
HAL Id: inria-00088818
https://hal.inria.fr/inria-00088818v3

Submitted on 26 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Study on Learnability for Rigid Lambek Grammars
Roberto Bonato

To cite this version:
Roberto Bonato. A Study on Learnability for Rigid Lambek Grammars. [Research Report] RR-5964,
INRIA. 2006, pp.81. �inria-00088818v3�

https://hal.inria.fr/inria-00088818v3
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

appor t
de r ech er ch e

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Study on Learnability for Rigid Lambek Grammars

Roberto Bonato

N◦ 5964

Juin 2006

Unité de recherche INRIA Futurs
Parc Club Orsay Université, ZAC des Vignes,

4, rue Jacques Monod, 91893 ORSAY Cedex (France)
Téléphone : +33 1 72 92 59 00 — Télécopie : +33 1 72 92 59 ??

A Study on Learnability for Rigid Lambek Grammars

Roberto Bonato

Thème SYM — Systèmes symboliques
Projet SIGNES

Rapport de recherche n◦ 5964 — Juin 2006 — 78 pages

Abstract: We present the basic notions of Gold’s learnability in the limit paradigm, a formalization
of the cognitive process by which a native speaker infers the rules of the grammar of her own native
language through the exposition to a finite sample of sentences generated by that grammar. Then
we present Lambek grammars, a formalism issued from categorial grammars which, although not
as expressive as needed for a full formalization of natural languages, is particularly suited to easily
implement a natural interface between syntax and semantics. In the last part of this work, we present
a learnability result for Rigid Lambek grammars from structured examples.

Key-words: Formal Learning Theory, machine learning, Lambek calculus, computational linguis-
tics, formal grammars

Une étude sur l’apprenabilité
des grammaires de Lambek rigides

Résumé : On présente les notions élémentaires du paradigme d’apprenabilité à la limite de E. M.
Gold, une formalisation du processus cognitif qui permet l’apprentissage des règles de la grammaire
d’une langue naturelle à partir d’un échantillon fini d’énoncés bien formés. Ensuite, on présente
les grammaires de Lambek, un formalisme issu des grammaires catégorielles qui a des qualités
intéréssantes par rapport à l’interface syntaxe-sémantique. Nous détaillons un résultat d’apprenabilité
pour les grammaires de Lambek Rigides dans le modèle d’apprentissage de Gold à partir d’exemples
structurés.

Mots-clés : Théorie formelle de l’apprentissage, apprentissage automatique, calcul de Lambek,
linguistique computationnelle, grammaires formelles

Learnability for Rigid Lambek Grammars 3

1 Introduction
How comes it that human beings, whose contacts with the world are brief and personal
and limited, are nevertheless able to know as much as they do know?

Sir Bertrand Russell (quoted by Noam Chomsky in [Cho75]).

Formal Learning Theory was introduced by E. M. Gold in 1967 (see [Gol67]) as a first effort to
provide a rigorous formalization of grammatical inference, that is the process by which a learner,
exposed to a finite subset of well-formed sentences of a given language, gets to infer the grammar that
generates it. The typical example is first language acquisition in human beings: a child gets to master,
in a completely spontaneous way and on the basis of the relatively small amount of information
provided by sentences uttered in its cultural environment, the highly complex and subtle rules of
her mother tongue, to the point that she can utter correct and original sentences before her third
year of life. Another example is scientific inductive reasoning (see [OWdJM97]). In this case the
learner is the scientist who, on the basis of finite amount of empirical evidences provided by natural
phenomena, formulates hypotheses about the explanation that account for them.

After initial skepticism (largely due to Gold himself, whose first results in his model were proofs
of non-learnability for the four classes of grammars of Chomsky’s hierarchy), recently there has
been a renewal of interest toward this computational model of learning. One of the most remarkable
results is Shinohara’s (see [Shi90]), who proves that if we bound the number of rules in a context-
sensitive grammar, it becomes learnable in Gold’s paradigm.

Likewise, Lambek grammars have recently known a renewed interest as a mathematical tool
for the description of linguistics phenomena, after having being long neglected after their definition
in [Lam58]. Van Benthem was among the first who stressed the singular correspondence between
Montague semantics (see [Mon97]) and the notion of structure associated to a sentence of a Lam-
bek grammar. Furthermore, a recent work by Hans-Jörg Tiede (see [Tie99]) has made clearer the
notion of structure of a sentence in a Lambek grammar, in contrast with a previous definition by
Buszkowski (see [Bus86]). In doing so, he proves that the class of tree languages generated by Lam-
bek grammars strictly contains the class of tree languages generated by context-free grammars. This
remarkable result proves that Lambek grammars have more strong generative capacity than context-
free languages, whose structure language is local.

This document is organized as follows. Section 2 presents the basic notions of Gold’s formal
learning theory and summarizes the principal results achieved since its introduction. Section 3 in-
troduces Lambek grammars: special attention is devoted to the features which make them attractive
for computational linguistics. Section 4 presents the class of rigid Lambek grammars, which is the
object of our learning algorithm. In Section 5 we present a learning algorithm for rigid Lambek
grammars from structured sentences. Convergence for the algorithm, and therefore learnability for
the class of rigid Lambek grammars is proved.

RR n◦ 5964

4 Roberto Bonato

2 Grammatical Inference

2.1 Child’s First Language Acquisition
One of the most challenging goals for modern cognitive sciences is providing a sound theory ac-
counting for the process by which any human being masters the highly complex and articulated
grammatical structure of her mother tongue in a relatively small amount of time. Between the age
of 3 and 5 we witness in children a linguistic explosion, at the end of which the child has learnt
all the grammatical rules of her mother tongue, the subsequent learning being but lexical acquisi-
tion. Moreover, cognitive psychologists agree (see [OGL95]) in stating that the learning process
is almost completely based on positive evidence (i.e. correct statements belonging to her mother
tongue) provided by the cultural environment wherein the child has grown up. Negative evidence
(any information or feedback given to the child to identify wrong sentences) doesn’t seem to play
any significant role in the process of learning (see [Pin94]). Simply stated, the child acquires a lan-
guage due to the exposition to correct sentences coming from her linguistic environment and not to
the negative feedback she gets when she utters a wrong sentence.

The astounding ability to extract highly articulated knowledge (i.e. the grammar of a human
language) from a relatively small amount of “raw” data (i.e. the statements of the language the
child is exposed to during her early childhood) can be considered as an instance of a grammatical
induction problem. Formal learning theory aims at providing a formal framework to account for this
process.

2.2 Gold’s Model
The process of child’s first language acquisition can be seen as an instance of the more general
problem of grammatical inference. In particular, we will restrict our attention to the process of
inference from positive data only. Simply stated, it’s the process by which a learner can acquire the
whole grammatical structure of a formal language on the basis of well-formed sentences belonging
to the target language.

In 1967 E. M. Gold defined (see [Gol67]) the formal model for the process of grammatical
inference from positive data that will be adopted in the present work. In Gold’s model, grammatical
inference is conceived as an infinite process during which a learner is presented with an infinite
stream of sentences s0,s1, . . . ,sn . . ., belonging to language which has to be learnt, one sentence at
a time. Each time the learner is presented with a new sentence si, she formulates a new hypothesis
Gi on the nature of the underlying grammar that could generate the language the sentences she has
seen so far belong to: since she is exposed to an infinite number of sentences, she will conjecture an
infinite number of (not necessarily different) grammars G0,G1, . . . ,Gn

INRIA

Learnability for Rigid Lambek Grammars 5

s0︸︷︷︸
G0

,s1

︸ ︷︷ ︸
G1

, . . . ,sn

︸ ︷︷ ︸
Gn ...

, . . .

︸ ︷︷ ︸
G

Two basic assumptions are made about the stream of sentences she is presented with: (i) only
grammatical sentences (i.e. belonging to the target language) appear in the stream, coherently with
our commitment to the process of grammar induction from positive data only; (ii) every possible
sentence of the language must appear in the stream (which must be therefore an enumeration of the
elements of the language).

The learning process is considered successful when, from a given point onward, the grammar
conjectured by the learner doesn’t change anymore and it coincides with the grammar that actually
generates the target language. It is important to stress that one can never know whether the learning
has been successful or not: at each finite stage, there is no way to predict whether next sentence will
change or not the current hypothesis. The goal of the theory lies in devising a successful strategy for
making guesses, that is, one which can be proved to converge to the correct grammar after a finite
(but unknown) amount of time (or positive evidence, which is the same in our model). Gold called
this criterion of successful learning identification in the limit.

According to this criterion, a class of grammars is said to be learnable when, for any language
generated by a grammar belonging to the class, and for any enumeration of its sentences, there
is a learning function that successfully identifies the correct grammar that generates the language.
Research on formal learning theory is devoted to identify non-trivial classes of languages which are
learnable in Gold’s model, or criterions for (un)learnability for a class of languages on the basis of
some structural property of the language.

As it will be made clear in the following sections, accepting this criterion for successful learning
means that we are not interested in when the learning has taken place. The goal of the theory is
to devise effective procedures such that, if applied to the infinite input stream of sentences, are
guaranteed to converge after a finite number of steps to the correct grammar.

3 Basic Notions
We present here a short summary of formal learning theory as described in [Kan98], whence we take
the principal definitions and notation conventions.

3.1 Grammar Systems
The fist step to formalize first language acquisition is the definition of the “cultural environment”
within which the process takes place and of the “positive evidences” the learner is exposed to. To do
this, we introduce the notion of grammar system.

RR n◦ 5964

6 Roberto Bonato

Definition 3.1 (Grammar System) A grammar system is a triple 〈Ω,S ,L〉, where

• Ω is a certain recursive set of finitary objects on which mechanical computations can be
carried out;

• S is a certain recursive subset of Σ∗ (the set of finite sequences of elements of Σ), where Σ is a
given finite alphabet;

• L is a function that maps elements of Ω to subsets of S , i.e. L : Ω → ℘(S).

We can think of Ω as the “hypothesis space”, whence the learner takes her grammatical conjec-
tures, according to the positive examples she has been exposed to up to a certain finite stage of the
learning process. Elements of Ω are called grammars.

Positive examples presented to the learner belong to the set S (often we simply have S = Σ∗);
its elements are called sentences, while its subsets are called languages. As it will be made clear
in the following sections, the nature of elements in S strongly influences the process of learning:
intuitively, we can guess that the more information they bear, the easier the learning process is, if it
is possible at all.

The function L maps each grammar G belonging to Ω into a subset of S which is designated as
the language generated by G. That is why we often refer to L as the naming function. The question
of whether s∈ L(G) holds between any s∈ S and G∈Ω is addressed to as the universal membership
problem.

Example 3.2 Let Σ be any finite alphabet and let DFA be the set of deterministic finite automata
whose input alphabet is Σ. For every M ∈DFA, let L(M) be the set of strings over Σ accepted by M.
Then 〈DFA,Σ∗,L〉 is a grammar system.

Example 3.3 Let Σ be any finite alphabet and let RegExpr be the set of regular expressions over Σ.
For every r ∈ RegExpr, let L(r) be the regular language represented by r. Then 〈RegExpr,Σ∗,L〉 is
a grammar system.

Example 3.4 (Angluin, 1980) Let Σ any finite alphabet, and let Var be a countably infinite set of
variables, disjoint from Σ. A pattern over Σ is any element of (Σ∪Var)+: let Pat be the set of
patterns over Σ. For every p ∈ Pat, let L(p) be the set of strings that can be obtained from p by
uniformly replacing each variable x occurring in p by some string w ∈ Σ+. The triple 〈Pat,Σ+,L〉 is
a grammar system.

3.2 Learning Functions, Convergence, Learnability
Once formally defined both the set of possible “guesses” the learner can make and the set of the
positive examples she is exposed to, we need a formal notion for the mechanism by which the
learner formulates hypotheses, on the basis finite sets of well-formed sentences of a given language,
about the grammar that generates them.

INRIA

Learnability for Rigid Lambek Grammars 7

Definition 3.5 (Learning Function) Let 〈Ω,S ,L〉 be a grammar system. A learning function is a
partial function that maps finite sets of sentences to grammars,

ϕ :
⋃
k≥1

S k ⇀ Ω

where S k denotes the set of k-ary sequences of sentences.

A learning function can be seen as a formalization of the cognitive process by which a learner con-
jectures that a given finite set of sentences belongs to the language generated by a certain grammar.
Since it is a partial function, it is possible that the learner does not infer any grammar from the stream
of sentences she has heard so far.

φ (l)

φ (l)

φ (l)

Ω
S

G

G

L(G)

l1

1

l
2

l n

2

n

Figure 1: Grammatical Inference

According to the informal model outlined in section 2.2, in a successful learning process the
guesses made by the learner remain the same from a certain point onward in the infinite process of
learning. That is to say, there must be a finite (although unknown) stage after which the grammar
inferred on the basis of all the positive examples the learner has seen so far does not change. This
informal idea can be made precise by introducing the notion of convergence for a learning function:

Definition 3.6 (Convergence) Let 〈Ω,S ,L〉 be a grammar system, ϕ a learning function,

〈si〉i∈N = 〈s0,s1, . . .〉

RR n◦ 5964

8 Roberto Bonato

an infinite sequence of sentences belonging to S , and let

Gi = ϕ(〈s0, . . . ,si〉)

for any i ∈ N such that ϕ is defined on the finite sequence 〈s0, . . . ,si〉. ϕ is said to converge to G
on 〈si〉i∈N if there exists n ∈ N such that, for each i ≥ n, Gi is defined and Gi = G (equivalently, if
Gi = G for all but finitely many i ∈ N).

As we have already pointed out, one can never say exactly if and when convergence of a learning
function to a certain grammar has taken place: this is due to the infinite nature of the process through
which a learner infers a grammar a given in Gold’s model. At any finite stage of the learning process
there is no way to know whether the next sentence the learner will see causes the current hypothesis
to change or not.

We will say that a class of grammars is learnable when for each language generated by its
grammars there exists a learning function which converges to the correct underlying grammar on the
basis of any enumeration of the sentences of the language. Formally:

Definition 3.7 Let 〈Ω,S ,L〉 be a grammar system, and G ⊆ Ω a given set of grammars. The learn-
ing function ϕ is said to learn G if the following condition holds:

• for every language L ∈ L(G) = {L(G) | G ∈ G},

• and for every infinite sequence 〈si〉i∈N that enumerates L (i.e., {si | i ∈ N}= L)

there exists a G ∈ G such that L(G) = L, such that ϕ converges to G on 〈si〉i∈N.

So we will say that a given learning function converges to a single grammar, but that it learns a
class of grammars. The learning for a single grammar, indeed, could be trivially implemented by a
learning function that, for any given sequence of sentences as input, always returns that grammar.

Definition 3.8 (Learnability of a Class of Grammars) A class G of grammars is said to be learn-
able if and only if there exists a learning function that learns G . It is said to be effectively learnable
if the learning function is computable.

Obviously effective learnability implies learnability.

Example 3.9 Let 〈Ω,S ,L〉 be any grammar system and let G = {G0,G1,G2} ⊆ Ω and suppose
there are elements w1,w2 ∈ S such that w1 ∈ L(G1)−L(G0) and w2 ∈ L(G2)− (L(G1)∪L(G0)).
Then it’s easy to verify that the following learning function learns G:

ϕ(〈s0, . . . ,si〉) =

 G2 if w2 ∈ {s0, . . . ,si},
G1 if w1 ∈ {s0, . . . ,si} and w2 6∈ {s0, . . . ,si},
G0 otherwise.

INRIA

Learnability for Rigid Lambek Grammars 9

Example 3.10 Let’s consider the grammar system 〈CFG,Σ∗,L〉 of context-free grammars over the
alphabet Σ. Let G be the subclass of CFG consisting of grammars whose rules are all of the form

S → w,

where w ∈ Σ∗. We can easily see that L(G) is exactly the class of finite languages over Σ. Let’s
define the learning function ϕ as

ϕ(〈s0, . . . ,si〉) = 〈Σ,{S},S,P〉,

where
P = {S → s0, . . . ,S → si}.

Then ϕ learns G .

3.3 Structural Conditions for (Un)Learnability
One of the first important results in learnability theory presented in [Gol67] was a sufficient condition
to deduce the unlearnability of a class G of grammars on the basis of some formal properties of
the class of languages L = L(G) (see theorem 3.14). We present here some structural conditions
sufficient to deduce (un)learnability for a class of grammars.

3.3.1 Existence of a Limit Point

Definition 3.11 (Limit Point) A class L of languages has a limit point if there exists an infinite
sequence 〈Ln〉n∈N of languages in L such that1

L0 ⊂ L1 ⊂ ·· · ⊂ Ln ⊂ ·· ·

and there exists another language L ∈ L such that

L =
⋃
n∈N

Ln

The language L is called limit point of L .

Lemma 3.12 (Blum and Blum’s locking sequence lemma, 1975)
Suppose that a learning function ϕ converges on every infinite sequence that enumerates a language
L. Then there is a finite sequence 〈w0, . . . ,wl〉 (called a locking sequence for ϕ and L) with the
following properties:

(i) {w0, . . . ,wl} ⊆ L,

(ii) for every finite sequence 〈v0, . . . ,vm〉, if {v0, . . . ,vm}⊆L, then ϕ(〈w0, . . . ,wl〉)= ϕ(〈w0, . . . ,wl ,v0, . . . ,vm〉).
1Symbol ⊂ is used for “is strictly contained in”.

