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Bounded state reconstruction error for LPV systems

with estimated parameters
G. Millerioux, L. Rosier, G. Bloch, J. Daafouz

Abstract

This note deals with the state reconstruction of a class of discrete-time systems with time-varying parameters. While usually, the
parameters are assumed to be online available and exactly known, the special and realistic situation when the parameters are known with a
finite accuracy is considered. The main objective of the note is to show that, despite of the resulting mismatch between the true system and
the model, the state reconstruction error boundedness can be guaranteed and an explicit bound can be derived. The proof is based upon the
concept of Input-to-State Stability.
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I. INTRODUCTION

In this note, the state reconstruction for Linear Parameter Varying (LPV) discrete time systems is considered. While
for such a class of systems, the parameters are usually assumed to be exactly known, we consider here that the pa-
rameters are estimated in the sense that they are available with only some degree of accuracy. It may also correspond
to the case where bounded disturbances on the dynamics and/or the measurements act on the system. The problem
under study is the impact of the parameter estimation error on the state reconstruction error. In particular, we wonder
whether there exists a guarantee of the boundedness. The answer is not trivial. Indeed, it can be shown that the effect
of a bounded estimation error is similar to the effect of a bounded unknown exogenous input acting on the system. And
yet, it is well known that a bounded disturbance may drive to infinity a nonlinear system [1]. In this note, it is proved
that such a guarantee exists and an explicit bound is derived by using the concept of Input-to-State Stability (ISS),
a notion introduced by E. Sontag in [2] (see also [3] and the references therein). For discrete-time nonlinear systems,
the reader can refer to [4][5][6]. Some works with quite similar issues for the continuous case can be found in [7] with
a neural-network-based approach or in [1] where bounded disturbances are considered. We mention that the problem
under study differs from the one involving adaptive approaches where the goal is to simultaneously estimate the state
and the parameters. The corresponding design often requires the use of a global state space diffeomorphism such that,
in the new coordinates, the nonlinearities are restricted to be functions of available signals and the system becomes
linear with respect to both state and parameters [8][9]. Here, the parameters are known with a given accuracy and no
transformation on the LPV system is carried out.

The layout of the note is the following. In section II, the state reconstruction error equation is established from the
consideration that the time-varying parameters are not exactly estimated. The motivation of using a polytopic observer
as a state reconstructor and a special parameter dependent Lyapunov function, called poly-quadratic Lyapunov function,
is carried out. The main contribution of the note lies in section III. The state reconstruction error is proved to be bounded
despite of the estimation error through the concept of Input-to-State Stability. Finally, the results are illustrated through
an example borrowed from the chaos synchronization problem. Notation : R”, the real n-vectors; M7, the transpose
of the matrix M; Apin(M), Apaz (M), the minimum and maximum eigenvalue of the real matrix M = M7 ||z, the

usual Euclidean norm y/z¥z; of the vector zy; ||z||oo, the supremum norm sup ||z || of a discrete sequence z; || M]|, the
£>0

spectral norm y/Apqaz (MT M) of the matrix M.

II. PROBLEM STATEMENT

We concentrate on the class of LPV discrete-time systems with state space realization :

Tr+1 = Alpr)rry + Bug (1)
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where ¢, € R*, y;, € R, up, € R, A € R**", B € R**", C € R™*", D € R™*". Some usual assumptions
and considerations for LPV systems are recalled. In particular, A is of class C' with respect to the entries of a L-
dimensional time-varying parameter vector py = (p},--..,pF)T which is bounded. For a general parameter dependence
of the system and a general parameter dependent Lyapunov function, it is known [10] that the design of controllers or
observers may lead to a convex but infinitely constrained problem. Thus, one usually must resort to ”gridding” the
range of all admissible values of the parameter in order to obtain a finite set of constraints. To overpass it, a solution
consists in carrying out a polytopic decomposition. Indeed, since py is bounded, A lies in a compact set which can
always be embedded in a polytope, that is :

N
Alpr) =D &i(pr) As (2)

=1
where the A;’s correspond to the vertices of the convex hull Co{A;,...,Ax}. The &’s belong to the compact set

S={pr e RN, = (ul, ..., uM)T, pi >0 Vi and YN, pi = 1} and they can always be expressed as functions of
class C' with respect to the pg’s. Such a decomposition turns the design problems into the resolution of a finite set of
constraints involving only the vertices of the convex hull, as it will be seen below.

