the L2 sense has
coordinates over the basis (ei) given by G−1V , where G is the Gram matrix ((ei|ej))0≤i,j≤n and
V the vector ((f |ei))0≤i≤n.

In this classical setting, the problem under consideration is thus easy; in the sense that it is
reduced to O(n2) computations of integrals and one linear system solution.

In the sequel, we shall denote by dE(f) := d(f, E) the L2 distance from f to the space E i.e.
(
∫

I
(f − pE(f))2dµ)1/2. This is a lower bound for the L2 distance of f to any element of E.

Remark 1 The “abstract” point of view developed above has the interest of allowing applica-
tions which are not restricted to finding best absolute polynomial approximations. This classical
setting is obtained by taking ei = xi, and dµ = dx the Lebesgue measure, and the reader should
probably keep this in mind as a roadmap.

However, dealing with the problem in generality allows one to find approximation by trigono-
metric polynomials by taking ei = cos(ix), or to find polynomial approximation with constraints
on the values of some coefficients by taking ei = xki where (ki)0≤i≤n is a finite strictly increasing
sequence of natural integers, or to find best polynomial approximations to a function f , over an
interval where f has no zero over I by taking dµ = dx/f(x)2, since then

∫

I

(P (x)− f(x))2dµ =

∫

I

(

P (x)

f(x)
− 1

)2

dx.

These generalizations are obtained with the same algorithm; one does just need to compute
slightly different integrals. Note that we may then derive good polynomial or sum of cosines
approximations with respect to the L∞ absolute or relative errors.

3 Floating-point approximations

In the context of floating-point computations, however, approximations such as pE(f) have a
major drawback: their coefficients are (exact) real numbers. A simple idea is to round them

INRIA
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to the nearest machine-number. However, this can easily make the quality of the approximant
much worse. In this paper we are interested in finding the best approximation with “floating-point
numbers” as coefficients.

We model our problem FP-appr in the following way:

FP-appr((ei)0≤i≤n, f , dµ, I). Given an interval I , a positive measure dµ over
I , functions (ei)0≤i≤n ∈ L2(I, dµ), a function f ∈ L2(I, dµ), find a vector P =
(pi)0≤i≤n ∈ Zn+1 which minimizes

∥

∥

∥

∥

∥

n
∑

i=0

piei(x)− f(x)

∥

∥

∥

∥

∥

2

. (1)

Note that it is easily proved that such a P exists. To see why this amounts to approximate
by floating-point numbers, refer to the case where ei(x) = xi2−mi for some integers mi; in
that case, we get an approximation by polynomials with precision mi floating-point numbers as
coefficients (actually not exactly approximation by floating point numbers, since the pi are not
bounded in our problem).

4 Reduction to CVP

The problem described above can be restated in terms of lattices. Let L be the discrete subgroup
of H generated by the functions ei, i.e. L = {

∑n
i=0 ui · ei, ui ∈ Zd+1}. Then L, with the restric-

tion of the scalar product is a lattice of E of maximal rank, and the problem under consideration
amounts to find the vector of L which is the closest to pE(f). We are thus facing an instance of
the classical CVP problem (in its “Gram form”), which we now state in two different forms:

CVP-Gram(G, V ). Given an n × n symmetric definite positive matrix G and a
vector V ∈ Rn, find the vector X ∈ Zn which makes (X − G−1V )tG(X −G−1V )
minimal.

CVP(M , v). Given an n× n matrix M and a vector v ∈ Rn, find the vector x ∈ Zn

such that |Mx− v|2 is minimal, where |(yi)1≤i≤n|2 = (
∑n

i=1 y2
i )

1/2.

The second form easily reduces to the first one, by taking G = M tM and V = Gv.
Conversely, the first form can be reduced, at least numerically, to the second, by computing a
Cholesky decomposition (a “square root”) of the matrix G.

In fact, we now prove that our problem is indeed a general CVP-Gram, which means that any
CVP instance can be reduced to it. We start by giving a precise formulation of the problem we
are studying. The formulation given below is actually a bit less general than above (we restrict
the ei and f to be polynomials and assume that the measure dµ is given by its first 2n moments),
in order to deal with objects that have a finite representation.

RR n° 6058



6 N. Brisebarre and G. Hanrot

Proposition 1 Let (u0, . . . , un) be n + 1 linearly independent vectors in Rn+1, L the lattice they
generate, and v ∈ Rn+1 a vector. There exist a sequence of polynomials (Pi)0≤i≤n+1 with ra-
tional integer coefficients, a sequence (µi)0≤i≤2n of rational numbers such that CVP-Gram(G,
V ) reduces to FP-appr((Pi)0≤i≤n, Pn+1, dµ, R) where dµ is a positive measure over R with
(µi)0≤i≤2n as its first 2n + 1 moments. Further, all those polynomials can be computed in poly-
nomial time.