RR n◦ 5964

10 Roberto Bonato

L
0 L

1 L
2 L

n

L

Figure 2: A limit point for a class of languages.

Intuitively enough, the previous lemma (see [BB75]) states that if a learning function converges,
then there must exist a finite subsequence of input sentences that “locks” the guesses made by the
learner on the grammar the learning function converges to: that is to say, the learning function always
returns the same grammar for any input stream of sentences containing that finite sequence.

The locking sequence lemma proves one of the first unlearnability criterions in Gold’s frame-
work:

Theorem 3.13 If L(G) has a limit point, then G is not learnable.

An easy consequence of the previous theorem is the following

Theorem 3.14 (Gold, 1967) For any grammar system, a class G of grammars is not learnable if
L(G) contains all finite languages and at least one infinite language.

Proof sketch. Let L1 ⊂ L2 ⊂ . . . be a sequence of finite languages and let L∞ =
⋃

∞
i=1 Li. Suppose there

were a learning function ϕ that learns the class {L | L is finite}∪{L∞}. Then ϕ must identify any
finite language in a finite amount of time. But then we can build an infinite sequence of sentences
that forces ϕ to make an infinite number of mistakes: we first present ϕ with enough examples from
L1 to make it guess L1; then with enough examples from L2 to make it guess L2, and so on. Note
that all our examples belong to L∞.

3.3.2 (In)Finite Elasticity

As we have seen in the previous section, the existence of a limit point for a class of languages implies
the existence of an “infinite ascending chain” of languages like the one described by the following,
weaker condition:

Definition 3.15 (Infinite Elasticity) A class L of languages is said to have infinite elasticity if there
exists an infinite sequence 〈sn〉n∈N of sentences and an infinite sequence 〈Ln〉n∈N of languages such
that for every n ∈ N,

sn /∈ Ln,

INRIA

Learnability for Rigid Lambek Grammars 11

and
{s0, . . . ,sn} ⊆ Ln+1.

The following definition, although trivial, identifies an extremely useful criterion to deduce learn-
ability for a class of grammars:

Definition 3.16 (Finite Elasticity) A class L of languages is said to have finite elasticity if it doesn’t
have infinite elasticity.

Dana Angluin proposed in [Ang80] a characterization of the notion of learnability in a “restrictive
setting” which is of paramount importance in formal learning theory. Such restrictions are about the
membership problem and the recursive enumerability for the class of grammars whose learnability
is at issue. Let 〈Ω,S ,L〉 be a grammar system and G ⊆ Ω a class of grammars, let’s define:

Condition 3.17 There is an algorithm that, given s ∈ S and G ∈ G , determines whether s ∈ L(G).

Condition 3.18 G is a recursively enumerable class of grammars.

Condition 3.17 is usually referred to as decidability for the universal membership problem for
grammars, and condition 3.18 as the recursive enumerability condition. Such restrictions are not
unusual in concrete situations where learnability is at stake, so they do not significantly affect the
usefulness of the following characterization of the notion learnability under such restrictive condi-
tions.

Theorem 3.19 (Angluin 1980) Let 〈Ω,S ,L〉 be a grammar system for which the universal member-
ship problem is decidable and let G be a recursively enumerable subset of Ω. Then G is learnable if
and only if there exists a computable partial function ψ : Ω×N ⇀ S such that:

(i) for all n ∈ N, ψ(G,n) is defined if and only if G ∈ G and L(G) 6= /0;

(ii) for all G ∈ G ,TG = {ψ(G,n) | n ∈ N} is a finite subset of L(G);

(iii) for all G,G′ ∈ G , if TG ⊆ L(G′), then L(G′) 6⊂ L(G).

Note: From this point onward, unless otherwise stated, we will restrict our attention to classes of
grammars that fulfill both condition 3.17 and condition 3.18.

Angluin’s theorem introduces the notion of TG as the tell-tale set for a given language. Learn-
ability in the restricted environment is characterized by the existence of a mechanism (the function
ψ) to enumerate all the sentences belonging to such a finite subset of the target language. Even more,
a tell-tale set for a given grammar G is such that if it is included in the language generated by another
grammar G′, then

• either L(G) is included in L(G′),

• or L(G′) contains other sentences as well as those belonging to L(G).

RR n◦ 5964

12 Roberto Bonato

Otherwise stated, it is never the case that TG ⊆ L(G′)⊆ L(G). The point of the tell-tale subset is that
once the strings of that subset have appeared among the sample strings, we need not fear overgener-
alization in guessing a grammar G. This is because the true answer, even if it is not L(G), cannot be
a proper subset of L(G). This means that a learner who has seen only the sentences belonging to the
tell-tale set for a given grammar G, is justified in conjecturing G as the underlying grammar, since
doing so never results in overshooting or inconsistency.

L()G
TG

L()G´

L(´´)G

Figure 3: A tell-tale set for L(G).

As a consequence of Angluin’s theorem, Wright proved in [Wri89] the following

Theorem 3.20 (Wright, 1989) Let 〈Ω,S ,L〉 and G be as in theorem 3.19. If L(G) has finite elas-
ticity, then G is learnable.

In such a restricted framework, therefore, the task of proving learnability for a certain class of gram-
mars can be reduced to the usually simpler task of proving its finite elasticity.

Due to Wright’s theorem we can establish the following useful implications

L(G) has finite elasticity †⇒ G is learnable
L(G) has a limit point ⇒ G is unlearnable

G is unlearnable †⇒ L(G) has infinite elasticity

The implications indicated by †⇒ depend on the decidability of universal membership and recursive
enumerability of the class of grammars G at issue, as defined in conditions 3.17 and 3.18.

3.3.3 Kanazawa’s Theorem

The following theorem (see [Kan98]), which is a generalization of a previous theorem by Wright,
provides a sufficient condition for a class of grammars to have finite elasticity, and therefore to be

INRIA

Learnability for Rigid Lambek Grammars 13

learnable. A relation R ⊆ Σ∗×ϒ∗ is said to be finite-valued if and only if for every s ∈ Σ∗, the set
{u ∈ ϒ∗ | sRu} is finite.

Theorem 3.21 Let M be a class of languages over ϒ that has finite elasticity, and let R ⊆ Σ∗×ϒ∗

be a finite-valued relation. Then L = {R−1[M] | M ∈ M } also has finite elasticity.

This theorem is a powerful tool to prove finite elasticity (and therefore learnability) for classes
of grammars. Once we prove the finite elasticity for a certain class of grammars in the “straight”
way, we can get a proof for finite elasticity of other classes of grammars, due to the relatively loose
requirements of the theorem. All we have to do is to devise a “smart” finite-valued relation between
the first class and a new class of grammars such that the anti-image of the latter under this relation
is the class for which we want to prove finite elasticity.

Σ* Υ *

R

MM]R [
-1

Figure 4: Kanazawa’s theorem.

3.4 Constraints on Learning Functions
In the definition of learnability nothing is said about the behaviour of learning functions apart from
convergence to a correct grammar. Further constraints can be imposed: one can choose a certain
learning strategy. Intuitively, a strategy refers to a policy, or preference, for choosing hypotheses.
Formally, a strategy can be analyzed as merely picking a subset of possible learning functions.
Strategies can be grouped by numerous properties. We choose to group them by restrictiveness,
defined as follows:

Definition 3.22 (Restrictiveness) If a strategy reduces the class of learnable languages it is said to
be restrictive.

For example, strategies are grouped as computational constraints (computability, time complexity),
constraints on potential conjectures (consistency), constraints on the relation between conjectures
(conservatism), etc. We provide hereby a list of the most common restrictive strategies that can be
adopted by learning functions.

RR n◦ 5964

14 Roberto Bonato

3.4.1 Non-restrictive Constraints

The proof of theorem 3.19 implies that in a grammar system where universal membership is decid-
able, a recursively enumerable class of grammars is learnable if and only if there is a computable
learning function that learns it order-independently, prudently, and is responsive and consistent on
this class.

Definition 3.23 (Order-independent Learning) A learning function ϕ is said to learn G order-
independently whenever for all L ∈ L(G), there exists G ∈ G such that L(G) = L and for all infinite
sequences 〈si〉i∈N that enumerate L, ϕ converges on 〈si〉i∈N to G.

Intuitively this seems a reasonable strategy. There does not seem to be an a priori reason why either
the order of presentation should influence the final choice of hypothesis. On the other hand, it has
already been proved (see [JORS99]) that in any grammar system, a class of grammars is learnable if
and only if there is a computable learning function that learns it order-independently.

Definition 3.24 (Exact Learning) A learning function ϕ is said to learn G exactly whenever for all
G ′ such that ϕ learns G ′, L(G ′)⊆ L(G).

In other words, the learning function will not hypothesize grammars that are outside its class. This
is not really a constraint on learning functions, but on the relation between a class of languages and
a learning function. For every learning function there exists a class that it learns exactly. The reason
for this constraint is the idea that children only learn languages that have at least a certain minimal
expressiveness. If we want to model language learning, we want learning functions to learn a chosen
class exactly. There seems to be empirical support for this idea. Some of it comes from studies of
children raised in pidgin dialects, some from studies of sensory deprived children (see [Pin94]).

Definition 3.25 (Prudent Learning) A learning function ϕ is said to learn G prudently whenever
ϕ learns G and range(ϕ)⊆ G2.

Note that prudent learning implies exact learning. This reduces to the condition that a learning
function should only produce a hypothesis if the learning function can back up its hypotheses, i.e. if
the hypothesis is confirmed by the input, the learning function is able to identify the language.

Definition 3.26 (Responsive Learning) A learning function ϕ is said to be responsive on G when-
ever for any L ∈ L(G) and for any finite sequence 〈s0, . . . ,si〉 of elements of L ({〈s0, . . . ,si〉} ⊆ L),
ϕ(〈s0, . . . ,si〉) is defined.

This constraint can be regarded as the complement of prudent learning: if all sentences found in
the input are in a language in the class of languages learned, the learning function should always
produce a hypothesis.

Definition 3.27 (Consistent Learning) A learning function ϕ is said to be consistent on G when-
ever for any L ∈ L(G) and for any finite sequence 〈s0, . . . ,si〉 of elements of L, either ϕ(〈s0, . . . ,si〉)
is undefined or {s0, . . . ,si} ⊆ L(ϕ(〈s0, . . . ,si〉)).

2We define the range of a function f : A → B as {x ∈ B : x = f (a) for some a ∈ A}

INRIA

Learnability for Rigid Lambek Grammars 15

The idea behind this constraint is that all the data given should be explained by the chosen hypothesis.
It should be self-evident that this is a desirable property. Indeed, one would almost expect it to be part
of the definition of learning. However, learning functions that are not consistent are not necessarily
trivial. If, for example, the input is noisy, it would not be unreasonable for a learning function to
ignore certain data because it considers them as unreliable. Also, it is a well known fact that children
do not learn languages consistently.

3.4.2 Restrictive Constraints

Definition 3.28 (Set-Drivenness) A learning function ϕ which learns G is said to be set-driven
whenever ϕ(〈s0, . . . ,si〉) is determined by {s0, . . . ,si} or, more precisely, if the following holds: when-
ever {s0, . . . ,si}= {u0, . . . ,u j}, ϕ(〈s0, . . . ,si〉) is defined if and only if ϕ(〈u0, . . . ,u j〉) is defined, and
if they are defined, they are equal.

It is easy to see that set-drivenness implies order-independence. Set-driven learning could be very
loosely described as order-independent learning with the addition of ignoring “doubles” in the input.
It is obvious that this is a nice property for a learning function to have: one would not expect the
choice of hypothesis to be influenced by repeated presentation of the same data. The assumption
here is that the order of presentation and the number of repetitions are essentially arbitrary, i.e. they
carry no information that is of any use to the learning function. One can devise situations where this
is not the case.

Definition 3.29 (Conservative Learning) A learning function ϕ is conservative if for any finite se-
quence 〈s0, . . . ,si〉 of sentences and for any sentence si+1, whenever ϕ(〈s0, . . . ,si〉) is defined and
si+1 ∈ L(ϕ(〈s0, . . . ,si〉)), ϕ(〈s0, . . . ,si,si+1〉) is also defined and ϕ(〈s0, . . . ,si〉) = ϕ(〈s0, . . . ,si,si+1〉).

At first glance conservatism may seem a desirable property. Why change your hypothesis if there
is no direct need for it? One could imagine cases, however, where it would not be unreasonable
for a learning function to change its mind, even though the new data fits in the current hypothesis.
Such a function could for example make reasonable but “wild” guesses which it could later retract.
The function could “note” after a while that the inputs cover only a proper subset of its conjectured
language. While such behaviour will sometimes result in temporarily overshooting, such a function
could still be guaranteed to converge to the correct hypothesis in the limit.

It is a common assumption in cognitive science that human cognitive processes can be simulated
by computer. This would lead one to believe that children’s learning functions are computable. The
corresponding strategy is the set of all partial and total recursive functions. Since this is only a subset
of all possible functions, the computability strategy is a non trivial hypothesis, but not necessarily a
restrictive one. The computability constraint interacts with consistency (see [Ful88]):

Proposition 3.30 There is a collection of languages that is identifiable by a computable learning
function but by no consistent, computable learning function.

The computability constraint also interacts with conservative learning (see [Ang80]):

RR n◦ 5964

16 Roberto Bonato

Proposition 3.31 (Angluin, 1980) There is a collection of languages that is identifiable by a com-
putable learning function but by no conservative, computable learning function.

Definition 3.32 (Monotonicity) The learning function ϕ is monotone increasing if for all finite se-
quences 〈s0, . . . ,sn〉 and 〈s0, . . . ,sn+m〉, whenever ϕ(〈s0, . . . ,sn〉) and ϕ(〈s0, . . . ,sn+m〉) are defined,

L(ϕ(〈s0, . . . ,sn〉))⊆ L(ϕ(〈s0, . . . ,sn+m〉)).

When a learning function that is monotone increasing changes its hypothesis, the language associ-
ated with the previous hypothesis will be (properly) included in the language associated with the
new hypothesis. There seems to be little or no empirical support for such a constraint. On the con-
trary, it seems that hypotheses made by children decrease until they reach the correct hypothesis:
in particular, all permutations of constituents are quickly met and then most of them disappear,the
remaining ones being the correct hypothesis.

Definition 3.33 (Incrementality, Kanazawa 1998) The learning function ϕ is incremental if there
exists a computable function ψ such that

ϕ(〈s0, . . . ,sn+1〉)' ψ(ϕ(〈s0, . . . ,sn〉),sn+1).

An incremental learning function does not need to store previous data. All it needs is current input,
sn, and its previous hypothesis. A generalized form of this constraint, called memory limitation,
limits access for a learning function to only n previous elements of the input sequence. This seems
reasonable from an empirical point of view; it seems improbable that children (unconsciously) store
all utterances they encounter.

Note that, on an infinite sequence enumerating language L in L(G), a conservative learning func-
tion ϕ learning G never outputs any grammar that generates a proper superset of L.

Let G be a class of grammars, and let ϕ be a learning function for G which is:

• conservative,

• computable,

• responsive on G ,

• consistent on G ,

• and learns G prudently.

Then, whenever {s0, . . . ,sn} ⊆ L for some L ∈ L(G), L(ϕ(〈s0, . . . ,sn〉)) must be a minimal element
(w.r.t. to inclusion) of the set {L ∈ L(G) | {s0, . . . ,sn} ⊆ L}. This implies the following condition:

Condition 3.34 There is a computable partial function ψ that takes any finite set D of sentences and
maps it to a grammar ψ(D) ∈ G such that L(ψ(D)) is a minimal element of {L ∈ L(G) | D ⊆ L}
whenever the latter set is non-empty.

INRIA

Learnability for Rigid Lambek Grammars 17

Definition 3.35 Let ψ a computable function satisfying condition 3.34. Define a learning function
ϕ as follows

ϕ(〈s0〉)' ψ({s0}),

ϕ(〈s0, . . . ,si +1〉)'
{

ϕ(〈s0, . . . ,si〉) if si+1 ∈ L(ϕ(〈s0, . . . ,si〉)),
ψ({s0, . . . ,si+1}) otherwise.

Under certain conditions the function just defined is guaranteed to learn G , one such case is where
L(G has finite elasticity.

Proposition 3.36 Let G be a class of grammars such that L(G) has finite elasticity, and a com-
putable function ψ satisfying condition 3.34 exists. Then the learning function ϕ defined in definition
3.35 learns G .

4 Is Learning Theory Powerful Enough?

4.1 First Negative Results
One of the main and apparently discouraging consequences of the theorem 3.14 proved by Gold in
the original article wherein he laid the foundations of Formal Learning Theory was that none of the
four classes of Chomsky’s Hierarchy is learnable under the criterion of identification in the limit.
Such a first negative result has been taken for a long time as a proof that identifying languages from
positive data according to his identification in the limit criterion was too hard a task. Gold himself
looks quite pessimistic about the future of the theory he has just defined along its main directions:

However, the results presented in the last section show that only the most trivial class of
languages considered is learnable... [Gol67]

4.2 Angluin’s Results
The first example of non-trivial class of learnable grammars was discovered by Dana Angluin (see
[Ang80]). If Pat is defined like in example 3.4, we can prove that the class of all pattern languages
has finite elasticity and, therefore, it is learnable. Furthermore, such a learnable class of grammars
was also the first example of an interesting class of grammars that cross-cuts Chomsky Hierarchy,
therefore showing that Chomsky’s is not but one of many meaningful possible classifications for
formal grammars.