In this note, we focus on the situation where the true parameter py, is only known with a given degree of accuracy and thus
fulfills ||pr — frlleo < A. Obviously, it includes the case where py = p*, a constant value. When this parameter depends
on the output, the problem is well-posed for the admissible initial states and inputs for which the discrete trajectory
z(k, zo) is bounded, that is [|z||c < 00. Some similar problems related to nonlinear identification can be found in [7][11]
with the specificity that a learning machine approximates the whole dynamics and not just the parameters.

For the reconstruction of the state xj, the following so-called polytopic observer is proposed.

iry1 = A(pr)ir + Bur + L(pk)(yk — Gk) (3)
(8 = Oy +  Duy
with
N
Alpr) = Y& () Ai (4)
i=1
and & €S, A; € Co{fil, ... ,AN} meaning that A(py) must also evolve in a polytope. L is a time-varying gain defined

by L(py) = Eil fi(ﬁk)Lz The L;’s are some constant gains to be computed. The motivation of such an observer
stems from the fact that, for the polytopic decomposition (2) and a perfect estimation corresponding to gy = py and so
Co{/ll, ... ,AN} = Co{A4y,... ,An}, a global convergence of the state reconstruction error is obtained. This has been
shown in [12][13] from which the strict necessary background is recalled.

On one hand, from (1) and (3), it is easy to see that for py = py, the state reconstruction error € = T — Iy, is governed
by the dynamics :

ek+1 = Alpr)er (5)

with A(px) = Eil & (pr)(A; — L;C). Let mention that an additional extra-term E can be added in an affine way to
the dynamics of z, and so on &, without modifying (5).

On the other hand, let V : R® — R" be a function defined by V' (2k,&) = 2] Przr with Py = Efil &P and & € S.
Following similar details as in [14], it can be shown that, if the following set of Linear Matrix Inequalities is feasible

P, ATGT — CTRY -
where the positive definite matrices P;, the matrices F; and G; are unknown, then the time-varying gain L(pg) =
SN € L; with L; = G 1 F;, ensures

V(ert1,Ekr1) — Vier, &) = € (A" Prgr A — Pr)er < 0 (7)

where P, = Efil f};P,-. As a result, V acts as a parameter dependent Lyapunov function, called poly-quadratic
Lyapunov function, and (7) is sufficient for global asymptotic stability of (5). Note that the formulation (6) differs from
the one encountered in [12][13] but is strictly equivalent. The reason is that (6) will be more suited to cope with the
specificity of the problem considered here.



Now, the situation when ||pr — prllcoc < A with A # 0 is considered. In this case, (5) does no longer hold and turns
into :

€kt1 = A(ﬁk)ek + vk (8)

where it can easily be seen that vy, = (A(pr) — A(Pr))Tk-

The main objective of this note is to show that the boundedness (in the sense of the supremum norm) of the resulting
state reconstruction error is guaranteed. Besides, the goal is to derive an explicit bound in terms of the estimation error
bound A. Input-to-State Stability (ISS) concept is used. The definition is recalled in the discrete-time case.

Definition 1 ([5]). System (8) is said to be Input-to-State Stable if there exist a KL ! function 3 : RxR — R and a K
function v such that, for each input sequence v fulfilling ||v||oc < 0o and each €9 € R™, the discrete trajectory associated
with the initial condition eg and the input v fulfills :

llexll < B(lleoll, k) +v(llvllec) VR (9)

ITI. ERROR BOUNDING
The main result of this paper is a direct consequence of next lemma.

