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Abstract
In this paper we propose a methodology to determine the structure of the pseudo-stoichiometric
coefficient matrix K in a mass balance based model, i.e. the maximal number of biomasses that
must be taken into account to reproduce an available data set. It consists in estimating the number of
reactions that must be taken into account to represent the main mass transfer within the bioreactor.
This provides the dimension of K. The method is applied to data from an anaerobic digestion
process and shows that even a model including a single biomass is sufficient. Then we apply the
same method to the “synthetic data” issued from the complex ADM1 model, showing that the main
model features can be obtained with 2 biomasses.
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INTRODUCTION AND MOTIVATION

Modelling of biological processes is a long and tedious task for which theoretical tools are lacking.
The difficulty is even exacerbated for wastewater treatment processes which include a broad range of
substrate and wide variety of biomasses. Even worse, the influent substrate, with varying concentra-
tion and composition is rarely completely known. As a result the bacterial ecosystem degrading the
influent often consists in a complex consortium of bacteria, with possible species successions. On
top of this there is a lack of sensors to monitor the evolution of all the process variables, and one has
most of the time to deal with aggregated variables, such as chemical oxygen demand (COD), volatile
suspended solids (VSS), etc. that are very raw indicators of the state process.
In these conditions the question of how to design a model is crucial. Especially the trade-off between
model complexity – allowing to represent most of the known phenomena – and adequation with the
available experimental information is capital. In this paper, we want to address this problem, and
propose a method to assess the model complexity (in a sense that will be defined latter on) with
respect to a given data set.
To achieve this goal, we assume that the process can be represented by a general mass balance model
often used to represent the dynamical behaviour of a stirred tank bioreactor (see e.g. (Bastin and
Dochain, 1990; Bastin and van Impe, 1995)):

dξ(t)

dt
= K r(t) + v(t), (1)

In this model, the vector ξ = (ξ1, ξ2, . . . , ξn) T is made-up of the concentrations of the various
species inside the liquid medium. The term v(t) represents the net balance between inflows, outflows



and dilution effects. The term K r(t) represents the biological and biochemical conversions in the
reactor (per unit of time) according to some underlying reaction network. The (n × p) matrix K is
a constant (pseudo-)stoichiometric matrix. r(t) = (r1(t), r2(t), . . . , rp(t))

T is a vector of reaction
rates (or conversion rates). It is supposed to depend on the state ξ and on external environmental
factors such as temperature, light or pressure, etc.
The pseudo-stoichiometric (PS) matrix K plays a key role in the mass balance modelling. Each
column of the matrix corresponds to a chemical or biological reaction of the underlying reaction
network. The coefficients kij, j = 1, . . . , p, are associated with the jth reaction. A positive kij

means that the ith species ξi is a product of the jth reaction, while a negative kij means that ξi is a
substrate of the jth reaction. If kij = 0 the species ξi is not involved in the jth reaction.
In this paper, we are concerned with modelling situations where the on-line concentrations ξi of the
involved species are measured but the structure of the reaction network is a priori questionable and
therefore the matrix K is unknown. The objective, is to provide guidelines to the user to determine
the size of reaction network from the available data.
The usual approach dedicated to the determination of reaction networks relies on the linearisation
of the dynamics around a reference solution (Eiswirth et al., 1991; Chevalier et al., 1993) and iden-
tification of the local Jacobian matrix. Here, in the spirit of (Chen and Bastin, 1996; Bernard and
Bastin, 2005), we exploit the structure of the bioprocess (equation (1)) and our arguments do not rely
on any linearisation.
Generally, the choice of a reaction network and its associated PS matrix K results from modelling
assumptions. Sometimes however, several choices are possible between reaction networks of various
complexities. The problem can also arise when it is desired to reduce a complicated given reaction
network to a much simpler model in order to achieve a better adequation between model and available
information quality.
We first propose a method to determine the size of the matrix K i.e. the number of independent reac-
tions that are distinguishable from the available data. Then we apply this method on data issued from
an anaerobic digestion process and compare two potential models. Finally we analyse the “synthetic
data” simulated with the complex ADM1 model (Batstone et al., 2002) including 7 biomasses, and
show that its main behaviour can be roughly simplified using only 2 biomasses.