4.3 Shinohara’s Results
Initial pessimism about effective usefulness of Gold’s notion of identification in the limit was defi-
nitely abandoned after an impressive result by Shinohara who proves (see [Shi90]), that k-rigid con-
text sensitive grammars (context-sensitive grammars over a finite alphabet Σ with at most k rules),

RR n◦ 5964

18 Roberto Bonato

have finite elasticity for any k. Since the universal membership problem for context-sensitive gram-
mars is decidable, that class of grammars is learnable. This is a particular case of his more general
result about finite elasticity for what he calls monotonic formal system.

4.4 Kanazawa’s Results
Makoto Kanazawa in [Kan98] makes another decisive step toward bridging the existing gap between
Formal Learning Theory and computational linguistics. Indeed, he gets some important results on
the learnability for some non-trivial subclasses of Classical Categorial Grammars (also known as
AB Grammars). Analogously to what is done in [Shi90] he proves that as soon as we bound the
maximum number of types a classical categorial grammar assigns to a word, we get subclasses
which can be effectively learnable: in particular, he proves effective learnability for the class of
k-valued Classical Categorial Grammars, both from structures and from strings.

In the first case, each string of the language the learner is presented to comes with additional
information about the underlying structure induced by the grammar formalism that generates the
language. The availability of such additional information for each string is somewhat in contrast
with Gold’s model of learning and gives rise to weaker results. On the other hand, psychological
plausibility of the process is preserved by the fact that such an underlying structure can be seen as
some kind of semantic information that could be available to the child learning the language from
the very early stages of her cognitive development.

4.5 Our Results
The present work pushes Kanazawa’s results a little further in the direction of proving the effective
learnability for more and more powerful and expressive classes of formal languages. In particular,
we will be able to prove learnability for the class of Rigid Lambek Grammars (see chapter 9) and to
show an effective algorithm to learn them on the basis of a structured input. Much is left to be done:
if Lambek grammars are well known, properties of rigid Lambek grammars are still not mastered,
in particular with respect to their generative capacity. However, our results confirm once again that
initial pessimism toward this paradigm of learning was largely unjustified, and that even quite a
complex and linguistically motivated formalism like Lambek Grammars can be learnt according to
it.

INRIA

Learnability for Rigid Lambek Grammars 19

5 Lambek Grammars
In 1958 Joachim Lambek proposed (see [Lam58]) to extend the formalism of classical categorial
grammars (sometimes referred to also as BCG, or AB grammars, from the names of Ajdukiewicz
and Bar-Hillel, who first introduced them) by a deductive system to derive type-change rules. A BCG
grammar is basically as a finite relation between the finite set of symbols of the alphabet (usually
referred to as words) and a finite set of types. Combinatory properties of each word are completely
determined by the shape of its types, which can be combined according to a small set of rules, fixed
once and for all BCGs. Lambek’s proposal marked the irruption of logics into grammars: Lambek
grammars come with a whole deductive system that allows the type of a symbol to be replaced with
a weaker type.

It was first realized by van Benthem (see [vB87]) that the proofs of such type-change princi-
ples carry important information about their semantic interpretation, following the Curry-Howard
isomorphism. Thus, the notion of a proof theoretical grammar was proposed that replaces formal
grammars (see [Cho56]) with deductive systems and that includes a systematic semantics for natural
languages based on the relationship between proof theory and type theory. Thus, rather than con-
sidering grammatical categories as unanalyzed primitives, they are taken to be formulas constructed
from atoms and connectives, and rather than defining grammars with respect to rewrite rules, gram-
mars are defined by the rules of inference governing the connectives used in the syntactic categories.

Due to the renewed interest in categorial grammars in the field of computational linguistics,
Lambek (Categorial) Grammars (LCGs) are currently considered as a promising formalism. They
enjoy the relative simplicity of a tightly constrained formalism as that for BCGs, together with
the linguistically attractive feature of full lexicalization. Recent developments in this field led to
some interesting extensions of categorial grammars, such as Steedman’s Combinatory Categorial
Grammars (or CCGs, close to rewrite grammars), and Multi-Modal Categorial Grammars (MMCGs,
that keep the logical view and are Turing complete with decidable fragments). For an overview of
current research in categorial grammars for linguistics, see [Ret05].

Besides, although Pentus proved (in [Pen97]) that Lambek grammars generate exactly context-
free (string) languages, in [Tie99] it has been shown that their strong generative capacity is greater
than that of context-free grammars. These features make them an interesting subject for our inquiry
about their properties with respect to Gold’s Learnability Theory.

5.1 Classical Categorial Grammars
The main idea which lies behind the theory of Categorial Grammars is to conceive a grammar instead
as a set of rules which generate any string of the language, as a system which assigns to each symbol
of the alphabet a set of types which can be combined according to a small set of rules, fixed for the
whole class of Classical Categorial Grammars.

A context-free grammar à la Chomsky is made of a set of rules that generate all the strings of
a given language in a “top-down” fashion, starting from an initial symbol which identifies all the
well-formed strings. On the contrary, a categorial grammar accepts a sequence of symbols of the
alphabet as a well-formed string if and only if a sequence of types assigned to them reduces (in

RR n◦ 5964

20 Roberto Bonato

a “bottom-up” fashion) according to a fixed set of rules, to a distinguished type which designates
well-formed strings.

Definition 5.1 (Classical Categorial Grammar)
A Classical Categorial Grammar (henceforth CCG) is a quadruple 〈Σ,Pr,F,s〉, such that

• Σ is a finite set (the terminal symbols or vocabulary),

• Pr is a finite set (the non-terminal symbols or atomic categories),

• F is a function from Σ to finite subsets of Tp, the set of types defined as the smallest set such
that:

1. Pr ⊆ T p
2. if A,B ∈ T p, then (A/B),(A\B) ∈ T p

If F(a) = {A1, . . . ,An} we usually write G : a 7→ A1, . . . ,An.

• s ∈ Pr is the distinguished atomic category.

In a CCG, combinatory properties are uniquely determined by their structure. There are only two
modes of type combination: so-called (according to the notation introduced in [Lam58] and almost
universally adopted) Backward Application:

A,A\B ⇒ B

and Forward Application:
B/A,A ⇒ B.

A non-empty sequence of types A1, . . . ,An is said to derive a type B, that is

A1, . . . ,An ⇒ B,

if repeated applications of the rules of Backward and Forward application to consecutive pairs of
types in the sequence A1, . . . ,An results in B.

In order to define the language generated by a CCG we have to establish a criterion to identify a
string belonging to that language. That’s what is done by the following

Definition 5.2 The binary relation
⇒⊆ T p∗×T p∗

is defined as follows. Let A,B ∈ T p, let α,β ∈ T p∗,

α A A\B β ⇒ α B β

α B/A A β ⇒ α B β

The language generated by a CCG G is the set

{a1 · · ·an ∈ Σ
∗ | for 1 ≤ i ≤ n, ∃Ai, G : ai 7→ Ai, and A1 . . .An

∗⇒ s}

where ∗⇒ is the reflexive, transitive closure of ⇒.

INRIA

Learnability for Rigid Lambek Grammars 21

Informally, we can say that a string of symbols belongs to the language generated by a CCG if there
exists a derivation of the distinguished category s out of at least one sequence of types assigned by
the grammar to the symbols of the string.

Example 5.3 The following grammar generates the language {anbn | n > 0}:

a : s/B,

b : B, s\B

Here is a derivation for a3b3:

s/B s/B s/B B s\B s\B ⇒ s/B s/B s s\B s\B ⇒
s/B s/B B s\B ⇒ s/B s s\B ⇒

s/B B ⇒ s

Weak generative capacity of CCGs was characterized by Gaifman (see [BH64]):

Theorem 5.4 (Gaifman, 1964) The set of languages generated by CCGs coincides with the set of
context-free languages.

From the proof of Gaifman’s theorem, we immediately obtain the following normal form theorem:

Theorem 5.5 (Gaifman normal form) Every categorial grammar is equivalent to a categorial gram-
mar which assigns only categories of the form

A,A/B,(A/B)/C.

Example 5.6 A CCG equivalent to that in example 5.3 in Gaifman normal form is the following

a : s/B, (s/B)/s

b : B

and here is a derivation for a3b3:

(s/B)/B

(s/B)/s

s/B B

s

s/B B

s

s/B B

s

In the previous example we make use for the first time of a “natural deduction” notation for
derivations, that in the present work will substitute the rather obscure notation used in example 5.3.

RR n◦ 5964

22 Roberto Bonato

5.2 Extensions of Classical Categorial Grammars
As stated in the previous section, CCG formalism comes with only two reduction rules which yield
smaller types out of larger ones. Montague’s work on semantics (see [Mon97]) led to the definition
of two further “type-raising” rules, by which it is possible to construct new syntactic categories out
of atomic ones. We can extend the definition of CCGs as presented in the previous section by adding
to the former definition two new type change rules:

αBβ ⇒ α(A/B)\Aβ

αBβ ⇒ αA/(B\A)β

Other type-change rules that were proposed are the composition:

A/B B/C
A/C

C\B B\A
C\A

and the Geach Rules:
A/B

(A/C)/(B/C)
B\A

(C\B)\(C\A)
We can extend the formalism of CCG by adding to definition 5.2 any type change rule we need

to formalize specific phenomena in natural language. Such a rule-based approach was adopted by
Steedman (see [Ste93]) who enriches classical categorial grammar formalism with a finite number
of type-changes rules. On the other hand, as it will be made clear in the following section, Lambek’s
approach is a deductive one: he defines a calculus in which type changes rules spring out as a
consequence of the operations performed on the types.

One could ask why we should follow the deductive rather than the rule-based approach. To begin
with, as proved in [Zie89], Lambek Calculus is not finitely axiomatizable, that is to say that adding
a finite number of type-change rules to the formalism of CCG one cannot derive all the type change
rules provable in the Lambek Calculus. Moreover, the two approaches are very different under a
theoretical viewpoint.

From a linguistic perspective, Steedman pointed out that there is no reason why we should stick
to a deductive approach instead of to a rule based one: he underlines the importance of introducing
ad hoc rules to formalize specific linguistic phenomena. Why should we subordinate the use of
specific type change rules to their derivability in some calculus?

One of the most compelling reasons to do so is given by Moortgat (see [Moo97]) who stresses
the systematicity of the relation between syntax and semantics provided in a deductive framework.
Also, Lambek Calculus enjoys an important property: it is sound and complete with respect to free
semigroup model, i.e. an interpretation with respect to formal languages . That is to say, rules that
are not deducible in Lambek Calculus are not sound, and so they can be considered as linguistically
implausible.

5.3 (Associative) Lambek Calculus
Categorial grammars can be analyzed from a proof theoretical perspective by observing the close
connection between the “slashes” of a categorial grammar and implication in intuitionistic logics.

INRIA

Learnability for Rigid Lambek Grammars 23

The rule that allows us to infer that if w is of type A/B and v is of type B, then wv is of type A,
behaves like the modus ponens rule of inference in logic. On the basis of this similarity Lambek
proposed an architecture for categorial grammars based on two levels:

• a syntactic calculus, i.e. a deductive system in which statement of the form

A1, . . . ,An ` B,

to be read “from the types A1, . . . ,An we can infer type B” can be proved;

• a categorial grammar as presented in definition 5.1, wherein the relation⇒ is changed to allow
any type change rule that could be deduced at the previous level.

In doing so, instead of adding a finite number of type change rules to our grammar, every type change
rule that can be derived in the Lambek Calculus is added to the categorial grammar.

The following formalizations for Lambek Calculus are presented according, respectively, to the
formalism of sequent calculus and to the formalism of natural deduction. Note that in the present
work we will use the expression Lambek Calculus to refer to product-free Lambek Calculus: indeed
we will never make use of the product ‘·’ (which corresponds to the tensor of linear logic).

Definition 5.7 The sequent calculus formalization of the Lambek calculus contains the axiom [ID]
and the rules of inference [/R], [/L], [\R], [\L], and [Cut]:

[ID]
A ` A

Γ,A ` B
[/R]

Γ ` B/A

Γ ` A ∆,B,Π `C
[/L]

∆,B/A,Γ,Π `C

A,Γ ` B
[\R]

Γ ` A\B

Γ ` A ∆,B,Π `C
[\L]

∆,Γ,A\B,Π `C

∆ ` B Γ,B,Π ` A
[Cut]

Γ,∆,Π ` A

Note: in [/R] and [\R] there is a side condition stipulating that Γ 6= /0.

The side condition imposed for [/R] and [\R] rules formalizes the fact that in Lambek Calculus one
is not allowed to cancel all the premises from the left-hand side of a derivation. Otherwise stated, in
Lambek Calculus there are no deductions of the form

` A.

Coherently with our interpretation of Lambek Calculus as a deductive system to derive the type
of a sequence of symbols of the alphabet out of the types of each symbol, such a derivation makes
no sense, since it would mean assigning a type to an empty sequence of words.

RR n◦ 5964

24 Roberto Bonato

Definition 5.8 The natural deduction formalization of the Lambek Calculus is defined as follows:

A [ID]

····
A/B

····
B

[/E]
A

····
B

····
B\A

[\E]
A

[B]
····
A

[/I]
A/B

[B]
····
A

[\I]
B\A

Bracketed hypotheses are “discharged” ones, like in traditional first-order logic, but with additional
constraints: in [/I] and [\I] rules the cancelled assumption is always, respectively, the rightmost
and the leftmost uncancelled assumption, and there must be at least another uncancelled hypothesis.

Both formalisms have advantages and disadvantages. However, due to the close connection
between natural deduction proofs and λ-terms and because the tree-like structure of deductions re-
sembles derivations trees of grammars, the natural deduction version will be the primary object of
study in the present work.

For later purposes we introduce here the notion of derivation in Lambek calculus that will be
useful later for the definition of the structure of a sentence in a Lambek grammar. A derivation of B
from A1, . . . ,An is a certain kind of unary-binary branching tree that encodes a proof of A1, . . . ,An `
B. Each node of a derivation is labeled with a type, and each internal node has an additional label
which, for Lambek grammars, is either /E,\E,/I, or \I and that indicates which Lambek calculus
rule is used at each step of a derivation. For each occurrence of an introduction rule there must be
a corresponding previously unmarked leaf type A which must be marked as [A] (that corresponds to
“discharging” an assumption in natural deduction).

INRIA

Learnability for Rigid Lambek Grammars 25

Definition 5.9 Let A,B ∈ Tp and Γ,∆ ∈ Tp+,

• A (the tree consisting of a single node labeled by A) is a derivation of A from A.

• ”Backslash elimination”. If

A

�

D
1

is a derivation of A from Γ (where A is the leftmost free hypothesis) and

A\B

�

D
2

is a derivation of A\B from ∆, then

A

�

D
1

A\B

�

D
2

B

\E

is a derivation of B from Γ,∆.

RR n◦ 5964

26 Roberto Bonato

• ”Backslash introduction”. If

B

����

D
1

is a derivation of B from {A,Γ}, then

B

������

D
1

\I

A\B

is a derivation of A\B from Γ. The leaf labeled by [A] is called a discharged leaf.

INRIA

Learnability for Rigid Lambek Grammars 27

• ”Slash elimination”. If

B/A

�

D
1

is a derivation of B/A from Γ and

A

�

D
2

is a derivation of A from ∆, then

A

�

D
2

B/A

�

D
1

B

/E

is a derivation of B from Γ, ∆.

RR n◦ 5964

28 Roberto Bonato

• ”Slash introduction”. If

B

����

D
1

is a derivation of B from {Γ,A} (where A is the rightmost free hypothesis) then

/I

B/A

B

������

D
1

is a derivation of B/A from Γ. The leaf labeled by [A] is called a discharged leaf.

Example 5.10 The following example is a derivation of x from y/(x\y) (which proves one of the two
type-raising rules in Lambek Calculus):

[x\y]

\E

x

y

/I

y/(x\y)

5.4 Non-associative Lambek Calculus
Lambek Calculus, as defined in the previous section, is implicitly associative. In order to use Lambek
calculus to describe some linguistic phenomena we have to forbid associativity and so the hierarchi-
cal embedding of hypotheses is respected. Another linguistically attractive feature of non-associative

INRIA

Learnability for Rigid Lambek Grammars 29

Lambek calculus is that it provides useful logical to support semantics, but at the same time it pro-
hibits transitivity, that sometimes leads to overgeneration.

Definition 5.11 The natural deduction formalization of the non-associative Lambek Calculus (SND)
has the following axioms and rules of inference, presented in the sequent format:

[ID]
A ` A

Γ ` A/B ∆ ` B
[/E]

(Γ,∆) ` A

Γ ` B ∆ ` B\A
[\E]

(Γ,∆) ` A

(Γ,B) ` A
[/I]

Γ ` A/B

(B,Γ) ` A
[\I]

Γ ` B\A

Note: in [/I] and [\I] there is a side condition stipulating that Γ 6= /0.

5.5 Normalization and Normal Forms
As one can easily see, in Lambek Calculus there are infinitely many proofs for any deduction
A1, . . . ,An ` B. Since, as it will be extensively explained in section 6, proofs in Lambek Calcu-
lus play a decisive role in defining the notion of structure for a sentence generated by a Lambek
grammar, such an arbitrary proliferation of proofs for deductions is quite undesirable.