Lemma 1. The Lyapunov function V ensuring the poly-quadratic stability of (8) when vy, = 0 is an ISS-Lyapunov
function for (8); that is, there exist two positive quantities oy and as such that :

V(€kt1, &) — View, &) < —aullexl|® + aollog|* VE, V€ €S (10)
Proof: For any z € R™ and for all j =1,..., N, the following inequalities hold :

in Amin(Pi 2<F Py < Amaz (P; 2 vk
121§HN min (P3| 2k|I” < 2 Jzk_é%%v maz (P 2k]|

For each j = 1,..., N, multiply the above inequality by é,’c and sum. This leads to :

. /D 2 o T < y 2 ¢
121;11\!)\”’”(13')”%“ < zj, Przr < 122%}%)\maw(Pz)||zk|| V&L €S, Yk (11)

Thus, we have :

allzll? < Vizk, &) < eallzill? Vor €R®, Vér € S, Vk (12)
with ¢; = ) g;ian Amin(P;) and ¢y = 1rsniaéxN Amaz (P;) as best possible constants.
Besides, it can be shown (see details in appendix) that there exists a strictly positive quantity, namely

= i AP (A _T.ONTD(A _T.
3—15,.Sg{11f1§jSN>\mm(Pz (4; — L,C)T P;(4; — L;0))

such that :
V(Aek, Ern) = Vien, &) < —csllexll® Ver € R, V(& &) € S (13)
where A = A(py). Since by virtue of (13), cs|ex||> < V(ex, &), we obtain the inequality 0 < ¢3 < ¢; < ¢;. From (8),

the difference V (a1, &kv1) — V(er, &) can be expressed as follows :

V(ent1, &) = Ver, &) = V(Aer, &ei1) = View, &) + V(0k, &kr1) + 207 Prgr Acy
By using (12) and (13), we infer that :

Vieksn ean) = View &) < —callewl® + callonll® + 2llell - [Pagall - AN - el (14)
with LA = [| S, € (A — LiO)||. Furthermore, one has || =7, € (Ai — LiO)l| < ¥, &l1Ai — LiC|l < max (|4 -

L;C|| and ||Pr+1]| = ||Ef;1 {A};HPiH < 1r<nZaL:§V||P,|| Defining the strictly positive quantity ¢4 = (1r<nza<xN||121z - L;C|)) -

( max [|P;]), from the above inequalities, one obtains :
1<i<N

2/|wkll - 1Prrall - Al - llerll < 2eallvgl] - [lexl (15)

LA function v : R — R is a K function if it is continuous, strictly increasing and (0) = 0.
A function B : R X R — R is a KL function if, for each ¢ > 0, the function j3(.,t) is a K function, and for each fixed s > 0, the function 3(s,.)
is decreasing and S(s,t) — 0 as ¢t — oo.



By invoking the well-known inequality 2ab < da? + 6 16> V(a,b) € R2 and V§ > 0, (15) turns into :
2(|og]| - Prall - Al - llexll < dllerll® + 6~ cilloxll? (16)

Finally, from (16), (14) turns into :

V(ert1s&ns1) — Vier, &) < —(cs — O)lexll* + (c2 + 67" c3)|vk ) (17)
that is (10) with a; = c¢3 — 8, @ = c2 + & '¢? and the constraint § €0, c3]. O

Theorem 1. (8) is Input-to-State Stable, that is there exist a KL function 8 : RxR — R and a strictly positive quantity
a3 such that

llexll < Bleoll, k) + asllvllo  VE (18)

Proof: First, we observe that the supremum norm of the sequence v can be expressed as the product of two
bounded terms and so ||v||co < 00. Indeed, |[v]|oo < collpr — Pkl|oo - ||Z]|co Where ¢o denotes some Lipschitz constant for
the function A of class C* on © and ©.