DETERMINATION OF THE NUMBER OF REACTIONS

Introduction

In this section, we intend to determine the minimum number of reactions which are needed in order
to explain the observed behaviour of the process, without any prior knowledge on the underlying
reaction network. We assume that the vectors ξ(t) of species concentrations and v(t) of inflow/outflow
balances are measured during some time interval and exhibit significant variations with time. We
assume also that the number of measured variables is larger than the number of reactions: n > p. The
PS matrix K and the vector of reaction/conversion rates r(t) are unknown.

Theoretical determination of dim(Im(K))

The model equation (1) can be viewed as a linear dynamical system with state ξ and inputs r(t) and
v(t) (although we know obviously that r and v may be state dependent). If we take the Laplace
transform of this equation, we get:

sΞ(s) = KR(s) + V (s) (2)



where Ξ(s), R(s) and V (s) are the Laplace transforms of ξ(t), r(t) and v(t) respectively. A linear
filter or smoother with transfer function G(s) can then be used in order to clean the data (noise
reduction, decrease of autocorrelations etc ...):

U(s) = KW (s) with U(s) = G(s)[sΞ(s) − V (s)]

and W (s) = G(s)R(s). Or, in the time domain:

u(t) = Kw(t) (3)

with u(t) and w(t) the inverse Laplace transforms of U(s) and W (s) respectively. The vector u(t) can
be computed directly from the data by appropriate filtering/smoothing techniques possibly involving
delay operators.
For example, the moving average is a very simple filter that can be applied to (1), and provides an
expression of the form (3) with (T denotes the considered moving average window):

u(t) =
1

T

[

ξ(t) − ξ(t − T ) −
∫ t

t−T

v(τ)dτ

]

and w(t) =
1

T

[∫ t

t−T

r(τ)dτ

]

(4)

This moving average was used in the considered example.
Now the question of the dimension of the matrix K can be formulated as follows: what is the di-
mension of the image of K ? In other words, what is the dimension of the space where u(t) lives ?
Note that we assume K to be a full rank matrix. Otherwise, it would mean that the same dynamical
behaviour could be obtained with a matrix K of lower dimension, by defining other appropriate re-
action rates. The determination of the dimension of the u(t) space is a classical problem in statistical
analysis. It corresponds to the principal component analysis (see e.g. (Johnson and Wichern, 1992))
that determines the dimension of the vector space spanned by the vectors ki which are the rows of K.
To reach this objective, we consider the n × N matrix U obtained from a set of N estimates of u(t):

U = (u(t1), . . . , u(tN))

We will also consider the associated matrix of reaction rates, which is unknown:

W = (w(t1), . . . , w(tN))

We assume that matrix W is full rank. It means that the reactions are independent (none of the reaction
rates can be written as a linear combination of the others). We consider more time instants ti than
state variables: N > n.

Property 1 For a matrix K of rank p, if W has full rank, then the n × n matrix M = UU T =
KWW T KT has rank p. Since it is a symmetric matrix, it can be written: M = P T ΣP where P is an
orthogonal matrix (P T P = I) and

Σ =























σ1 0 . . . 0
0 σ2 0 0
...

. . .
σp

0
. . .

...
0 . . . 0























with σi−1 ≥ σi > 0 for i ∈ {2, ..., p}.



This property is a direct application of the singular decomposition theorem (Horn and Johnson, 1993)
since rank (M) = rank (KW ) = rank (K) = rank (Σ) = p.
Now from a theoretical point of view, it is clear that the number of reactions can be determined by
counting the number of non zero singular values of UU T .