The following definition introduces a useful relation between proofs in Lambek Calculus that
formalizes our idea of a “minimal” proof for any deduction. It provides two normalization schemes
that can be applied to a derivation to produce a “simpler” derivation of the same result.

Definition 5.12 The relation >1 between proofs in the natural deduction formalization of Lambek
Calculus is defined in the following way:

····
A

[A]
····
B

[\I]
A\B

[\E]
B

>1

····
A···
·
B

[A]
····
B

[/I]
B/A

····
A

[/E]
B

>1

····
A···
·
B

[B]

····
B\A

[\E]
A

[\I]
B\A

>1

····
B\A

····
A/B [B]

[/E]
A

[/I]
A/B

>1

····
A/B

The symbol ≥ stands for reflexive and transitive closure of >1. Relation >1 is usually defined as
β-η-conversion, while ≥ as β-η-reduction.

RR n◦ 5964

30 Roberto Bonato

The relation ≥ satisfies the following properties (see [Wan93], [Roo91]):

Theorem 5.13 (Wansing, 1993) The relation ≥ is confluent (in the Church-Rosser meaning), i.e. if
δ1 ≥ δ2 and δ1 ≥ δ3, then there exists a δ4 such that δ2 ≥ δ4 and δ3 ≥ δ4.

Theorem 5.14 (Roorda, 1991) The relation ≥ is both weakly and strongly normalizing, that is,
every proof can be reduced in normal form and every reduction terminates after at most a finite
number of steps.

Theorem 5.15 (Church-Rosser, 1937) The relation ≥ is such that if there are two distinct reduc-
tions starting from the same term, then there exists a term that is reachable via a (possibly empty)
sequence of reductions from both reducts.

Definition 5.16 (β-η-normal form) A proof tree for the Lambek Calculus is said to be in β-η-
normal form is none of its subtrees is of the form

[B]
····
A

[/I]
A/B B

[/E]
A

B

[B]
····
A

[\I]
B\A

[\E]
A

A/B [B]
[/E]

A
[/I]

A/B

[B] B\A
[\E]

A
[\I]

B\A

5.6 Basic Facts about Lambek Calculus
Let’s summarize here some meaningful properties for Lambek calculus, which is:

• intuitionistic: only one formula is allowed on the right-hand side of a deduction. This means
there is no involutive negation;

• linear: so-called structural rules of logics are not allowed: two equal hypotheses can’t be
considered as only one, and on the other hand we are not allowed to “duplicate” hypotheses at
will. Lambek calculus is what we call a resource-aware logics, wherein hypotheses must be
considered as consumable resources;

• non-commutative: hypotheses don’t commute among them, that is, the implicit operator “·”
in this calculus is not commutative. This is what makes possible the existence of the two
“implications” (/ and \), the first one consuming its right argument, the second one its left
argument.

INRIA

Learnability for Rigid Lambek Grammars 31

Since Lambek proved a cut-elimination theorem for his calculus (see [Lam58]), among the many
consequences of the normalization theorems there are the subformula property, that is:

Proposition 5.17 Every formula that occurs in a normal form natural deduction proof of cut-free
sequent calculus proof is either a subformula of the (uncancelled) assumptions or of the conclusion;

and decidability for Lambek calculus:

Proposition 5.18 Derivability in the Lambek Calculus is decidable.

In fact, given a sequent to prove in Lambek calculus, cut-elimination property authorizes us to look
for a cut-free proof. But if the sequent comes from the application of a rule other that cut, this can’t
but be made in a finite number of different ways, and in any case we have to prove one or two smaller
(i.e. with less symbols) sequents. This is enough to prove decidability for Lambek calculus.

Theorem 5.14 states that any proof has a normal form and theorem 5.13 that this normal form is
unique. This doesn’t mean that there is a unique normal form proof for any deduction. The following
theorem by van Benthem sheds light on this point:

Theorem 5.19 (van Benthem) For any sequent

A1, . . . ,An ` B

there are only finitely many different normal form proofs in the Lambek Calculus.

5.7 Lambek Grammars
A Lambek grammar modifies the traditional notion of categorial grammars as presented in section
5.1, by extending the derivation mechanism ` into by a whole deductive system in the following
way:

• a lexicon assigns to each word wi a finite set of types

F(wi) = {t1
i , . . . , tki

i } ⊂℘(T p);

• the language generated by this fully lexicalized grammar is the set of all the sequences w1 · · ·wn
of words of the lexicon such that for each wi there exists a type ti ∈ F(wi) such that

t1, . . . , tn ` s

is provable in Lambek calculus.

Formally:

Definition 5.20 (Lambek grammar) A Lambek grammar is a triple G = 〈Σ,s,F〉, such that

• Σ is a finite set (the vocabulary),

RR n◦ 5964

32 Roberto Bonato

• s is the distinguished category (a propositional variable),

• F : Σ →℘(T p) is a function which maps each symbol of the alphabet into the set if its types.
If F(a) = {A1, . . . ,An} we write G : a 7→ A1, . . . ,An.

For w ∈ Σ∗,w = a1 · · ·an, we say that G accepts w if there is a proof in Lambek calculus of

A1, . . . ,An ` s

with G : ai 7→ Ai for each i.

The language generated by a Lambek grammar G is

L(G) = {a1 · · ·an ∈ Σ
∗ | for 1 ≤ i ≤ n, ∃Ai, G : ai 7→ Ai and A1, . . . ,An ` s}.

Example 5.21 Let Σ = {Mary, cooked, the, beans} be our alphabet and s our distinguished cate-
gory. Let’s take F such that

Mary : np

cooked : (np\s)/np

the : np/n

beans : n

Then Mary cooked the beans belongs to the language generated by this grammar, because in Lambek
calculus we can prove:

np,(np\s)/np,np/n,n ` s

Weak generative capacity for associative Lambek grammars was characterized (see [Pen97]) by the
following celebrated theorem (which proves a 1963 conjecture of Chomsky), one of the finest and
most recent achievements in this field:

Theorem 5.22 (Pentus, 1997) The languages generated by associative Lambek grammars are ex-
actly the context-free languages.

Later, for non-associative Lambek grammars Buszkowski proved (see [Bus86]):

Theorem 5.23 (Buszkowski, 1986) The languages generated by non-associative Lambek gram-
mars are exactly the context-free languages.

6 Proofs as Grammatical Structures
In this section we will introduce the notion of structure for a sentence generated by a Lambek gram-
mar. On the basis of a recent work by Hans-Joerg Tiede (see [Tie99]) who proved some important
theorems about the tree language of proof trees in Lambek calculus, we will adopt as the underlying
structure of a sentence in a Lambek grammar a (normal) proof of its well-formedness in Lambek
calculus. We will see in section 9 how this choice affects the process of learning a rigid Lambek
grammar on the basis of structured positive data.

INRIA

Learnability for Rigid Lambek Grammars 33

6.1 (Partial) Parse Trees for Lambek Grammars
Just as a derivation encodes a proof of A1, . . . ,An ` B, the notion of parse tree introduced by the
following definition encodes a proof of a1 · · ·an ∈L(G) where G is a Lambek grammar and a1, . . . ,an
are symbols of its alphabet.

Definition 6.1 Let G = 〈Σ,s,F〉 be a Lambek grammar, then

• if D is a derivation of B from A1, . . . ,An, and a1, . . . ,an are symbols of alphabet Σ such that
G : ai 7→ Ai for 1 ≤ i ≤ n, the result of attaching a1, . . . ,an, from left to right in this order, to
the undischarged leaf nodes of D is a partial parse tree of G.

D

B

A
1

A
n

a
1

a
n...

• A parse tree of G is a partial parse tree of G whose root node is labeled by the distinguished
category s.

If a1 · · ·an is the string of symbols attached to the leaf nodes of a partial parse tree P , a1 · · ·an is said
to be the yield of P . If a parse tree P of G yields a1 · · ·an, then P is called a parse of a1 · · ·an in G.

Example 6.2 Let Σ = {he,him, likes} be our alphabet and let G a Lambek grammar such that

G : likes 7→ (np\s)/np,

he 7→ s/(np\s),
him 7→ (s/np)\s.

Then the following is a parse for he likes him:

RR n◦ 5964

34 Roberto Bonato

/E

/E

\E

/I

(np\s)/np

np\s

[np]
likes

s/(np\s)

s

he

s/np (s/np)\s
him

s

6.2 Tree Languages and Automata
In order to fully appreciate the peculiarity of Lambek grammars with respect to their strong genera-
tive capacity, we recall here some basic definitions about the notion of tree language as presented in
[Tie99].

Definition 6.3 (Trees and tree languages) A tree is a term over a finite signature Σ containing func-
tion and constant symbols. The set of n-ary function symbols in Σ will be denoted by Σn. The set of
all terms over Σ will be denoted by TΣ; a subset of TΣ is called a tree language or a forest.

Definition 6.4 (Yield of a tree) The yield of a tree t is defined by

yield(c) = c, for c ∈ Σ0

yield(f (t1, . . . , tn)) = yield(t1), . . . ,yield(tn), for f ∈ Σn,n > 0

Thus, the yield of a tree is the string of symbols occurring as its leaves.

Definition 6.5 (Root of a tree) The root of a tree t is defined by

root(c) = c, for c ∈ Σ0

root(f (t1, . . . , tn)) = f , for f ∈ Σn,n > 0.

In the following subsections three increasingly more powerful classes of tree languages are pre-
sented: local, regular and context-free tree languages. Note that even if the names for these classes of
tree languages are the same as those for classes of string languages, their meaning is very different.

INRIA

Learnability for Rigid Lambek Grammars 35

6.2.1 Local Tree Languages

We can think of a local tree language as a tree language whose membership problem can be decided
by just looking at some very simple (local) properties of trees. A formalization of such an intuitive
notion is given by the following definitions:

Definition 6.6 (Fork of a tree) The fork of a tree t is defined by

f ork(c) = /0, for c ∈ Σ0

f ork(f (t1, . . . , tn)) = {〈 f ,root(t1), . . . ,root(tn)〉}∪
n⋃

i=1

f ork(ti)

Definition 6.7 (Fork of a tree language) For a tree language L, we define

f ork(L) =
⋃
t∈L

f ork(t)

Note that, since Σ is finite, f ork(TΣ) is always finite.

Definition 6.8 (Local tree language) A tree language L ⊆ TΣ is local if there are sets R ⊆ Σ and
E ⊆ f ork(TΣ), such that, for all t ∈ TΣ, t ∈ L iff root(t) ∈ R and f ork(t)⊆ E.

Thatcher (see [Tha67]) characterized the relation between local tree languages and the derivation
trees of context-free string grammars by the following

Theorem 6.9 (Thatcher, 1967) S is the set of derivation trees of some context-free string grammar
iff S is local.

6.2.2 Regular Tree Languages

Among many different equivalent definitions for regular tree languages, we follow Tiede’s approach
in choosing the following one, based on finite tree automata.

Definition 6.10 (Finite tree automaton) A finite tree automaton is a quadruple 〈Σ,Q,q0,∆〉, such
that

• Σ is a finite signature,

• Q is a finite set of unary states,

• q0 ∈ Q is the start state,

• ∆ is a finite set of transition rules of the following type:

q(c) → c for c ∈ Σ0

q(f (v1, . . . ,vn)) → f (q1(v1), . . . ,qn(vn)) for f ∈ Σn, q,q1, . . . ,qn ∈ Q

RR n◦ 5964

36 Roberto Bonato

We can think of a finite tree automaton as a device which scans non-deterministically a tree from
root to frontier. It accepts a tree if it succeeds in reading the whole tree, it rejects it otherwise.

In order to define the notion of tree language accepted by a regular tree automaton we need to
define the transition relation for finite tree automata.

Definition 6.11 A context is a term over Σ∪{x} containing the zero-ary term x exactly once.

Definition 6.12 Let M = 〈Σ,Q,q0,∆〉 be a finite tree automaton, the derivation relation

⇒M⊆ TQ∪Σ×TQ∪Σ

is defined by t ⇒M t ′ if for some context s and some t1, . . . , tn ∈ TΣ, there is a rule in ∆

q(f (v1, . . . ,vn))→ f (q1(v1), . . . ,qn(vn))

and

t = s[x 7→ q(f (t1, . . . , tn))]
t ′ = s[x 7→ f (q1(t1), . . . ,qn(tn))].

If we use ⇒∗
M to denote the reflexive, transitive closure of ⇒M , we say that a finite automaton M

accepts a term t ∈ TΣ if q0(t)⇒∗
M t. The tree language accepted by a finite tree automaton M is

{t ∈ TΣ | q0(t)⇒∗
M t}.

Definition 6.13 (Regular tree language) A tree language is regular if it is accepted by a finite tree
automaton.

The following theorem (see [Koz97]) defines the relation between local and regular tree languages:

Theorem 6.14 Every local tree language is regular.

while the following (see [GS84]) establishes a relation between regular tree languages and context-
free string languages:

Theorem 6.15 The yield of any regular tree language is a context-free string language.

6.2.3 Context-free Tree Languages

The final step in the definition of more and more powerful tree language classes is made possible by
introducing the notion of pushdown tree automaton. Again, we stick to Tiede’s approach in choosing
Guesserian’s useful definition (see [Gue83]):

Definition 6.16 (Pushdown tree automaton) A pushdown tree automaton is a system 〈Σ,Γ,Q,q0,Z0,∆〉,
such that

• Σ is a finite signature (the input signature),

INRIA

Learnability for Rigid Lambek Grammars 37

• Γ is a finite signature (the pushdown signature; we assume Σ∩Γ = /0),

• Q is a finite set of binary states,

• q0 ∈ Q is the start state,

• Z0 ∈ Γ is the initial stack symbol,

• ∆ is a finite set of rules of the form

q(f (v1, . . . ,vn),E(x1, . . . ,xm)) → f (q1(v1,γ1), . . . ,qn(vn,γn)),
q(v,E(x1, . . . ,xm)) → q′(v,γ′),

q(c) → c

with

– q,q′,q1, . . . ,qn ∈ Q,

– c ∈ Σ0,

– f ∈ Σn, n > 0,

– E ∈ Γm,

– γ′,γ1, . . . ,γn ∈ TΓ∪{x1,...,xm}.

The transition relation for pushdown tree automata ⇒ can be defined straightforwardly as a gener-
alization of definition 6.12. A term t is accepted by a pushdown automaton if q0(t,Z0)⇒∗ t, where
⇒∗ is the reflexive, transitive closure of ⇒.

Definition 6.17 (Context-free tree language) The language accepted by a pushdown tree automa-
ton is called a context-free tree language.

The relationship between regular and context-free tree languages is exemplified by the following
proposition:

Proposition 6.18 The intersection of a regular and a context-free tree language is context-free.

We know that the yield of a regular tree language is a context-free string language: there is a similar
connection between the class of context-free tree languages and the class of indexed languages, as
stated by the following

Proposition 6.19 The yield of any context-free tree language is an indexed string language.

Linear indexed languages have been proposed as an upper bound of the complexity of natural lan-
guages, after it was shown that certain phenomena in natural languages cannot be described with
context-free grammars (see [Gaz88]).

RR n◦ 5964

38 Roberto Bonato

6.3 Proof Trees as Structures for Lambek Grammars
In [Tie99] Hans-Joerg Tiede proposes, in contrast with a previous approach by Buszkowski, to take
as the structure underlying a sentence generated by a Lambek grammar, one of the infinite proof trees
of the deduction A1, . . . ,An ` s, where A1, . . . ,An is a sequence of types assigned by the grammar to
each symbol, and s is the distinguished atomic category.

Following Tiede’s approach, we give the following

Definition 6.20 (Proof tree) A proof tree for a Lambek grammar is a term over the signature Σ =
{[/E], [\E], [/I], [\I], [ID]} where

• [ID] is the 0-ary function symbol,

• [/E] and [\E] are the binary function symbols,

• [/I] and [\I] are the unary function symbols.

The terms over this signature represent proof trees that neither have information about the formulas
for which they are a proof, nor about the strings that are generated by a grammar using this proof.
These terms represent proofs unambiguously, since the assumption discharged by an introduction
rule is univocally determined by the position of the corresponding [/I] or [\I] function symbol in the
proof tree.

Example 6.21 The term t = [\I]([/E]([ID], [ID])) is an example of well-formed term over this sig-
nature. There’s no need for additional information about the discharged assumption since, as we
can see from the tree-like representation of the term, the discharged assumption is unambiguously
identified.

[ID] ID

/E

\I

The following terms are examples of not well-formed proof trees for the tree language generated
by any Lambek grammar:

• [\E](x, [/I](y)). Since the major premise of the \E function symbol is something with a
(. . .)\(. . .) shape, there’s no way to reduct that term by a \E rule;

INRIA

Learnability for Rigid Lambek Grammars 39

• [/E[([\I](x),y). Analogous to the previous situation;

• [\I]([\E](x, [ID])) if the term x does not contain at least two uncancelled assumptions;

• [/I]([/E]([ID],x)), if the term x does not contain at least two uncancelled assumptions.

By taking a proof tree as the structure of a sentences generated by Lambek grammars, Tiede
proved some important results about their strong generative capacity, that is, the set of the structures
assigned by a grammar to the sentences it generates. Since strong generative capacity can provide
a formal notion of the linguistic concept of structure of a sentence, this result justifies the current
interest toward Lambek Grammars as a promising mathematical tool for linguistic purposes.

Theorem 6.22 (Tiede, 1999) The set of well-formed proof trees of the Lambek Calculus is not reg-
ular.