Proof. Up to a (rational) change of basis, we can assume that the matrix (gij)0≤i,j≤n is diagonal.
This is achieved in practice by Gram-Schmidt orthogonalization, which can be performed (over
Q) in polynomial time. We are thus looking for orthogonal polynomials Qi for a measure, with
given norm

√
gii. We start with the polynomials and build the moments of the corresponding

measure.
First, put gkk = 1 for n + 1 ≤ k ≤ 2n. Put λ0 = g00 and λi = gii/gi−1,i−1 for i = 1, . . . , 2n,

and define Qi by the recurrence relation

Q0 = 1, Q1 = x, Qi+1 = xQi − λiQi−1 for i = 1, . . . , 2n.

Put µ0 = λ0. Then, from
∫

R

Q0Q1dµ = 0 =

∫

R

xdµ,

we deduce that µ1 = 0.
More generally,

0 =

∫

R

QiQ0dµ =

∫

R

xQi−1dµ− λi

∫

R

Qi−2dµ,

which, by expanding the polynomials Qi, allows to find µi in terms of the previous µj, for all i =
1, . . . , 2n. Then, for k ≤ l−1 one can rewrite xkQl(x) as a linear combination of Ql−k, . . . , Ql+k,
hence

∫

R
xkQl(x)dµ = 0, which shows that Ql is indeed orthogonal to Q0, . . . , Ql−1.

Since the gii are positive, the bilinear form induced by µ on the polynomials of degree ≤ 2n
is positive definite, so that Hamburger’s theorem [9, 10, 11] applies and there exists a positive
measure µ over R with first moments µi.

Finally, for 1 ≤ i ≤ n, since Qi is orthogonal to the Qj for j < i, it is orthogonal to any
polynomial of degree < i. Hence

∫

R

Q2
i (x)dµ =

∫

R

xiQi(x)dµ

=

∫

R

xi−1Qi+1(x)dµ + λi

∫

R

xi−1Qi−1(x)dµ

= λi

∫

R

Q2
i−1(x)dµ,

which shows, by induction, that
∫

R
Q2

i (x)dµ = gii. �

This shows, in view of [20], that FP-appr is NP-hard; further, as a corollary from [13], we
obtain

INRIA
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Corollary 1 The problem FP-appr is NP-hard, even if we allow an approximation factor up
to nO(1/ log log n).

In practice, fortunately, the situation is by far better. First, the problem is polynomial when
the dimension is fixed. Second, the exponential algorithms behave quite well in our situation,
where we are looking for approximations of small enough dimension (in any case, less than, say,
50).

5 A short review of algorithms for CVP

The previous section shows us that we need to study the behaviour of CVP algorithms in the
context of our problem. Though there is already abundant theoretical and practical literature
about the CVP (see e.g. [1]), we include this section for the sake of completeness, but only give
heuristic descriptions of the algorithms.

In a nutshell, algorithms for CVP can be decomposed into two distinct steps for which various
solutions exist. The first step is a preprocessing step, which computes a more or less strongly
reduced basis of the lattice under study. The second one actually solves the CVP. Usually, the
stronger the reduction, the more accurate or efficient is the second step.

5.1 Short review of CVP algorithms

5.1.1 A naive method

Let us start with an extremely naive method, which should probably not be used but serves as a
good introduction. Lemma 1 tells us that the coordinates of pE(f) in the basis ei are given by
G−1V . A simple idea is thus to compute G−1V and to round to the nearest integer the values that
we have obtained in order to get a vector with integer coordinates in the basis (ei).

Lemma 2 This method is optimal if the basis (ei) is orthogonal.

Proof. Write (fi) = G−1V . Then, since the basis is orthogonal, for any x ∈ Zn, the L2 distance
of
∑n

i=0 xiei to pE(f) =
∑n

i=0 fiei is given by

(

n
∑

i=0

(xi − fi)
2‖ei‖22

)1/2

,

which is minimal for xi = bfie. �

5.1.2 Babai’s nearest plane algorithm

Babai’s method [2] is a refinement of the previous method. In a very sketchy way, it can be
described as follows: rounding each coefficient M−1v in the naive method induces an error.
Thus, a better way is to round each coefficient one after the other, and to reintroduce the error
coming from one rounding before performing the next.