Practical implementation

In practice, the ideal case presented above is perturbed for three main reasons:

• The reaction network that we are looking for is a first approximation of chemical or biochemical
reactions which can be very complex. The “true” matrix K is probably much larger. The
reactions that are fast or of low magnitude can be considered as perturbations of a dominant
low dimensional reaction network that we are actually trying to estimate

• The measurements are corrupted by noise. This noise can be very important, especially for the
measurement of biological quantities for which reliable sensors are not available.

• In order to compute u(t) we need a numerical implementation of the filter G(s). Moreover an
interpolation is often required to estimate the values of ξ(ti) and v(ti) at the same time instants
ti. These processes generate additional perturbations.

Data normalisation

In order to avoid conditioning problems and to give the same weighting to all the variables, the data
vectors u(ti) are normalised as follows:

ũi(tj) =
ui(tj) − a(ui)√

Ns(ui)

where a(ui) is the average value of the ui(tk) for k ∈ {1..N}, and s(ui) their standard deviation.

Practical determination of the number of reactions

In practice, for the reasons we have mentioned above, it is well known that there are no zero eigen-
values for the matrix M = UUT .
The question is then to determine the number of eigenvectors that must be taken into account in order
to produce a reasonable approximation of the data u(t). To answer that question, let us remark that
the eigenvalues σi of M correspond to the variance associated with the corresponding eigenvector
(inertia axis) (Johnson and Wichern, 1992).
The method then consists in selecting the p first principal axis which represent a total variance larger
than a fixed confidence threshold.
Remark: if rank (M) = n it means that rank(W ) ≥ n. In such a case we cannot estimate p and
measurements of additional variables are requested in order to apply the method presented here.

APPLICATION TO REAL DATA FROM AN ANAEROBIC DIGESTER

Process presentation

In this section we consider the data set considered in (Bernard et al., 2001) which has been acquired
on a a fully instrumented fixed bed anaerobic digester (Steyer et al., 2002), located in Narbonne
(France), at the “Laboratoire de Biotechnologie de l’Environnement” (LBE) of INRA. Raw industrial
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Figure 1: Cumulated variance with respect to the number of chosen axis for 70 days of experiments
(see (Bernard et al., 2001)). Left: real data. Right: virtual plant (ADM1 model).

distillery wastewaters obtained from local wineries in the area of Narbonne, France, were used. They
have changing characteristics according to the wineries where the wastewater is taken from. The
process is a pilot-scale up-flow anaerobic fixed bed reactor and has a circular column of 3.5m height,
0.6m diameter and a useful volume of about 1m3 (Steyer et al., 2002). This process has a classical
on-line instrumentation gathering measurements every 3 minutes of liquid flow rates, temperature and
pH in the reactor and biogas flow rate and composition (i.e., CO2, CH4 and H2 content in the biogas
(Steyer et al., 2002)). Manual sampling were carried out once a day to measure soluble chemical
oxygen demand (COD) in the liquid phase, the volatile fatty acids (VFA) and volatile suspended
solids (VSS). The data set consist then in a series of measurements of CH4 and CO2 flow rates, total
alkalinity, total inorganic carbon, COD,VFA and VSS.

Results

The proposed method was applied to the available data set and the obtained variance distribution is
represented in Figure 1. It is worth noting that a reaction network involving only 1 biomass (and
thus one reaction) represents 83.2% of the variability. With 2 biomasses, 97.8% of the variability are
represented, which justified the choice of the model presented in (Bernard et al., 2001).
This analysis proves that even a very simple model, consisting in a single biomass would already be
potentially able to reproduce the observed data. We thus considered a simple modified Haldane model
(Andrews, 1968), where the reaction scheme consists then simply in one reaction:

kT ST
rT−→ XT + k6T CH4 + k4T CO2 (5)

We consider that a proportion α of the biomass is in the liquid phase and is therefore affected by the
dilution. We obtain the following model:

(AMH1)

{

ẊT = = (µT (ST ) − αD)XT

ṠT = D(ST in − ST ) − kT µT (ST )XT

(6)

With Haldane bacterial kinetics: µT (ST ) = µ̄Tmax
ST

ST +KST +
S2

T

KIT

The methane flow rate can then be computed: qM(ST , XT ) = k6T µT (ST )XT

This simple model can of course not predict the concentration of VFA, the TIC or the gaseous flow
rate of CO2.