This amounts to stating that there exist Lambek grammars whose trees do not form a regular tree
language.

Theorem 6.23 (Tiede, 1999) The set of proof trees of the Lambek Calculus is a context-free tree
language.

These two theorems show that the language of proof trees is properly a context-free tree language.
In particular, these theorems show that Lambek grammars are more powerful, with respect to

strong generative capacity, than context-free grammars, whose structure language is a local tree lan-
guage as shown in theorem 6.9.

We can easily introduce the notion of normal form proof tree by simply extending the notion of
normal form proof as presented in definition 5.16. We can say that for normal form trees, in addition
to the rules that prohibit terms of the form

[\E](x, [/I](y)),
[/E]([\I](x),y),

we have rules that prohibit terms of the form

[\E](x, [\I](y))
[/E]([/I](x),y)

and terms of the form

[/I]([/E](x, [ID]))
[\I]([\E]([ID],y))

which correspond to β-redexes and η-redexes, respectively, as one can easily see from definition
5.16.

We can easily extend to the formalism of proof trees the “reduction rules” we’ve seen in section
5.5 to get a normal form proof tree out of a non-normal one.

RR n◦ 5964

40 Roberto Bonato

t
1

t
1

t
2

t
2

\E

�

\I

[]

[]

t
2

t
2

t
1

t
1

/E

/I

� []

[]

,

t

t

/E

/I

�[]

t

t

\E

\I

�[] �

As a corollary of theorem 6.22, Tiede proves that

Theorem 6.24 (Tiede, 1999) The set of normal form proof trees of a Lambek grammar is not regu-
lar,

which, together with

Theorem 6.25 The set of normal form proofs of a Lambek grammar is a context-free tree language

shows that the tree language of normal form proof trees of Lambek Calculus is properly a context-
free tree language.

6.4 Proof-tree Structures
Given a Lambek grammar G, a proof-tree structure over its alphabet Σ is a unary-binary branching
tree whose leaf nodes are labeled by either [ID] (these are called ”discharged leaf nodes”) or symbols
of Σ and whose internal nodes are labeled by either \E,/E,\I, or /I.

The set of proof-tree structures over Σ is denoted ΣP. Often we will simply say ‘structure’ to
mean proof-tree structure. A set of proof-tree structures over Σ is called a structure language over
Σ.

Example 6.26 The following is an example of a proof-tree structure for the sentence he likes him
seen in example 6.2:

INRIA

Learnability for Rigid Lambek Grammars 41

/E

/E

[ID]likes

/E

he

/I him

Let G be a Lambek grammar, and let P be a partial parse tree of G. The result of stripping P of
its type labels is a proof-tree structure, that is called the proof-tree structure of P . If T is the structure
of a parse tree P , we say that P is a parse of T .

We say that a Lambek grammar G generates a structure T if and only if for some parse tree P
of G, T is the structure of P . The set of structures generated by G is called the (proof-tree) structure
language of G and is denoted PL(G). In order to distinguish L(G), the language of G, from PL(G),
its structure language, we often call the former the string language of G.

The yield of a proof-tree structure T is the string of symbols a1, . . . ,an labeling the undischarged
leaf nodes of T , from left to right in this order. The yield of T is denoted yield(T). Note that
L(G) = {yield(T) | T ∈ PL(G)}.

6.5 Decidable and Undecidable Problems about
Lambek Grammars

Since, as stated in by theorem 5.18, Lambek calculus is decidable, the universal membership problem
“s ∈ L(G)” is decidable for any sentence s and any Lambek grammar G.

On the other hand, the questions “L(G1) = L(G2)” and “L(G1)⊆ L(G2)” for arbitrary Lambek
grammars G1 and G2 are undecidable, because the same questions are undecidable for context-free
grammars and there exists an effective procedure for converting a context-free grammar G′ to a
Lambek grammar G such that L(G′) = L(G).

Given a proof-tree structure t the question “t ∈ PL(G)” is decidable. In fact, as shown by Tiede in
6.23, every proof tree language of a Lambek Grammar is a context-free tree language; and that prob-
lem is decidable for context-free tree languages (you just have to run the pushdown tree automata on
t).

RR n◦ 5964

42 Roberto Bonato

Unfortunately, the question “PL(G1)⊆ PL(G2)” has been proved decidable only for G1,G2 non-
associative Lambek grammars. Whether it is decidable or not for (associative) Lambek grammars is
still an open question and the subject of active research in this field.

6.6 Substitutions
In this section we introduce the notion of a Lambek grammar being a substitution instance of another.
Besides, we define a notion of size of a Lambek grammar that will be decisive in our proof of
learnability for Rigid Lambek Grammars presented in section 9.4.

First of all, let’s define what we mean when we say that a Lambek grammar is subset of another
one:

Definition 6.27 Let G1, G2 be Lambek grammars; we say that G1 ⊆ G2 if and only if for any a ∈ Σ

such that G1 : a 7→ A we have also G2 : a 7→ A.

Example 6.28 Let {Francesca, loves,Paolo} ⊆ Σ and let

G1 : Francesca 7→ np

loves 7→ np\s

G2 : Francesca 7→ np

loves 7→ np\s,np\(s/np)
Paolo 7→ np

Obviously, G1 ⊆ G2

Definition 6.29 A substitution is a function σ : Var → T p that maps variables to types. We can
extend it to a function from types to types by setting

σ(t) = t

σ(A/B) = σ(A)/σ(B)
σ(A\B) = σ(A)\σ(B)

for all A,B ∈ T p.

We use the notation {x1 7→ A1, . . . ,xn 7→ An} to denote the substitution σ such that σ(x1) =
A1, . . . ,σ(xn) = An and σ(y) = y for all other variables y.

Example 6.30 Let σ = {x 7→ x\y,y 7→ s,z 7→ s/(s/x)}. Then

σ((s/x)\y) = (s/(x\y))\t

and
σ(((s/x)\y)/(x/z)) = ((s/(x\y))\s)/((x\y)/(s/(s/x))).

INRIA

Learnability for Rigid Lambek Grammars 43

The following definition introduce the notion of a Lambek grammar being a substitution instance of
another:

Definition 6.31 Let G = 〈Σ,s,F〉 be a Lambek grammar, and σ a substitution. Then σ[G] denotes
the grammar obtained by applying σ in the type assignment of G, that is:

σ[G] = 〈Σ,s,σ ·F〉

σ[G] is called a substitution instance of G.

It easy to prove also for Lambek grammars this straightforward but important fact that was first
proved for CCGs in [BP90]

Proposition 6.32 If σ[G1]⊆ G2, then the set of proof-tree structures generated by G1 is a subset of
the set of proof-tree structures generated by G2, that is PL(G1)⊆ PL(G2).

Proof. Suppose σ[G1] ⊆ G2. Let T ∈ PL(G1) and let P be a parse of T in G1. Let σ[P] the result
of replacing each type label A of P by σ(A). Then it is easy to see that σ[P] is a parse of T in G2.
Therefore, T ∈ PL(G2).

Corollary 6.33 If σ[G1]⊆ G2, then L(G1)⊆ L(G2).

Proof. Immediate from the previous proposition and the remark at the end of section 6.4.

A substitution that is a one-to-one function from Var to Var is called a variable renaming. If σ

is a variable renaming, then G and σ[G] are called alphabetic variants. Obviously grammars that
are alphabetic variants have exactly the same shape and are identical for all purposes. Therefore,
grammars that are alphabetic variants are treated as identical.

Proposition 6.34 Suppose σ1[G1] = G2 and σ2[G2] = G1. Then G1 and G2 are alphabetic variants
and thus are equal.

Proof. For each symbol c ∈ Σ, σ1 and σ2 provide a one-to-one correspondence between {A | G1 :
c 7→ A} and {A | G2 : c 7→ A}. Indeed, if it didn’t and, say, {σ1(A) | G1 : c 7→ A} ⊂ {A | G2 : c 7→ A},
then σ2[G2] = σ2[σ1[G1]] couldn’t be equal to G1, and likewise for σ2. Then, it is easy to see
that σ1 ↑ Var(G1) is a one-to-one function from Var(G1) onto Var(G2), and σ2 ↑ Var(G2) = (σ1 ↑
Var(G1))−1. One can extend σ1 ↑Var(G1) to a variable renaming σ. Then σ[G1] = σ1[G1] = G2.

6.7 Grammars in Reduced Form
Definition 6.35 A substitution σ is said to be faithful to a grammar G if the following condition
holds:

for all c ∈ dom(G), if G1 : c 7→ A, G1 : c 7→ B, and A 6= B, then σ(A) 6= σ(B).

RR n◦ 5964

44 Roberto Bonato

Example 6.36 Let G be the following grammar

G : Francesca 7→ x,

dances 7→ x\s,y

well 7→ y\(x\s).

Let

σ1 = {y 7→ x},
σ2 = {y 7→ x\s}.

Then σ1 is faithful to G, while σ2 is not.

Definition 6.37 Letv be a binary relation on grammars such that G1 vG2 if and only if there exists
a substitution σ with the following properties:

• σ is faithful to G1;

• σ[G1]⊆ G2.

From the definition above and proposition 6.34 it’s immediate to prove the following:

Proposition 6.38 v is reflexive, transitive and antisymmetric.

Definition 6.39 For any grammar G, define the size of G, size(G), as follows:

size(G) = ∑
c∈Σ

∑
G:c7→A

|A|,

where, for each type A, |A| is the number of symbol occurrences in A.

Lemma 6.40 If G1 v G2, then size(G1)≤ size(G2),

Proof. For any type A and any substitution σ, |A| ≤ |σ(A)|. Then the lemma is immediate from the
definition of v.

Corollary 6.41 For any grammar G, the set {G′ | G′ v G} is finite.

Proof. By lemma 6.40, {G′ | G′ v G} ⊆ {G′ | size(G′) ≤ size(G)}. The latter set must be finite,
because for any n ∈ N, there are only finitely many grammars G such that size(G) = n.

If we write G1 @ G2 to mean G1 v G2 and G1 6= G2, we have

Corollary 6.42 @ is well-founded.

Definition 6.43 A grammar G is said to be in reduced form if there is no G′ such that G′ @ G and
PL(G) = PL(G′).

INRIA

Learnability for Rigid Lambek Grammars 45

7 Lambek Grammars as a Linguistic Tool

7.1 Lambek Grammars and Syntax
As explicitly stated in the original paper wherein Lambek laid the foundations of the Lambek Cal-
culus, his aim was

[...] to obtain an effective rule (or algorithm) for distinguishing sentences from nonsen-
tences, which works not only for the formal languages of interest to the mathematical
logician, but also for natural languages such as English, or at least for fragments of such
languages. ([Lam58])

That’s why, even if Lambek grammars can be simply considered as interesting mathematical
objects, it will be useful to underline here some properties that make them also an interesting tool to
formalize some phenomena in natural languages.

The importance of Lambek’s approach to grammatical reasoning lies in the development of a
uniform deductive account of the composition of form and meaning in natural language: formal
grammar is presented as a logic, that is a system to reason about structured linguistic structures.

The basic idea underlying the notion of Categorial Grammar on which Lambek based his ap-
proach is that a grammar is a formal device to assign to each word (a symbol of the alphabet of the
grammar) or expression (an ordered sequence of words) one or more syntactic types that describe
their function. Types can be considered as a formalization of the linguistic notion of parts of speech.

CCGs assign to each symbol a fixed set of types, and provide two composition rules to derive
the type of a sequence of words out of the types of its components. Such a “fixed types” approach
leads to some difficulties: to formalize some linguistic phenomena we should add further rules to the
two elimination rules defined for CCGs as described in section 5.2. In the following subsections we
present some examples where the deductive approach of Lambek grammars leads to more an elegant
and consistent formalization of such linguistic phenomena.

In the following subsections we take s as the primitive type of well-formed sentences in our
language and np as the primitive type for noun phrases (such as John, Mary, he).

7.1.1 Transitive verbs

Transitive verbs require a name both on their left and right hand sides, as it is apparent from the
well-formedness of the following sentences.

np
John (

(np\s)/np
likes

np
Mary)

(
np

John
np\(s/np)

likes)
np

Mary

Both parenthesizations lead to a derivation of s as type of the whole expression. This would mean
that in an CCG we should assign to any transitive verb at least two distinct types: (np\s)/np and
np\(s/np). On the contrary, in a Lambek grammar, since we can prove both

(np\s)/np ` np\(s/np)

RR n◦ 5964

46 Roberto Bonato

and
np\(s/np) ` (np\s)/np

we can simply assign to a transitive verb the type np\s/np without any further parenthesizations.

7.1.2 Pronouns

If we try to assign a proper type to the personal pronoun he we notice that its type is such that the
following sentences are well-formed:

he
np\s

works,

he
np\s/np
likes

np
Jane

We have two choices: either we give he the same type as a name (that is, np) or we give it the
type s/(np\s). In the first case there is a problem: expressions like Jane likes he are considered as
well-formed sentences. So, we assign to he the type s/(np\s).

Analogously, since the personal pronoun him makes the following sentences well-formed:
np

Jane
np\s/np
likes him

np
Jane

np\s
works

s\s/np
for him,

we assign to him the type (s/np)\s (and not type np, since expressions like him likes John would be
well-formed).

Since a pronoun is, according to its own definition, something that “stands for a noun”, we wish
that in our grammar each occurrence of a pronoun could be replaced by a name (while the converse
is not always true): but this means that any name (say, John, of type np) should also be assigned the
type of he and him, that is, respectively, type s/(np\s) and type (s/np)\s. In other words, we need
something that accounts for a type-raising. But since in Lambek Calculus we can prove

np ` s/(np\s)
np ` (s/np)\s

for any np and s, a Lambek grammar provides a very natural formalization of the relationship be-
tween names and pronouns: while a name can always be substituted to a pronoun in a sentence (and
the type-raising derivation guarantees that a name can always “behave like” a pronoun if we need it
to), the converse is not true (the converse of the type-raising proof doesn’t hold in Lambek Calculus).
The proof of the first deduction is reported in example 5.10 as a derivation in a Lambek grammar.

7.1.3 Adverbs

If we look for the proper type for adverbs like here we can consider the well-formed sentence John
works here. We can choose between two possible parenthesizations here, that is:

INRIA

Learnability for Rigid Lambek Grammars 47

(
np

John
np\s

works) here

np
John (

np\s
works here)

The first one suggests for here the type s\s, while the second one the type (np\s)\(np\s). The
good news is that, while in a CCG we should assign each adverb at least two different types, in a
Lambek grammar we can prove that

s\s ` (np\s)\(np\s)

that is to say, in Lambek grammars any adverbial expression of type s\s has also type (np\s)\(np\s).
More generally, we can show that in Lambek Calculus

x\y ` (z\x)\(y\x)
x/y ` (x/z)/(y/z).

7.1.4 Hypothetical reasoning

In the following example, sentences s, noun phrases np, common nouns n, and propositions phrases
pp are taken to be “complete expressions”, whereas the verb dances, the determiner the and the
preposition with are categorized as incomplete with respect to these complete phrases.

RR n◦ 5964

48 Roberto Bonato

Example 7.1 Here is the derivation for the sentence Francesca dances with the boy.

/E

np/n n

/E

/E

\E

the boy

nppp/np
with

pp((np/s)/pp
dances

np\snp
Francesca

s

This is an example of grammatical reasoning where, on the basis of the types we assigned to each
word, we infer the well-formedness of a sequence of words. On the other hand we can assume a
different perspective: knowing that a sentence is well-formed, what can be said about the type of its
components? In the words of Lambek: “Given the information about the categorization of a com-
posite structure, what conclusions could be draw about the categorization of its parts?” ([Lam58]).
That’s where the following inference patterns come into play:

from Γ,B ` A, infer Γ ` A/B,

from B,Γ ` A, infer Γ ` B\A

which gives a linguistic interpretation of the role of the “introduction” rules. That’s what is done in
the following derivation which allows us to infer that the expression the boy Francesca dances with
is of type np:

INRIA

Learnability for Rigid Lambek Grammars 49

/E

/E

\E

/I

/E

/E

pp/np [np]

pp((np\s)/pp

np\snp

s

s/np(n\n)/(s/np)

n\nn

\E
nnp/n

np

with

dances

Francesca

whom

boy

the

Since the relative pronoun whom (of type (n\n)/(s/np)) wants to enter into composition on its
right with the relative clause body, we’d like to assign type s/np to the latter. In order to show
that Francesca dances with is indeed of type s/np, we make a hypothetical assumption and sup-
pose to have a “ghost word” of type np on its right. It’s easy to derive the category s for the sen-
tence Francesca dances with np. By withdrawing the hypothetical np assumption, we conclude that
Francesca dances with has type s/np.

We can say that the cancelled hypothesis is the analogous of a “trace” à la Chomsky moving
whom before Francesca.

7.1.5 Transitivity

In the framework of CCGs a difficulty arises when we try to show the well-formedness of
s/(np\s)

he
np\s/np
likes

(s/np)\s
him

so some authors proposed to introduce two new rules, which are often referred to as ‘transitivity
rules’:

(x/y)(y/z) → x/z,

(x\y)(y\z) → x\z

RR n◦ 5964

50 Roberto Bonato

It’s easy to show that such rules are derivable in Lambek Calculus, as we can easily see from the
following proof tree:

/E

y/z [z]

yx/y

/E

x

I/

x/z

7.2 Lambek Grammars and Montague Semantics
From a linguistic point of view, one of the main reasons of interest in Lambek grammars lies in
the natural interface that proof-tree structures provide for Montague-like semantics. Just like Curry-
Howard isomorphism shows that simply typed λ-terms can be seen as proofs in intuitionistic logics,
and vice-versa, syntactical analysis of a sentence in a Lambek grammar is a proof in Lambek calcu-
lus, which is naturally embedded into intuitionistic logics. Indeed, if we read B/A and A\B like the
intuitionistic implication A → B, every rule in Lambek calculus is a rule of intuitionistic logics.