Besides, from (12) and (17) of Lemma 1, one has :

V(€k+1;ék+1) < (1-¢(es - 6))V(€kaék) + (co + 0 1ch)lor]? (19)

with the constraint 1 — c;'(cz — §) < 1. Letting h = 1 — ¢;*(c3 — §) and applying the Gronwall-lemma in the discrete
time case, we obtain :
Vier, &) < BV (eo,bo) + (c2 +671ch) o)y BF1 o2

<
< bV (e, &o) + (ca +071ed) 5 |0l

Finally, by using again (12), substituting 1 —c5 " (c3 —6) to h and taking the square root, the main inequality is obtained :

k/2 1,2
Co c3—90 co+ 0 1ch Co
<.,/=(1- + . . I 20
llexll < 1/ o ( . ) lleol| \/ o cs—0 [lv]] (20)

This inequality completes the proof according to the definition of ISS. The proof is constructive in the sense that it
provides both the function 8 and the quantity as which explicitly bounds the state reconstruction error in the steady
state. o

Remark 1. It is worth noticing that the bound az||v||e is not linear with respect to A. Indeed, in spite of the fact that
the expression of ||v]|co is linear with respect to A, it is not the same for ||ex|| since as depends on the quantities ¢, ca,
cs and ¢4 which depend on pr, and so on A in a nonlinear way.

Remark 2. It is interesting to mention that ISS is preserved when additional bounded (in the sense of the supremum
norm,) disturbances w,‘f on the dynamics or wi* on the measurement of yi are considered. Indeed, it can be easily seen
that (8) holds with v, = (A(pr) — A(pr))zk +wi — L(pp)w while ||[v||0o < 0o is still true.

IV. ILLUSTRATIVE EXAMPLE

Chaos synchronization of nonlinear systems is an interesting and open problem of the automatic control field [15]. A
large number of papers is concerned with observer-based chaos synchronization approaches to deal in particular with a
noisy context. References have voluntarily not been incorporated since detailing the topic is beyond the scope of the note.
For our illustrative example, we consider a chaos synchronization problem involving the well-known two-dimensional
chaotic Henon map. This map can be described in the form (1) with the state space matrices : B =0, D = 0 since it is

an autonomous map, C' =[1 0] which corresponds to a transmitted signal y;, = xfcl), E =1 0]7 which corresponds to

1.4z 1 ]
q 0

For ¢ = 0.3, the motion exhibited by this map is known to be chaotic and the corresponding attractor is depicted on
Fig. 1A. Our goal is to assess the impact of a bounded disturbance w}* acting on the signal 4, coupling in a unidirectional
way the chaotic system and a so-called “response” system. Actually, both systems should ideally synchronize each other
from the scalar signal yj. It is assumed that the disturbance is uniformly distributed in the range —0.0025 and 0.0025.
As usual for synchronization problems, the ”"response” system is chosen to have an observer structure. Since the Henon
map is viewed here as an LPV system, the polytopic observer (3) is proposed to achieve the synchronization. Indeed,
it can be stressed that this synchronization issue fulfills all the required assumptions for assessing the impact of the
disturbance with the previous theoretical developments.

the constant part of the affine description, as mentioned at the beginning of the paper, and A(xy) = [



H1) Setting pp = —1.4:3591) and pr, = —1.4y;, the problem is well-posed since the discrete trajectory z(k,zq), for
any initial state zo lying in the chaotic attractor, is bounded, that is ||z||cc < c0. From a simple numerical study, it
is inferred that ||z]| = 1.3401. Thus, ||p||cc and ||f]|c are also bounded. Moreover, one has ||pr — prlloc < A with
A = L4[|wi||l o = 0.007.

H2) According to Remark 2, this situation corresponds to vy = (A(pr) — A(pr))xr — L(pr)wi.

H3) Since py, is bounded, it can be embedded in a polytope and thus, A(p) can be described in a polytopic way with
a corresponding convex hull Co{fh, 1212}. A(pr) takes values between two vertices :

5A2:

; —1.7850 1]
= [ 03 0

[1.7995 1
| 03 o]

The gains of the observer have been designed from the solution of the set of Linear Matrix Inequalities (6).