AMH1 AM2 ADM1
State variables 2 6 26

Biomasses 1 2 7
Number of reactions 1 2 19

Parameters 5 13 86
Outputs 3 8 32

Table 1: Complexity of the 3 considered models. Outputs are defined as quantities that can be
compared to possible measurements (e.g., VFA, pH, VSS, etc.).

After a phase of model calibration (see (Chachuat et al., 2004) for more details) we were then able to
compare model and data. The results are presented on Figure 2.
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Figure 2: Comparison between simulation results and measurements (o) for COD, methane flow rate
and VSS. AMH1 model (—) and model AM2 (- -) as presented in (Bernard et al., 2001) .

It demonstrates that this very simple model is able to properly describe the behaviour of the soluble
COD and of the methane flow rate.
Of course this simplistic model will not be able to predict the VFA concentration or the TIC concen-
tration, unless a fixed ratio e.g. with COD is assumed.
As a consequence, this simple 1-biomass AMH1 model is suitable to base a strategy for COD regula-
tion (Mailleret et al., 2004), provided that the system does not reach an overload situation.

APPLICATION TO SYNTHETIC DATA ISSUED FROM THE ADM1 MODEL

Introduction

In this section we will consider the data produced by a “virtual plant” made of the model ADM1
(Batstone et al., 2002) which was implemented using Matlab Simulink. This model describes with
much more details the various pathways involved in anaerobic digestion. As a result, the complexity
of this 7 biomass model is much higher than for the previous described models 1. The model ADM1
has been roughly calibrated by mainly modifying the solid retention time in order to be qualitatively
agreement with the data presented in the previous section. However it is clear that a calibration
procedure -which turn out to be a very tedious task for this complex model- would probably lead to a
very good fit with the data.



Results

The synthetic data provided by this virtual process were then sampled at the same frequency than the
real plant and analysed using the same procedure. The result is presented on Figure 1 and shows that
despite the model complexity, the main features of the generated can a priori be reproduced by a
1-Biomass model (87.1 % of variance ) or by a 2 Biomasses model (98.7 % of variance ).
Finally, it appears on Figure 3 that both model AM2 (Bernard et al., 2001) and ADM1 (Batstone et
al., 2002) are able to reproduce the limited set of data. Of course, model ADM1 is able to predict
far more variables (and especially the various volatile fatty acids), and can for example forecast a
propionate accumulation. However model AM2 is suitable to base a controller whose objective would
be the regulation of VFA, the regulation of the ratio of methane flow rate over CO2 flow rate, or any
other objective involving one of the 6 model variables.
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Figure 3: Comparison between real data (o), model AM2 with 2 biomasses (Bernard et al., 2001) (-
-) and model ADM1 with 7 biomasses (—) (Batstone et al., 2002).

CONCLUSION

Determining a reaction network for a bioprocess is a difficult issue mainly because of the complexity
inherent to biological systems. We show in this paper how to identify the space generated by the
columns of K in order to determine the minimum number of reactions (or biomasses) requested to
reproduce the data.
The method allows to show that surprisingly, even very simple models can accurately reproduce some
considered variables. These minimal models will be specifically useful for developing advanced
controllers which generally cannot deal with complex models leading to mathematical intractability.
The second point that was shown is that a complex model can have a behaviour reducible to a much
simpler model (at least in some working domain). Once again this justifies the idea of using simplified
models to base automatic algorithms (controllers, software sensors, fault detection, etc.). The more
complicated models including most of the available phenomenological knowledge on the process can



then be used as a virtual plant to test the ability of the advanced algorithms to reach their objectives
in more realistic conditions limiting then the number of long and expensive experiments to be carried
out.
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