In order to fully appreciate this relation between syntax and semantics which is particularly
strong for Lambek grammars, we define a morphism between syntactic types and semantic types:
the latter are formulas of a minimal logics (where the only allowed connector is →, that is, intuition-
istic implication) built on the two types e (entity) and t (truth values).

(Syntactic type)* = Semantic type
s∗ = t (a sentence is a proposition)

sn∗ = e (a nominal sintagma denotes an entity)
n∗ = e → t (a noun is a subset of entities)

(A\B)∗ = (B/A)∗ = A∗ → B∗ extends ()∗ to every type.

The lexicon associates also to every word w a λ-term τk for every syntactic type tk ∈ L(w), such
that the type of τk is precisely t∗k , the semantic type corresponding to that syntactic type. We intro-
duce some constants for representing logical operations of quantification, conjunction etc:

INRIA

Learnability for Rigid Lambek Grammars 51

Constant Type
∃ (e → t)→ t
∀ (e → t)→ t
∧ t → (t → t)
∨ t → (t → t)
⊃ t → (t → t)

Let the following be given:

• a syntactical analysis of w1 . . .wn in Lambek calculus, that is to say, a derivation D of t1, . . . , tn `
s and

• the semantics for every word w1, . . . ,wn, that is to say, λ-terms τi : t∗i ,

then we get the semantics of the sentence by simply applying the following algorithm:

• Substitute in D every syntactic type with its corresponding semantic image; since intuitionistic
logics is an extension of Lambek calculus, we get a derivation D∗ into intuitionistic logic of
t∗1 , . . . , t∗n ` t = s∗;

• this derivation in intuitionistic logic due to Curry-Howard isomorphism can be seen as a sim-
ply typed λ-term D∗

λ
, containing a free variable xi of type t∗i for every word wi;

• in D∗
λ

replace each variable xi with λ-term τi, equally typed with t∗i ;

• reduce the λ-term resulting at the end of the previous step, and we get the semantic represen-
tation of the analyzed sentence.

Let’s consider the following example (taken from [Ret96]):

word Syntactic type t
Semantic type t∗

Semantic representation: a λ-term of type t∗

some (s/(sn\s))/n
(e → t)→ ((e → t)→ t)
λP : e → t λQ : e → t(∃(λx : e(∧(Px)(Qx))))

sentences n
e → t
λx : e(sentence x)

talk about sn\(s/sn)
e → (e → t)
λx : e λy : e((talk about x)y)

themselves ((sn\s)/sn)\(sn\s)
(e → (e → t))→ (e → t)
λP : e → (e → t)λx : e((Px)x)

RR n◦ 5964

52 Roberto Bonato

First of all, we’ll prove that Some sentences talk about themselves is a well formed-sentence,
that is, it belongs to the language generated by the lexicon at issue. This means building a natural
deduction of:

(s/(sn\s))/n,n,sn\(s/sn),((sn\s)/sn)\(sn\s) ` s.

If we indicate with S,N,T,M the left-hand side of syntactic types we get

S ` (s/(sn\s))/n N ` n
[/E]

S,N ` s/(sn\s)

T ` (sn\s)/sn M ` ((sn\s)/sn)\(sn\s)
[\E]

T,M ` sn\s
[\E]

S,N,T,M ` s

By applying the isomorphism between syntactic and semantic types, we get the following intu-
itionistic proof, where S∗,N∗,T ∗,M∗ are the abbreviations for semantic types associated to S,N,T,M:

S∗ ` (e → t)→ (e → t)→ t N∗ ` e → t
[→ E]

S∗,N∗ ` (e → t)→ t

T ∗ ` e → e → t M∗ ` (e → e → t)→ e → t
[→ E]

T ∗,M∗ ` e → t
[→ E]

S∗,N∗,T ∗,M∗ ` t

The λ-term coding this proof is simply ((sn)(tm)) of type t, where s,n, t,m are variables of types
respectively S∗,N∗,T ∗,M∗.

By replacing these variables with λ-terms of the same types associated by the lexicon to the
words, we get the following λ-term of type t:

((λP λQ (∃ (λx(∧(P x)(Q x)))))(λx (sentence x)))
((λP λx ((P x)x))(λx λy ((talk about x)y)))

↓ β

(λQ (∃(λx(∧(sentence x)(Q x)))))(λx((talk about x)x))

↓ β

(∃(λx(∧(sentence x)((talk about x)x))))

If we recall that the x in this last term is of type e, the latter reduced term represents the following
formula in predicate calculus:

∃x : e(sentence (x)∧ talk about(x,x))

which is the semantic representation of the previously analyzed sentence.

INRIA

Learnability for Rigid Lambek Grammars 53

8 Rigid Lambek Grammars
In the present section we introduce the notion of rigid Lambek grammar (often referred to as RLG),
whose learnability properties will be the subject of our inquiry in section 9. Basic notions and
results presented here are almost trivial extensions of what has already been done for rigid CCGs
(see [Kan98]), since a specific a specific theory for rigid Lambek grammars is still missing.

8.1 Rigid and k-Valued Lambek Grammars
A rigid Lambek grammar is a triple G = 〈Σ,s,F〉, where Σ and s are defined like in definition 5.20,
while F : Σ ⇀ T p is a partial function that assigns to each symbol of the alphabet at most one type.
We can easily generalize the notion of rigid Lambek grammar to the notion of k-valued Lambek
grammar by a function F that assigns to each symbol of the alphabet at most k types. Formally,
F : Σ ⇀

⋃k
i=1 T pk.

Let an alphabet Σ be given. We call Grigid the class of rigid Lambek grammars over Σ, and
Gk−valued the class of k-valued Lambek grammars over Σ.

Let’s define two classes of proof-tree structures:

P Lrigid = {PL(G) | G ∈ Grigid},
P Lk−valued = {PL(G) | G ∈ Gk−valued}.

Members of P Lrigid are called rigid (proof-tree) structure languages, and members of P Lk−valued
are called k-valued (proof-tree) structure languages.

Let’s define two classes of strings:

Lrigid = {L(G) | G ∈ Grigid},
Lk−valued = {L(G) | G ∈ Gk−valued}.

Members of Lrigid are called rigid (string) languages, and members of Lk−valued are called k-valued
(string) languages.

Example 8.1 Let {well,Francesca,dances} ⊆ Σ and let G1,G2 be the following Lambek gram-
mars:

G1 : Francesca 7→ x,

dances 7→ x\s, y,

well 7→ y\(x\s),
G2 : Francesca 7→ x,

dances 7→ x\s,

well 7→ (x\s)\(x\s).

RR n◦ 5964

54 Roberto Bonato

Then G2 is a rigid grammar, while G1 is not. G1 is a 2-valued grammar.

Definition 8.2 Any type A can be written uniquely in the following form:

(. . .((p|A1)|A2)| . . .)|An

where B|C stands for either B/C or C\B and p∈Pr. For 0≤ i≤ n, we call the subtype (. . .(p|A1)| . . .)|Ai
of A a head subtype of A. p is the head of A and is denoted head(A). Ai’s are called argument sub-
types of A. The number n is called the arity of A.

The following propositions are almost trivial extensions to rigid Lambek grammars of analogous
results proved by Kanazawa for CCGs in [Kan98]. However, they deserve some attention since they
can provide a first superficial insight about properties of RLGs.

First of all we prove a hierarchy theorem about strong generative capacity of k-valued Lambek
grammars.

Proposition 8.3 Let a ∈ Σ. For each i ≥ 1, let Ti be the following proof-tree structure:

a a

a

/E

/E

}
.

.
.

i times

Then for each k ≥ 1,
{T1, . . . ,Tk} ∈ P Lk+1−valued −P Lk−valued .

Thus, for each k ∈ N, P Lk−valued ⊂ P Lk+1−valued .

Proof. (See [Kan98]) Let Gk be the following k+1-valued grammar:

Gk : a 7→ x,

s/x,

(s/x)/x,
...
(. . .((s/x)/x)/. . .)/x︸ ︷︷ ︸

k times

.

Then one can easily verify that {T1, . . . ,Tk} ⊂ PL(Gk).
Let G be a grammar such that {T1, . . . ,Tk} ⊂ PL(G): we will show that G is at least k+1-valued.

INRIA

Learnability for Rigid Lambek Grammars 55

Let Pi be a parse of Ti in G for 1 ≤ i ≤ k. Then the leftmost leaf of Pi is the ultimate functor
of Pi, and if we call Ai the type labeling it, we can easily verify that the its arity must be exactly i.
Thus, i 6= j implies Ai 6= A j.

We show that there is at least one type B such that G : a 7→ B and B 6∈ {A1, . . . ,Ak}. Since the
relation “is an argument subtype of” is well-founded, there is at least one i such that the argument
subtypes of Ai are not in {A1, . . . ,Ak}. But in order to produce Pi, any argument subtype of Ai must
be a type assigned to a by G. Therefore G must be at least k+1-valued.

The proof of proposition 8.3 shows

Corollary 8.4 There is no Lambek grammar G such that PL(G) = ΣP.

Lemma 8.5 Let G be a rigid Lambek grammar. Then for each proof-tree structure T, there is at
most one partial parse tree P such that T is the structure of P .

Proof. By induction on the construction of T .

Induction basis. T = c∈ Σ. Any partial parse tree P whose structure is T is a height 0 tree whose
only node is labeled by the symbol c and a type A such that G : c 7→ A. Since G is rigid, there is at
most one such type A. Then P , if it exists, is unique.

Induction step. There are 4 cases to consider:

1. T is the following proof-tree structure:

T
1

T
2

\E

Then any partial parse tree of G whose structure is T has the form where P1 and P2 are partial

A

P
1

A\B

P
2

B

\E

parse trees of G whose structures are T1 and T2, respectively. By induction hypothesis, P1
and P2 are unique. This means that the type label B is also uniquely determined, so P is also
unique.

RR n◦ 5964

56 Roberto Bonato

2. Exactly like Case 1, with /E in place of \E.

3. T is the following proof-tree structure:

T
1

\I

Then any partial parse tree of G whose structure is T has the form where P1 is a partial parse

B

������

P
1

\I

A\B

tree of G whose structure is T1. By induction hypothesis, P1 is unique. This means the the
type label A\B is uniquely determined, so P is also unique.

4. Exactly like Case 3, with /I in place of \I.

Corollary 8.6 If G is a rigid Lambek grammar, each proof-tree structure T ∈ PL(G) has a unique
parse.

Note that last corollary doesn’t state that if G is rigid, then each string s ∈ L(G) has a unique
parse: in general for each sentence there are infinitely many proof trees, as extensively shown in
section 6.

Lemma 8.7 Let G be a rigid Lambek grammar. Then for each incomplete proof-tree structure T,
there is at most one incomplete parse tree P of G such that T is the structure of P .

Proof. See [Kan98] which trivially extends to Lambek grammars.

8.2 Most General Unifiers and t Operator
Unification plays a crucial role in automated theorem proving in classical first-order logic and its
extensions (see, for example, [Fit96] for an exposition of its use in first-order logic). Since types are
just a special kind of terms, the notion of unification applies straightforwardly to types.

INRIA

Learnability for Rigid Lambek Grammars 57

Definition 8.8 Let A and B be types. A substitution σ is a unifier of A and B if σ(A) = σ(B). A
unifier σ is a most general unifier of A and B, if for any other unifier τ of A and B, there exists a
substitution η, such that τ = σ◦η, i.e. τ(C) = η(σ(C)), for C = A or C = B.

A substitution σ is said to unify a set A of types if for all A1,A2 ∈ A, σ(A1) = σ(A2). We say that σ

unifies a family of sets of types, if σ unifies each set in the family.
A most general unifier is unique up to ‘renaming of variables’.

Example 8.9 Let A consist of the following sets:

A1 = {x1/x2,x3/x4},
A2 = {x5\(x3\t},
A3 = {x1\t,x5}.

Then the most general unifier of A is:

σ = {x3 7→ x1,x4 7→ x2,x5 7→ x1\t}.

There are many different efficient algorithms for unification, which decide whether a finite set of
types has a unifier and, if it does, compute a most general unifier for it. For illustration purposes, we
present here a non-deterministic version of an unification algorithm.

Our algorithm uses the notion of disagreement pair. The easiest way to define disagreement pair
is to consider the types to be tree-like:

Definition 8.10 Let A and B be two types. A disagreement pair for A and B is a pair of subterms of
A and B, A′,B′, such that A′ 6= B′ and the path from the root of A to the root of A′ is equal to the path
from the root of B to the root of B′.

The following, non-deterministic version of the unification algorithm is taken from [Fit96]:

UNIFICATION ALGORITHM.

• input: two types A and B;

• output: a most general unifier σ of A,B, if it exists, or a correct statement that A and B are not
unifiable.

Let σ := ε

While σ(A) 6= σ(B) do
begin
choose a disagreement pair A′,B′ for σ(A),σ(B);
if neither A′ nor B′ is a variable, then FAIL;
let x be whichever of A′,B′ is a variable (if both are, choose one)
and let C be the other one of A′,B′

if x occurs in C, then FAIL;
let σ := σ◦{x 7→C};
end

RR n◦ 5964

58 Roberto Bonato

The previous algorithm present one of many efficient algorithms for unification, so we the fol-
lowing is a well-defined notion:

Definition 8.11 We define a computable partial function mgu that maps a finite family A of finite
sets of types to a most general unifier mgu(A), if A is unifiable.

The set Grigid of all rigid Lambek grammars is partially ordered by v.

Definition 8.12 Let G ⊆ Grigid , and let G ∈ G .Then G is called an upper bound of G if for every
G′ ∈ G , G′ v G.

We introduce here a new operator among rigid grammars that will be used to prove an interesting
property for our learning algorithm at the end of the fifth chapter.

Definition 8.13 Let G1 and G2 be rigid Lambek grammars. We can assume that G1 and G2 have
no common variables (if they do, we can always choose a suitable alphabetic variant of one of them
such that Var(G1)∩Var(G2) = /0). Let

A = {{A | G1∪G2 : c 7→ A} | c ∈ dom(G1∪G2)}

and let
σ = mgu(A).

Note that G1∪G2 is a 2-valued grammar. Then we define G1tG2 as follows:

G1tG2 = σ[G1∪G2].

If A is not unifiable, then G1tG2 is undefined.

Example 8.14 Let G1 and G2 be the following rigid Lambek grammars:

G1 : a 7→ s/x,

b 7→ x,

G2 : b 7→ y\s,

c 7→ y.

Then

G1tG2 : a 7→ s/(y\s),
b 7→ y\s,

c 7→ y.

Obviously, from definition 8.13, we have

Lemma 8.15 If G1tG2 exists, then G1 v G1tG2 and G2 v G1tG2.

Proposition 8.16 (Kanazawa, 1998) Let G1,G2 ∈ Grigid . If {G1,G2} has un upper bound, then
G1tG2 exists and it’s the least upper bound of {G1,G2}.

Proof. (See [Kan98]).

INRIA

Learnability for Rigid Lambek Grammars 59

9 Learning Rigid Lambek Grammars from Structures
In the present chapter we will explore a model of learning for Rigid Lambek Grammars based on
positive structured data. In addition to the standard model where sentences are presented to the
learner as flat sequences of words, in this somewhat enriched model, strings come with additional
information about their “deep structure”. Following the approach sketched in section 6, largely
indebted with Tiede’s study on proof trees in Lambek calculus as grammatical structures for Lambek
grammars (see [Tie99]), in our model each sentence comes to the learner with a structure in the form
of a proof tree structure as extensively described in section 6.

Formally, given a finite alphabet Σ, we will present a learning algorithm for the grammar system
〈Grigid ,Σ

P,PL〉: that is to say, samples to which the learner is exposed to are proof-tree structures
over the alphabet Σ, and guesses are made about the set of rigid Lambek grammars that can generate
such a set of structures.

We follow the advice of Kanazawa (see [Kan98]) who underlines how such an approach, which
turns out to be quite logically independent from an approach based on flat strings of words, seems to
make the task of learning easier but doesn’t trivialize it. If, on one hand, in the process of learning
from structures the learner is provided with more information, on the other hand the criterion for
successful learning is stricter. It is not sufficient that the string language of G contains exactly the
yields of the structures in the input sequence, the learning function is required to converge to a
grammar G that generates all the grammatical structures which appear in the input sequence. We
could say that the learning function must converge to a grammar that is both weakly and strongly
equivalent to the grammar that generated the input samples.

Clearly, from a psycholinguistic point of view, both learning from flat strings and from proof
tree structures are quite unrealistic models of first language acquisition by human beings. In the first
case, experimental evidences (see [Pin94]) show that children can’t acquire a language simply by
passively listening to flat strings of words. First of all, we can think that prosody (or punctuation,
in written text) can provide “structural” information to the children on the syntactic bracketing of
the sentences she is exposed to (although they do not always coincide) and it is known that prosody
is needed to learn a language for a child. Furthermore, another interesting evidence of the fact that
a child needs something more to learn her mother tongue is given by the fact that no children can
improve their grammatical skills during the early stages of their language acquisition process by
watching TV: it seems very likely they need “richer data” than simple sentences uttered by an adult.
Some researchers (see [Tel99]) hypothesize this additional information comes to the children as the
semantic content of the first sentences she is exposed to, whose she could have a first, primitive grasp
through first sensory-motor experiences.