RR n° 6058



8 N. Brisebarre and G. Hanrot

Algorithm:Babai

Data: An (n + 1)× (n + 1) Gram matrix G ; an (n + 1)-vector V
Result: An approximation of CVP-Gram(G, V )
begin

Compute a Gram-Schmidt decomposition of G = BtDB, with B orthogonal and D
diagonal;
V ← BV ;
for (j = n; j ≥ 0, j- -) do

X[j]← bW [j]/D[j, j]e;
for (i = 0; i ≤ n; i++) do

W [i]←W [i]−X[j]B[j, i]D[i, i];
end

end
return X;

end
Algorithm 1: Babai’s nearest Plane algorithm

More formally, this gives Algorithm 1. If the input basis is of sufficient quality, we can
deduce estimates on the quality of the output result. We quote the following classical result
without a proof (this result is usually stated for an LLL-reduced basis, but adapts to the general
case). The family (e∗i )0≤i≤n denotes the basis given by the Gram-Schmidt orthogonalization of
the basis (ei)0≤i≤n.

Theorem 1 If we apply Algorithm 1 above to the FP-appr problem, we obtain a polynomial
P =

∑n
i=0 xiei such that

‖P − pE(f)‖2 ≤
γn+1

2
√

γ2 − 1
‖P̃ − pE(f)‖2,

for any γ ≥ max0≤i≤n−1 ‖e∗i ‖2/‖e∗i+1‖2 and P̃ is the actual solution to the FP-appr problem.

A consequence is the fact that the most orthogonal the basis, the best Babai’s algorithm. This
suggests again to use a preprocessing step, as described above.

5.1.3 Exact method

Exact methods, which are all a variant of an algorithm initially due to Kannan [14] consist in
starting with an approximate solution, i.e. a vector w in the lattice such that R := (v−w|v−w)
is small. Then, the goal is to find a vector x in the ellipsoid (v − x|v − x) ≤ R. This is done by
finding a larger region containing this ellipsoid, and which can be easily enumerated. Note that
once a good approximation is found, it can be used to restrict again the set of points to enumerate,
since we are interested in a smaller ellipsoid. We do not give further detail, and refer to [1] for
pseudo-code for this method.

INRIA
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5.2 Short review of preprocessing

The accuracy (approximate methods) / efficiency (exact method) of those methods highly depend
on the geometry of the basis of our lattice L.

For instance, the first algorithm becomes optimal if the basis is orthogonal; and the most or-
thogonal the basis, the best Babai’s algorithm performs. Finally, if the basis is more orthogonal,
the ellipsoid in the exact method is much easier to enumerate. This leads to the idea that one
should try to use the most orthogonal basis possible. This suggests to use a lattice basis reduc-
tion algorithm as a preprocessing step. In this paper, we chose to use LLL-reduced bases (see
[15], computable in polynomial time) or Korkine-Zolotareff reduced bases (see [12], reasonably
efficient for small dimensions); one of the reasons for this is the fact that software for computing
those bases is widely available, eg. in NTL [19].

It should be pointed, however, that our experiments showed that, in the case of polynomial
approximation, the bases are sufficiently orthogonal, and in practice Babai’s algorithm always
gave the optimal solution. One might, however, expect that the situation changes if the dimension
increases too much (say, above 50), but this does not seem to be the case for applications.

5.3 Choice of the precision

An important question when looking for an approximation is the choice of the functions ei.
Indeed, if one is looking for polynomial, or trigonometric approximations, one shall work with
xi/2mi or cos(ix)/2mi . Choosing all the mi equal to zero would yield a very poor approximation
! We shall thus look for ei under the form Ei/2mi , where Ei are the “actual functions” by which
we want to approximate, eg. Ei = xi, or Ei = cos(ix) and try to find an optimal choice for the
mi.

Indeed, the choice of the mi is of direct consequence on the quality of the final approximation,
but this is not the sole factor. Indeed, the error ‖P − f‖2 can be decomposed as the sum of two
factors, one coming from the projection of f over E, namely ‖f − pE(f)‖2, and the error in
approximating pE(f) by an element of our lattice. Increasing the mi only affects this second
term, whereas increasing n affects mostly the first term. It thus appears pointless, once n is
fixed, to increase the mi beyond reason. We give two heuristics on the choice of the mi.

Heuristic 1 Let G be the Gram matrix (Ei|Ej). If P is the solution to our CVP problem, we
expect that

− log2 ‖P − pE(f)‖2 ≈
∑n

i=0 mi

n + 1
− log2 det(G)

2(n + 1)
.

In particular, it is pointless to choose the mi much larger, on average, than − log2 dE(f).

A first possibility is to choose all the mi to be d− log2 dE(f)e+ α for a small value of α. We
can however try to estimate which of the mi should be made larger because the corresponding
vector carries “more information”.