—1.7878 | [ 1.7982
L [ 03 |’ =103 ]

The computation of the bound of the state reconstruction error involved in (20) gives as||v||cc = 0.1657. The Euclidean
norm of the reconstruction error € during the transient is presented on Fig. 1B. The numerical computation of ||e|| in
the steady state shows that the norm is always less than 0.01 and so, less than as||v||. On Fig. 1CD, the steady state
is depicted for each of the components of €, showing that the reconstruction error is bounded. It is consistent with the
theoretical results.

-0.01

-0.02

500 1000 1500 500 1000 1500
C D

Fig. 1. A: chaotic attractor of the Henon map. B: ||eg|| with respect to k. CD: each component of € in the steady state

V. CONCLUDING REMARKS

The boundedness of the reconstruction error for Linear Parameter Varying (LPV) discrete time systems involving
parameters estimated with a bounded error has been investigated. It has been shown that the dynamics of the state
reconstruction error is also bounded and an explicit bound has been derived from the concept of Input-to-State Stability.
The proof is based on a special parameter dependent Lyapunov function called poly-quadratic which plays the role of
an ISS Lyapunov function. The result holds when bounded disturbances on both the dynamics and the measurements
act on the system. In the near future, the issue of incorporating an adaptive estimation of the time-varying quantity,
the minimization of the bound and a strict analysis of the sensitivity of this bound with respect to estimation error will
be considered.

APPENDIX

If V is a Lyapunov function ensuring the poly-quadratic stability of (8) when v, = 0, then for all ¢, € R™, and for all

(&, Ery1) € S : ) )

V(Aek, Ekr1) — Vier; &) = € (AT Pri1 A — Pr)er <0
with V(zg, &) = 21 Prag, A = Zfil é}c(fi, —L;C) and Py, = Zf\il é,iP,-, the P;’s resulting from the solution of (6) after
replacing A; by A;.

It follows that V' (Aey, £k+1)—V(ek, fk) < —csllex]|?, where c3 denotes the nonnegative constant c3 2 _ inf Amin(Pr—
(&k,Ert1)ES?



ATPr1A). Notice that ez > 0, as S? is a compact set and the map (ék, £k+1) = Amin(Pr — ATPri1A) is continuous.
The following equalities hold :

inf inf €l (Pp — AT Pry1A)ey,

inf
670€R ”6’0”_1 §k+1 €S §k €S

= inf inf 1nf{ek(zl_1£k )€k —

fkeRnallfk”—l Erny1€S€rES

T (T, & (Ai — LiO)T) - (CIL €L Py) - (e (A — LiC)))er}

Define the canonical basis of R* : £ = {(1,0,...,0),...,(0,0,...,1)}. Furthermore, for a fixed ¢, € R” and a
fixed §k+1 € S, define the function f : S — ]R by f&k) = fi(&k) — f2(&) with fi1(&) = Efil EP;, f2(&) =
(Ei:l 51@ (Ai — L;O)T) - (EJ 1 §k+1 5) - (El:l £k (Al L;C)). We claim that :

inf f(&) = inf f(&) 21)

§LES ELEE

C3

Indeed, clearly, f; is linear and so concave. f5 is a positive (hence convex) quadratic form. Hence, the function — f» is
concave. As a consequence, f is concave as a sum of two concave functions and (21) holds. Consequently, the following
equalities hold :

3 = inf inf inf € (Pp — AT Pry1A)ey,

ek €R™ |lex||=1 £, 1 €5 ép e

= inf inf inf €l (P — ATPri1A)es
R ER™ Jlerl|=1 £, €€ €pqreS

= inf inf inf €l'(Pr— ATPri1A)er
ekeR"lkkH—lgke£§k+1e£

= inf Amin(Pe — AT Pri1 A)
(Ek Er+1)EE?

The first equation results from what has been claimed based on concavity property, the second equation stems from
the fact that ”inf” operator is commutative, the third equation is explained by the affine dependence on £+1 and so

concavity. Thus, c3 = _ _min '<N)\"””( — (A; - L;iC)TP;(A; — L;0)).
_Z_ b _]_
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