On the other hand, it is also highly unlikely that a child can have access to something like a
proof tree structure of the sentence she is exposed to. Our belief is that a good formal model for
the process of learning should rely on something “halfway” between flat strings of words and highly
structured and complete information coming from the proof tree structure of the sentence. However,
since, as we’ve already seen in section 7.2, proof tree structures provide a very natural support for
a Montague-like semantics, we think that our model for learning a rigid Lambek grammar from

RR n◦ 5964

60 Roberto Bonato

structured data represents a first, simple but meaningful approximation of a more plausible model of
learning.

In any case, even though in most of real-world applications only unstructured data are available,
we are often interested not only in the sentences that a grammar derives, but also in derivation strings
that grammar assigns to sentences. That is, we generally want a grammar that makes structural sense.

9.1 Grammatical Inference as Unification
We set our inquiry over the learnability for rigid Lambek grammars in the more general logical
framework of the Theory of Unification. We will stick to the approach described in [Nic99] based
on the attempt to reduce the process of inferring a categorial grammar to the problem of unifying
a set of terms. This approach establishes a fruitful connection between Inductive Logic Program-
ming techniques and the field of Grammatical Inference, a connection that has already been proved
successful in devising efficient algorithms to infer k-valued CCGs from positive structured data (see
[Kan98]). Our aim is to exploit as much as possible what has already been done in this direction by
exploring the possibility of adapting existing algorithms for CCGs to rigid Lambek grammars.

9.2 Argument Nodes and Typing Algorithm
Our learning algorithm is based on a process of labeling for the nodes of a set of proof tree structures.
We introduce here the notion of argument node for a normal form proof tree. We will be a bit sloppy
in defining such a notion, and sometimes we will use the same notation to indicate a node and the
type it’s labeled by, when this doesn’t engender confusion, and much will be left to the graphical”
interpretation of trees and their nodes. However, we can always think of a node as a De Bruijn-like
object (a notation for lambda terms in which variable names are replaced by “paths” within the tree
in which they occur, see [dB72]) without substantially affecting the meaning of what will be proved.

Definition 9.1 Let P be a normal form partial parse tree. Let’s define inductively the set Arg(P) of
argument nodes of P . There are three cases to consider:

• P is a single node labeled by a type x, which is the only member of Arg(P).

• P looks like one of the following

� �

P
1

P
1

� �

P
2

P
2

\E /E

B B

,
A A\B B/A A

INRIA

Learnability for Rigid Lambek Grammars 61

then in the first case

Arg(P) = {Root(P)}∪Arg(P1)∪Arg(P2)−{Root(P2)},

and in the second case

Arg(P) = {Root(P)}∪Arg(P1)∪Arg(P2)−{Root(P1)}.

• P looks like one of the following

������

P
1

B B

������

P
1

\I /I

A\B B/A

,

then Arg(P) = Arg(P1).

The following proposition justifies our interest for argument nodes for a normal form proof tree
structure:

Proposition 9.2 Let t be a well formed normal form proof tree structure. If each argument node is
labeled, then any other node in t can be labeled with one and only one type.

Proof. We prove that, once argument nodes are labeled, any other node can be labeled, by providing
a typing algorithm; uniqueness of typing follows from the rules applied.

By induction on the height h of t:

Induction Basis. There are two cases to consider:

1. h = 0. Trivially, by definition 9.1, t is a single argument node, the result of the application of
a single axiom rule [ID] and by definition it’s already typed.

2. h = 1. Then t must be the result of a single application of a [/E] or [\E] rule. By hypothesis
and definition 9.1, its two argument nodes are labeled with, say, x1 and x2, and the remaining
node must be labeled according to one of the following rules:

RR n◦ 5964

62 Roberto Bonato

\E \E /E /E

x2 x2 x2
x2

x1 x1
x1

x1

x \x2 1

� �

x /x1 2

,

Induction Step. Let t be a normal form proof tree structure of height h > 1. There are 3 cases to
consider:

1. t ≡ \E(t1, t2). Since, by hypothesis, each node in Arg(t) = {Root(t)}∪Arg(t1)∪Arg(t2)−
{Root(t2)}, is labeled, then also Root(t) is labeled with, say, x2. For the same reason, any node
of Arg(t1) is labeled, too, and so, by induction hypothesis, t1 is fully (and uniquely) labeled.
In particular its root is labeled with, say, x1. Since t is well formed, t2 cannot be the result of
the application of a [/I] rule, and since t is normal, t2 cannot be the result of the application
of a [\I] rule, so its root node is one of its argument nodes, too. By hypothesis, each node in
Arg(t2)−{Root(t2)} has a type, so we can apply the following rule:

x
1

t
1

t
1

x \x
1 2

t
2

t
2

x
2

x
2

\E\E

�
x

1

and t2 has all of its argument nodes (uniquely) labeled. So, by induction hypothesis, its fully
and uniquely labeled, and so is t.

2. t ≡ /E(t1, t2). Analogous to case 1.

3. t ≡ \I(t1) or t ≡ /I(t1). By definition, Arg(t) = Arg(t1), then by hypothesis, any argument
node in t1 is labeled. Then, by induction hypothesis, t1 is fully (and uniquely) labeled, and
since t is well-formed, there must be at least two undischarged leaves in t1. So t can be fully
labeled according, respectively, to the following rules:

INRIA

Learnability for Rigid Lambek Grammars 63

\I\I

x \x2 1

x1x1

t
1

t
1

x2
[x]2

�

...

/I/I

x /x1 2

x1x1

t
1

t
1

x2 [x]2

�,

where x2 labels, respectively, the leftmost and the rightmost undischarged leaf.

The proof of the previous proposition has implicitly defined an algorithm for labeling in the most
general way the nodes of a normal form proof tree structure.

Definition 9.3 A principal parse of a proof tree structure t is a partial parse tree T of t, such that
for any other partial parse tree T ′ of t, there exists a substitution σ such that, if a node of t is labeled
by type A in T , it’s labeled by σ(A) in T ′.

From the proof of proposition 9.2 it’s easy to devise an algorithm to get a principal parse for any
well formed normal form proof tree structure.

PRINCIPAL PARSE ALGORITHM

• Input: a well formed normal form proof tree structure t;

• Output: a principal parse T of t in a Lambek grammar G.

Step 1. Label with distinct variables each argument node in t;

Step 2. Compute the types for the remaining nodes according to the rules described in the proof
of proposition 9.2.

Obviously, this algorithm always terminates. If T is the resulting parse, we can easily prove
it’s principal. If T ′ is another parse for t, let’s define a substitution σ in the following way: for
each variable x ∈Var(G), find the (unique, for construction) node in T labeled by x, and let σ(x) be
the type labeling the same node in T ′. By induction on A ∈ T p(G) (where T p(G) is the set of all
subtypes appearing in a Lambek Grammar G), we prove that

if A labels a node of T , σ(A) labels the corresponding node of T ′.

Induction Basis. If A ∈Var, this holds by definition.

Induction Step. Let A = B\C labels a node of T . Then the relevant part of T must look like one
of the following cases:

RR n◦ 5964

64 Roberto Bonato

• First case:

B B\C

C

\E

By induction hypothesis, the corresponding part of T ′ looks like:

�(B)

�(C)

\E

A´

Then A′ = σ(B)\σ(C) = σ(B\C) = σ(A).

• Second case:

[B]

C

B\C

\I

By induction hypothesis, the corresponding part of T ′ looks like:

[(B)]�

�(C)

A´
\I

Then A′ = σ(B)\σ(C) = σ(B\C) = σ(A).

INRIA

Learnability for Rigid Lambek Grammars 65

The case A = C/B is entirely similar, thus completing the induction.
It follows that if a node of T is labeled by A, then the corresponding node of T ′ is labeled by

σ(A). That is to say, with a small abuse of notation, T ′ = σ(T).

9.3 RLG Algorithm
Our algorithm (called RLG from Rigid Lambek Grammar) takes as its input a finite set D of proof
tree structures over a finite alphabet Σ and returns a rigid Lambek grammar G over the same alphabet
whose structure language contains (properly) D, if it exists; a correct statement that there’s no such
a rigid Lambek grammar otherwise.

Our algorithm is based on the type algorithm described in section 9.2 and on the unification al-
gorithm described in section 8.2.

RLG ALGORITHM.

• input: a finite set D of proof tree structures.

• output: a rigid Lambek grammar G such that D ⊂ PL(G), if there is one.

We illustrate the algorithm using the following example:

\E

/I

\E

a girl

\E

/E /E

\E

loves

him

passionately

[]

a girl

/E

loves /E

John,D={
{

RR n◦ 5964

66 Roberto Bonato

Step 1. Normalize all the proof tree structures in D, if they are not normal, according to the rules
described in section 6.3.

Step 2. Assign a type to each node of the structure in D as follows:

1. Assign s to each root node.

2. Assign distinct variables to the argument nodes.

/I

\E

a

girl

\E

/E
/E

\E

loves

him

passionately

[]x5

a
girl

/E

loves

/E

John
,

s

s

x1

x3

x4

x8

x6

x7
x2

\E

3. Compute types for the remaining nodes according to the rules described in proposition 9.2.

/I

\E

a girl

\E

/E /E

\E

loves

him

passionately

[]x5 a girl

/E

loves /E

John
,

s

s

x1

x3

x4

x8

x6

x7

x2

\E

x /x3 4

x \x3 2

(x \x)/x3 2 5

x /x2 5
(x /x)\x2 5 1

x \s1

x \s6

x /x7 8

(x \s)/x6 7

INRIA

Learnability for Rigid Lambek Grammars 67

Step 3. Collect the types assigned to the leaf nodes into a grammar GF(D) called the general
form induced by D. In general, GF(D) : c 7→ A if and only if the previous step assigns A to a leaf
node labeled by symbol c.

GF(D) : passionately 7→ x1\s

him 7→ (x2/x5)\x1

a 7→ x3/x4,x7/x8

girl 7→ x4,x8

loves 7→ (x3\x2)/x5,(x6\s)/x7

John 7→ x6

Step 4. Unify the types assigned to the same symbol. Let A = {{A | GF(D) : c 7→ A} | c ∈
dom(GF(D))}, and compute σ = mgu(A). The algorithm fails if unification fails.

σ = {x7 7→ x3,x8 7→ x4,x6 7→ x3,x2 7→ s,x5 7→ x3}

Step 5. Let RLG(D) = σ[GF(D)].

RLG(D) : passionately 7→ x1\s

him 7→ (s/x3)\x1

a 7→ x3/x4

girl 7→ x4

loves 7→ (x3\s)/x3

John 7→ x3

Our algorithm is based on the “principal parse algorithm” described in the previous section,
which has been proved to be correct and terminate, and the unification algorithm described in section
8.2. The result is, intuitively, the most general rigid Lambek Grammar which can generate all the
proof tree structures appearing in the input sequence.

9.4 Properties of RLG
In the present section we prove some properties of the RLG algorithm that will be helpful to study
its behaviour in the limit.

The following lemma is almost trivial but it will play an important role in the convergence proof
for the RLG algorithm. It simply states that the tree language of the grammar inferred just after the
labeling of the structures properly contains the sample structures.

Lemma 9.4 Let D be the input set of proof tree structures for the RLG algorithm. Then the set of
the proof tree structures generated by the ‘general form’ grammar contains properly D. That is,
D ⊂ PL(GF(D)).

RR n◦ 5964

68 Roberto Bonato

Proof. Let D = {T1, . . . ,Tn}. The labeling of the nodes of the structures in D that precedes the
construction of GF(D) in fact forms a parse tree Pi of GF(D) for each structure Ti in D. This shows
D ⊆ PL(GF(D)). The proper inclusion follows trivially from the fact that D is by hypothesis a
finite set, while PL(G), the set of proof tree structures generated by a Lambek grammar G, is always
infinite.

Lemma 9.5 Each variable x ∈Var(GF(D)) labels a unique node in a unique parse tree of D.

Proof. Obviously, by construction, if x ∈Var(GF(D)), then there must be an i ∈N such that x labels
one of the nodes of a parse tree Pi. Since, by construction, for each i 6= j the sets of variables that
label Pi are disjoint, x appears in one and only one Pi. Besides, since variables are assigned only
during the first phase of the type-assignment process of our algorithm, again by construction each
variable labels only one node in the deduction tree.

The following lemma makes explicit the relation between the grammar inferred just after the
labeling of the structures in the algorithm RLG, and the structure language of the rigid grammar we
are trying to infer.

Lemma 9.6 Let D be a finite set of proof tree structures. Then, for any Lambek grammar G, the
following are equivalent:

(i) D ⊆ PL(G)

(ii) There is a substitution σ such that σ[GF(D)]⊆ G.

Proof. (ii)⇒(i). Suppose there is a substitution σ such that σ[GF(D)]⊆ G. Then, from proposition
6.32, we have that PL(GF(D))⊆ PL(G). This, together with lemma 9.4 proves (i).

(i) ⇒(ii). Let D = {T1, . . . ,Tn} and let Pi be GF(D)’s parse of Ti for 1 ≤ i ≤ n. Assume D ⊆
PL(G). Then G has a parse Qi of each Ti. Define a substitution σ as follows: for each variable
x ∈ Var(GF(D)), find a (unique, due to lemma 9.5) Pi that contains a (unique, again due to lemma
9.5) node labeled by x, and let σ(x) be the type labeling the corresponding node of Qi. We show that

if A labels a node of some Pi, then σ(A) labels the corresponding node of Qi.

Proof. By induction on A ∈ T p(GF(D)) = {T | T is a subtype of some B ∈ range(GF(D))}):

Induction basis. If A ∈ Var, this holds by definition. If A = t, then any node labeled by A in
{P1, . . . ,Pn} is the root node of some Pi. Since Qi is a parse tree of G, the root node of Qi must be
labeled by t.

Induction step. Let A = B\C labels a node of Pi. Then the relevant part of Pi must look like one
of the two following cases:

INRIA

Learnability for Rigid Lambek Grammars 69

• First case

B B\C

C

\E

t

By induction hypothesis, the corresponding part of Qi looks like:

�(B)

�(C)

\E

t

A´

Then A′ = σ(B)\σ(C) = σ(B\C) = σ(A).

• Second case

t

[B]

C

B\C

\I

RR n◦ 5964

70 Roberto Bonato

By induction hypothesis, the corresponding part of Qi looks like:

t

[(B)]�

�(C)

A´
\I

Then again A′ = σ(B)\σ(C) = σ(B\C) = σ(A).

The case A =C/B is entirely similar, thus completing the induction. It follows that if GF(D) : c 7→A,
then G : c 7→ σ(A). Therefore, σ[GF(D)]⊆ G.

The following proposition establishes an “if and only if” relation between the inclusion of our
set of positive samples D in a tree language generated by a rigid grammar G and the successful
termination of the RLG algorithm when it has D as its input set. Even more, we have that the rigid
grammar inferred by the algorithm is not “larger” than the rigid grammar G.

Proposition 9.7 Let D be a finite set of proof tree structures. Then, for any rigid grammar G, the
following are equivalent:

(i) D ⊆ PL(G);

(ii) RLG(D) exists and RLG(D)vG (equivalently, there is a substitution τ such that τ[RLG(D)]⊆
G).

Proof. (ii) ⇒ (i) follows from lemma 9.6 and the fact that RLG(D) is a substitution instance of
GF(D).

(i) ⇒ (ii). Assume that G is a rigid grammar such that D ⊆ PL(G). By lemma 9.6 there is
a substitution σ such that σ[GF(D)] ⊆ G. Since G is a rigid grammar, σ[GF(D)] is also a rigid
grammar. Then σ unifies the family A = {{A | GF(D) : c 7→ A} | c ∈ dom(GF(D))}. This means
that RLG(D) exists and RLG(D) = σ0[GF(D)], where σ0 = mgu(A). Then there is a substitution
τ such that σ = τ◦σ0. Therefore, τ[RLG(D)] = τ[σ0[GF(D)]] = (τ◦σ0)[GF(D)] = σ[GF(D)]. By
assumption, σ[GF(D)]⊆ G, so τ[RLG(D)]⊆ G.

Corollary 9.8 Let D1 and D2 be two finite sets of proof tree structures such that D1 ⊆ D2. If
RLG(D2) exists, RLG(D1) also exists and RLG(D1)vRLG(D2) and PL(RLG(D1))⊆PL(RLG(D2)).

INRIA

Learnability for Rigid Lambek Grammars 71

Proof. Immediate from proposition 9.7, noting that if D1 ⊆ D2, then {G ∈ Grigid | D1 ⊆ PL(G)} ⊇
{G ∈ Grigid | D2 ⊆ PL(G)}.

Definition 9.9 Let ϕRLG be the learning function for the grammar system 〈Grigid ,Σ
P,PL〉 defined as

follows:3

ϕRLG(〈T0, . . . ,Tn〉)' RLG({T0, . . . ,Tn}).

Thanks to previous propositions and lemmas we are able to prove the convergence for the RLG
algorithm:

Theorem 9.10 ϕRLG learns Grigid from structures.