Heuristic 2 mi should be chosen roughly equal to

α− log2 dE(f) + log2 ‖Ei‖2.

RR n° 6058



10 N. Brisebarre and G. Hanrot

Indeed, if the basis Ei were orthogonal, and if pE(f) =
∑n

i=0 ϕiEi, the error can be written
as

‖P − pE(f)‖22 =

n
∑

i=0

∣

∣

∣

pi

2mi

− ϕi

∣

∣

∣

2

‖Ei‖22.

The i-th term in this sum is expected to be of the order of 2−2mi−2‖Ei‖22. Thus, mi should be
taken as log2 ‖Ei‖2 + C in order to minimize the global error. Since for an orthogonal basis,
2
∑n

i=0 log2 ‖Ei‖2 = log2 det G, we deduce Heuristic 2 from Heuristic 1.
In practice, experiments show that the basis is “sufficiently” orthogonal for the heuristic

above to give results close to optimal.

5.4 Numerical issues

The main numerical issues of our algorithm are

• the computation of orthogonal bases which is required at almost every step of the method,

• the problem of computing accurately enough the integrals that define the matrix G,

• the definition of the problem itself, namely the fact that we shall have to replace exact real
numbers (the value of the integral) by floating-point (or, in practice, integer) approxima-
tions.

We shall take the second item for granted, eg. by using [7]. The first item is a classical
topic and has been extensively studied, see for instance [16]. We shall however focus on the last
point. The meaning of this is that we replace the exact values of G and V by approximations G̃
and Ṽ . A first (trivial) remark is that the problem is already ill-defined in dimension 1 : finding
the element of Zπ closest to π/2 is highly subject to numerical approximation. However, the
distance to Zπ is well-defined: the solution found might change, but we are switching from an
optimal solution to another solution which is arbitrarily close of being optimal. In the example
above, depending on the roundings, we might find either 0 or π, both being admissible answers
to the original problem.

Theorem 2 For M a matrix, we define ‖M‖ to be the maximum of absolute values of its co-
efficients, and similarly for a vector. Assume that max(‖G − G̃‖, ‖V − Ṽ ‖) ≤ ε, and that
nε‖G̃−1‖ < 1. Then, for all x ∈ Zn, we have

∣

∣

∣
(x−G−1V )tG(x−G−1V )− (x− G̃−1Ṽ )tG̃(x− G̃−1Ṽ )

∣

∣

∣
≤ εc(x, n, G̃, Ṽ ),

where c(x, n, G̃, Ṽ ) is an explicit constant depending only on x, n, G̃, Ṽ .

Proof. We have

(x−G−1V )tG(x−G−1V )−(x−G̃−1Ṽ )tG̃(x−G̃−1Ṽ ) = V tG−1V −Ṽ tG̃−1Ṽ −2xt(GV −G̃Ṽ ).

INRIA



Floating-Point L2-Approximations 11

The last term is at most, in absolute value

n‖x‖‖(G− G̃)V − G̃(V − Ṽ )‖ ≤ n2ε‖x‖(‖V ‖+ ‖G̃‖)
≤ n2ε‖x‖(‖Ṽ ‖+ ‖G̃‖+ ε).

The difference V tG−1V − Ṽ tG̃−1Ṽ can be rewritten as (V − Ṽ )G−1V + Ṽ (G−1− G̃−1)V +
Ṽ G̃−1(V − Ṽ ) whose norm is bounded from above by n2ε‖G−1‖+ n2‖G−1− G̃−1|‖Ṽ ‖(‖Ṽ ‖+
ε) + n2ε‖G̃−1‖‖Ṽ ‖.

Write G − G̃ = E with ‖E‖ ≤ ε, i.e., G = G̃(In + G̃−1E). Under our assumptions, the
series

∑

n≥1(−1)n(G̃−1E)n is convergent, and thus

G−1 =

(

In +
∑

n≥1

(−1)n(G̃−1E)n

)

G̃−1,

which proves that

‖G−1 − G̃−1‖ ≤ nε‖G̃−1‖2
1− nε‖G̃−1‖

,

which concludes the proof of the theorem. �

The constant can be easily deduced from the proof by putting all error terms together.
This theorem shows that a “good” vector for the approximate problem is not too far away

from a “good” vector for the exact problem, and (by symmetry) vice-versa.
The drawback is that the quality of the approximation depends on x. However, since x lies in

a bounded region of Rn, one can in theory remove this dependency, or check once x is computed
that the precision is sufficient. Using the theorem (and the theorem where we exchanged the
roles of G, V and G̃, Ṽ ) shows that by increasing the precision we can come as close as we want
to the actual optimal.