Proof. We prove that ϕRLG learns the class of rigid Lambek grammars from proof tree structures.
Let G be any rigid Lambek grammar and let 〈Ti〉i∈N be an infinite sequence enumerating PL(G).

For each i ∈ N, {T0, . . . ,Ti} ⊆ PL(G), so by proposition 9.7 ϕRLG(〈T0, . . . ,Ti〉) = RLG({T0, . . . ,Ti})
is defined and

ϕRLG(〈T0, . . . ,Ti〉)v ϕRLG(〈T0, . . . ,Ti+1〉),

by corollary 9.8, and
ϕRLG(〈T0, . . . ,Ti〉)v G.

Since, by corollary 6.41, there are only finitely many Lambek grammars G′′ v G, ϕRLG must con-
verge on 〈Ti〉i∈N to some G′. Then PL(G) = {Ti | i ∈ N} ⊆ PL(G′). Since G′ v G, by proposition
6.32, PL(G′)⊆ PL(G). Therefore, PL(G′) = PL(G).

When RLG is applied successively to a sequence of increasing set of proof tree structures D0 ⊂
D1 ⊂ D2 ⊂ ·· · , it is more efficient to make use of the previous value RLG(Di−1) to compute the
current value RLG(Di).

Definition 9.11 If G is a rigid Lambek grammar and D is a finite set of proof tree structures, then
let

RLG(2)(G,D)' GtRLG(D).

Lemma 9.12 If D1 and D2 are two finite sets of proof tree structures,

RLG(2)(RLG(D1),D2)' RLG(D1∪D2).

Proof. (See [Kan98]). Suppose that RLG(2)(RLG(D1),D2) is defined. By lemma 8.15, RLG(D1)v
RLG(2)(RLG(D1),D2) and RLG(D2)= RLG(2)(RLG(D1),D2). This implies that D1∪D2 ⊆PL(RLG(2)(RLG(D1),D2)),
so by proposition 9.7, RLG(D1∪D2) exists and RLG(D1∪D2)v RLG(2)(RLG(D1),D2).

3Recall that the symbol ' means that either both sides are defined and are equal, or else both sides are undefined

RR n◦ 5964

72 Roberto Bonato

Suppose now that RLG(D1∪D2) is defined. By corollary 9.8, RLG(D1) and RLG(D2) exist and
RLG(D1)v RLG(D1∪D2) and RLG(D2)v RLG(D1∪D2). Then RLG(D1∪D2) is an upper bound
of {RLG(D1),RLG(D2)}. By proposition 8.16, RLG(D1)tRLG(D2) = RLG(2)(RLG(D1),D2) ex-
ists and RLG(2)(RLG(D1),D2)v RLG(D1∪D2).

Thus it has been proved that if one of RLG(2)(RLG(D1),D2) and RLG(D1 ∪D2) is defined the
other is defined and they are equal.

Proposition 9.13 ϕRLG has the following properties (see section 3.4 for the definitions):

(i) ϕRLG learns Grigid prudently.

(ii) ϕRLG is responsive and consistent on Grigid .

(iii) ϕRLG is set-driven.

(iv) ϕRLG is conservative.

(v) ϕRLG is monotone increasing.

(vi) ϕRLG is incremental.

Proof.

(i) Since range(ϕRLG)⊆ Grigid , ϕRLG learns Grigid prudently.

(ii) If D ⊆ L for some L ∈ P Lrigid , then by proposition 9.7 RLG(D) exists and by lemma 9.6
D ⊆ PL(RLG(D)). This means that ϕRLG is responsive and consistent on Grigid .

(iii) ϕRLG is set-driven by definition.

(iv) Let T ∈ PL(RLG(D)). Then D∪{T} ⊂ PL(RLG(D)). By proposition 9.7, RLG(D∪{T})
exists and RLG(D∪{T}) v RLG(D). By corollary 9.8 we have also RLG(D) v RLG(D∪
{T}). This shows that ϕRLG is conservative.

(v) Trivial from corollary 9.8.

(vi) Define a computable function ψ : Grigid ×ΣP → Grigid as follows:

ψ(G,T)'
{

RLG(2)(G,{T}) if G ∈ Grigid and RLG({T}) is defined,
undefined otherwise.

Then by lemma 9.12, ϕRLG(〈T0, . . . ,Ti+1〉)' ψ(ϕRLG(〈T0, . . . ,Ti〉),Ti+1).

INRIA

Learnability for Rigid Lambek Grammars 73

10 Conclusion and Further Research
This work aims at making a further step in the direction of bridging the gap which still separates any
formal/computational theory of learning from a meaningful formal linguistic theory.

We have introduced the basic notions of Formal Learnability Theory as first formulated by E.M.
Gold in 1967, and of Lambek Grammars, which appeared for the first time in an article of 1958.

The former, which is one of the first completely formal descriptions of the process of grammat-
ical inference, after an initial skepticism about its effective applicability, is at present to object of a
renewed interest due to some meaningful and promising learnabiluty results.

Even the latter, long neglected by the linguistic community, is experiencing a strong renewed
interest as a consequence of recent linguistics achievements which point at formal grammars com-
pletely lexicalized, as Lambek grammars are. Even if they’re still far from being the ultimate formal
device for the formalization of human linguistics competence, they’re universally looked at as a
promising tool for further developments of computational linguistics.

In the present work we’ve drawn the attention to a particular class of Lambek grammars called
rigid Lambek grammars, and we’ve proved that they are learnable in Gold’s framework from a struc-
tured input. We’ve used most recent results by Hans-Joerg Tiede for formally define our notion of
structure for a sentence: he has recently proved that the proof tree language generated by a Lambek
grammar strictly contains the tree language generated by context-free grammars. His notion of a
proof as the grammatical structure of a sentence in a categorial grammar is also useful in providing a
natural support to a Montagovian semantics for that sentence. Therefore, our choice for a structured
input for our learning algorithm in the form of proof tree structures is not gratuitous, but it’s coherent
with the mainstream of (psycho-)linguistics theories about first language learning which stress the
importance of providing the learner with informatioannly and semantically rich input in the process
of her language acquisition.

We believe it to be a partial but meaningful result, which once more shows how versatile and
powerful can be this learning theory, once neglected because it was widely held that it couldn’t but
account for the learnability of most trivial classes of grammars.

Much is left to be done along many directions. First of all, there’s still no real theory of rigid,
or k-valued, Lambek grammars: we still know very few formal properties of such grammars which
seem to have an undisputable linguistic interest. We still lack, for example, a hierarchy theorem for
languages generated by k-valued Lambek grammars.

Another important point which is still unanswered lies in the decidability for PL(G1)⊆ PL(G2)
for G1,G2 Lambek grammars, that is deciding whether the tree language generated by a grammar
is contained in the tree language generated by another one, for any two grammars. Such a question
is decidable for the non-associative variant of Lambek grammars. Proving this question decidable
would allow as to very easily devise a learning algorithm for k-valued Lambek grammars.

Our learnability result is in our opinion a first step toward a more convincing and linguistically
plausible model of learning for k-valued Lambek grammars from less and less structurally rich input.
Needless to say, learning from such an informationally rich input like proof-tree structures hardly

RR n◦ 5964

74 Roberto Bonato

has any linguistic plausibility. On the other hand the deep connections between proof tree structures
for a sentence in Lambek grammars and its “Montague-like” semantics seems to address to a more
convincing model for learning based both on syntactic and semantic information.

INRIA

Learnability for Rigid Lambek Grammars 75

References
[Ang80] Dana Angluin. Inductive inference of formal languages from positive data. Informa-

tion and Control, 45:117–135, 1980.

[BB75] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

[BH64] Yehoshua Bar-Hillel. Language and Information. Addson-Wesley, Reading, 1964.

[BP90] Wojciech Buszkowski and Gerald Penn. Categorial grammars determined from lin-
guistic data by unification. Studia Logica, 49:431–454, 1990.

[Bus86] Wojciech Buszkowski. Generative capacity of non-associative lambek calculus. Bul-
letin of the Polish Academy of Science and Mathematics, 1986.

[Cho56] Noam Chomsky. Three models for the description of language. IRE Transactions on
Information Theory IT-2, 3:113–124, 1956.

[Cho75] Noam Chomsky. Reflections on Language. Pantheon, 1975.

[dB72] N. G. de Bruijn. Lambda calculus notation with nameless dummies. Indagationes
Mathematicae, pages 381–392, 1972.

[Fit96] Melvin Fitting. First-Order Logic and Automatic Theorem Proving. Berlin: Springer,
1996.

[Ful88] M. Fulk. Saving the phenomenon: Requirements that inductive machines not contra-
dict known data. Information and Computation, 79(3):193–209, 1988.

[Gaz88] Gerald Gazdar. Applicability of indexed grammars to natural languages. In Uwe
Reyle and Christian Rohrer, editors, Natural Language Parsing and Linguistic Theo-
ries, pages 69–94. Dordrecht:Reidel, 1988.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

[GS84] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó, 1984.

[Gue83] Irène Guesserian. Pushdown tree automata. Mathematical Systems Theory, 16(4):237–
263, 1983.

[JORS99] Sanjay Jain, Daniel N. Osherson, James S. Royer, and Arun Sharma. Systems that
Learn. MIT Press, Cambridge, Massachusetts, second edition, 1999.

[Kan98] Makoto Kanazawa. Learnable Classes of Categorial Grammars. Center for the Study
of Language and Information (CSLI), Stanford, 1998.

RR n◦ 5964

76 Roberto Bonato

[Koz97] Dexter Kozen. Automata and Computability. Berlin: Springer, 1997.

[Lam58] Joachim Lambek. The mathematics of sentence structure. American Mathematical
Monthly, 65:154–170, 1958.

[Mon97] Richard Montague. The proper treatment of quantification in ordinary english. In
Jakko Hintikka, editor, Approaches to Natural Language, pages 221–242. Reidel,
1997.

[Moo97] Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter
Meulen, editors, Handbook of Logic and Language. North Holland, Amsterdam, 1997.

[Nic99] Jacques Nicolas. Grammatical inference as unification. Technical Report 3632, IRISA,
United́e Recherche INRIA Rennes, 1999.

[OGL95] Daniel N. Osherson, Lila R. Gleitmann, and Mark Liberman, editors. An Invitation to
Cognitive Science, volume 1, ”Language”. The MIT press, Massachusetts Institute of
Technology, Cambridge, Massachusetts, second edition, 1995.

[OWdJM97] Daniel N. Osherson, Scott Weinstein, Dick de Jongh, and Eric Martin. Formal learning
theory. In Johan van Benthem and Alice ter Meulen, editors, Handbook of Logic and
Language. North Holland, Amsterdam, 1997.

[Pen97] Mati Pentus. Product-free lambek calculus and context-free grammars. The Journal
of Symbolic Logic, 62(2):648–660, 1997.

[Pin94] Steven Pinker. The Language Instict. Penguin Press, 1994.

[Ret96] Christian Retoré. Proof-nets for the lambek calculus - an overview. In Michele Abrusci
and Claudia Casadio, editors, Proceedings of the 1996 Roma Workshop ”Proofs and
Linguistic Categories - Applications of Logic to the Analysis and Implementation of
Natural Language, pages 241–262, Bologna, April 1996. CLUEB.

[Ret05] Christian Retoré. The logic of categorial grammar: lecture notes. Technical Report
RR-5703, INRIA, 2005.

[Roo91] Dirk Roorda. Resource Logics: Proof-Theoretical Investigations. PhD thesis, Univer-
sity of Amsterdam, 1991.

[Shi90] T. Shinohara. Inductive inference from positive data is powerful. In The 1990 Work-
shop on Computational Learning Theory, pages 97–110, San Mateo, California, 1990.
Morgan Kaufmann.

[Ste93] Mark Steedman. Categorial grammar. Lingua, 90:221–258, 1993.

[Tel99] Isabelle Tellier. Rôle de la compositionnalité dan l’acquisition d’une langue. In Actes
de CAP99, pages 107–114, Palaiseau, 1999.

INRIA

Learnability for Rigid Lambek Grammars 77

[Tha67] James W. Thatcher. Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. Journal of Computer Systems Scinces, pages
317–322, 1967.

[Tie99] Hans-Joerg Tiede. Deductive Systems and Grammars: Proofs as Grammatical Struc-
tures. PhD thesis, Indiana University, July 1999.

[vB87] Johan van Benthem. Logical syntax. Theoretical Linguistics, 14(2/3):119–142, 1987.

[Wan93] Heinrich Wansing. The Logic of Information Structures. Berlin: Springer Verlag,
1993.

[Wri89] K. Wright. Identifications of unions of languages drawn from an identifiable class. In
The 1989 Workshop on Computational Learning Theory, pages 328–333, San Mateo,
California, 1989. Morgan Kaufmann.

[Zie89] Wojciech Zielonka. A simple and general method for solving the finite axiomatizabil-
ity problems for Lambek’s syntactic calculi. Studia Logica, 48(1):35–39, 1989.

Contents
1 Introduction 3

2 Grammatical Inference 4
2.1 Child’s First Language Acquisition . 4
2.2 Gold’s Model . 4

3 Basic Notions 5
3.1 Grammar Systems . 5
3.2 Learning Functions, Convergence, Learnability . 6
3.3 Structural Conditions for (Un)Learnability . 9

3.3.1 Existence of a Limit Point . 9
3.3.2 (In)Finite Elasticity . 10
3.3.3 Kanazawa’s Theorem . 12

3.4 Constraints on Learning Functions . 13
3.4.1 Non-restrictive Constraints . 14
3.4.2 Restrictive Constraints . 15

4 Is Learning Theory Powerful Enough? 17
4.1 First Negative Results . 17
4.2 Angluin’s Results . 17
4.3 Shinohara’s Results . 17
4.4 Kanazawa’s Results . 18
4.5 Our Results . 18

RR n◦ 5964

78 Roberto Bonato

5 Lambek Grammars 19
5.1 Classical Categorial Grammars . 19
5.2 Extensions of Classical Categorial Grammars . 22
5.3 (Associative) Lambek Calculus . 22
5.4 Non-associative Lambek Calculus . 28
5.5 Normalization and Normal Forms . 29
5.6 Basic Facts about Lambek Calculus . 30
5.7 Lambek Grammars . 31

6 Proofs as Grammatical Structures 32
6.1 (Partial) Parse Trees for Lambek Grammars . 33
6.2 Tree Languages and Automata . 34

6.2.1 Local Tree Languages . 35
6.2.2 Regular Tree Languages . 35
6.2.3 Context-free Tree Languages . 36

6.3 Proof Trees as Structures for Lambek Grammars 38
6.4 Proof-tree Structures . 40
6.5 Decidable and Undecidable Problems about

Lambek Grammars . 41
6.6 Substitutions . 42
6.7 Grammars in Reduced Form . 43

7 Lambek Grammars as a Linguistic Tool 45
7.1 Lambek Grammars and Syntax . 45

7.1.1 Transitive verbs . 45
7.1.2 Pronouns . 46
7.1.3 Adverbs . 46
7.1.4 Hypothetical reasoning . 47
7.1.5 Transitivity . 49

7.2 Lambek Grammars and Montague Semantics . 50

8 Rigid Lambek Grammars 53
8.1 Rigid and k-Valued Lambek Grammars . 53
8.2 Most General Unifiers and t Operator . 56

9 Learning Rigid Lambek Grammars from Structures 59
9.1 Grammatical Inference as Unification . 60
9.2 Argument Nodes and Typing Algorithm . 60
9.3 RLG Algorithm . 65
9.4 Properties of RLG . 67

10 Conclusion and Further Research 73

INRIA

Unité de recherche INRIA Futurs
Parc Club Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Grammatical Inference
	Child's First Language Acquisition
	Gold's Model

	Basic Notions
	Grammar Systems
	Learning Functions, Convergence, Learnability
	Structural Conditions for (Un)Learnability
	Existence of a Limit Point
	(In)Finite Elasticity
	Kanazawa's Theorem

	Constraints on Learning Functions
	Non-restrictive Constraints
	Restrictive Constraints

	Is Learning Theory Powerful Enough?
	First Negative Results
	Angluin's Results
	Shinohara's Results
	Kanazawa's Results
	Our Results

	Lambek Grammars
	Classical Categorial Grammars
	Extensions of Classical Categorial Grammars
	(Associative) Lambek Calculus
	Non-associative Lambek Calculus
	Normalization and Normal Forms
	Basic Facts about Lambek Calculus
	Lambek Grammars

	Proofs as Grammatical Structures
	(Partial) Parse Trees for Lambek Grammars
	Tree Languages and Automata
	Local Tree Languages
	Regular Tree Languages
	Context-free Tree Languages

	Proof Trees as Structures for Lambek Grammars
	Proof-tree Structures
	Decidable and Undecidable Problems about Lambek Grammars
	Substitutions
	Grammars in Reduced Form

	Lambek Grammars as a Linguistic Tool
	Lambek Grammars and Syntax
	Transitive verbs
	Pronouns
	Adverbs
	Hypothetical reasoning
	Transitivity

	Lambek Grammars and Montague Semantics

	Rigid Lambek Grammars
	Rigid and k-Valued Lambek Grammars
	Most General Unifiers and Operator

	Learning Rigid Lambek Grammars from Structures
	Grammatical Inference as Unification
	Argument Nodes and Typing Algorithm
	RLG Algorithm
	Properties of RLG

	Conclusion and Further Research