6 Some experiments, comparison with L∞-approximation

We have implemented the various combinations of methods described above and tested them
for the problem described above on several functions. The algorithms have been implemented
in C, using NTL-5.4[19], GMP-4.2.1 [8] and MPFR-2.2.0[18]. The scalar products have been
computed using GP/pari function intnum, but we plan to replace it with software yielding
guaranteed results, such as the CRQ library [7].

These implementations of the LLL algorithm may present numerical instability [16], but this
is not expected on matrices of the kind we reduce, in the dimension useful for applications. In any
case, this does not compromise the optimality of the results computed; simply, the preprocessing
is of lesser quality than expected, and thus the computation time slightly larger.

All these computations, even in larger dimension, have taken less than a second on a Intel
Pentium M 2GHz.
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Example 1 We consider the function x 7→ sin(π
√

x)/(π
√

x) on the interval [0, 1] and we search
for a degree-8 polynomial approximation with single precision floating-point coefficients. We get
an L2 error equal to 1.883 . . . · 10−21, that we compare to 2.562 . . . · 10−17 which is the error
given by the rounded projection i.e. the polynomial obtained after having rounded to the nearest
the coefficients of the real optimal L2-approximation: we get a factor 10000 improvement.

We obtain an absolute error equal to 1.345 . . . · 10−10, that we have to compare to 1.002 . . . ·
10−8 which is the error provided by the rounded minimax (i.e. the polynomial obtained after
having rounded to the nearest the coefficients of the real optimal L∞-approximation): we obtain
an improvement by a factor 100.

Example 2 We consider the arctan function on [−1, 1]. Then, we search for a polynomial of the
form p(x) = x + x3(p0 + p1y + · · · + p22y

22) where y = x2 and the pi are double precision
floating-point numbers. This is a practical example from [6, Chap. 10]

We immediately obtain an approximant giving rise to a relative error equal to 2.71 . . . ·10−18

which improves by a factor 5 the relative error given by the rounded minimax which is equal to
1.15 . . . · 10−17.

There is currently another lattice reduction based approach [3] developed for tackling the
problem of getting very good L∞-approximation. On the few experiments we did, we noticed
that this approach sometimes leads to better results than ours but the factor between the errors
they reach and ours is not large, even in degrees around 25. That approach has the drawback
to require as input the computation of a minimax approximation, given by Remes’ algorithm,
whereas our approach is entirely done at almost no cost. Moreover, there are issues that the
approach of [3] is not yet able to address but which can be treated with the method developed
here. For instance, we already noticed that we can tackle with relative error approximation.
We are also able to compute approximations in which the values of some coefficients are fixed.
Finally, we can directly adapt our method to compute approximations to two-variable functions.

7 Conclusion and further work

We have presented a set of methods for computing best (absolute or relative) L2 floating-point
approximations, either by polynomials, or more generally by any finite linear combination of
functions, such as trigonometric polynomials. These methods can be seen as a further tool in the
toolbox available to the “computer arithmetician” to compute approximations with floating-point
(and more generally machine-number) coefficients.

We have reviewed the main features of this tool: efficiency (especially in large dimension),
ability to deal with relative error, and versatility, utility as a preprocessing step to speed up L∞

or relative error computations.
The fact that the best vector produced by the L2 method seems in practice to be within a small

factor of the L∞ solution suggests an improved strategy. Denote by b the best L2-approximation
that we have obtained. By using a straightforward adaptation of the optimal algorithm, we can
list all vectors v for which

‖v − pE(f)‖2 ≤ β‖b− pE(f)‖2, (2)
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for some constant β > 1.
Then, we can compute the corresponding L∞ norm of all those vectors, and look for the best

of them. The main trouble is the fact that the number of vectors will grow as
(

β‖b− pE(f)‖2
2(det(G))1/2n

)n

;

if the mi are not chosen carefully enough, ‖b− pE(f)‖2 may be much larger than (det G)1/2n.
More intuitively, ‖b − pE(f)‖2 is of the order of magnitude of the size of the largest vector

in a “good” basis; if we have many “small” vectors in the basis, any “not too large” linear
combination of those vectors can be added to b without changing significantly its L2-distance to
pE(f). In that case, the set of vectors which verify (2) may be very large, and should be dealt
with in a non-exhaustive way.
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[16] P. Nguyen and D. Stehlé. Floating-point LLL revisited. In Proceedings of Eurocrypt 2005,
volume 3494 of Lecture Notes in Computer Science, pages 215–233. Springer-Verlag, 2005.
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