
HAL Id: inria-00122924
https://hal.inria.fr/inria-00122924

Submitted on 5 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchonous Distributed Components: Concurrency
and Determinacy

Denis Caromel, Ludovic Henrio

To cite this version:
Denis Caromel, Ludovic Henrio. Asynchonous Distributed Components: Concurrency and Determi-
nacy. Theoretical Computer Science 2006 (IFIP TCS’06), 2006, Santiago, Chile. �inria-00122924�

https://hal.inria.fr/inria-00122924
https://hal.archives-ouvertes.fr

Asynchonous Distributed Components:

Concurrency and Determinacy

Denis Caromel Ludovic Henrio

CNRS – I3S – Univ. Nice Sophia Antipolis – INRIA Sophia Antipolis
Inria Sophia-Antipolis,2004 route des Lucioles – B.P. 93

F-06902 Sophia-Antipolis Cedex
{caromel, henrio}@sophia.inria.fr

Abstract. Based on the impς-calculus, ASP (Asynchronous Sequen-
tial Processes) defines distributed applications behaving determinis-
tically. This article extends ASP by building hierarchical and asyn-
chronous distributed components. Components are hierarchical - a com-
posite can be built from other components, and distributed - a compos-
ite can span over several machines. This article also shows how the
asynchronous component model can be used to statically assert compo-
nent determinism.

1 Introduction

The advent of components in programming technology raises the question of
their formal ground, intrinsic semantics, and above all their compositional se-
mantics. It represents a real challenge as practical component models are usually
quite complex, featuring distribution over local or wide area networks. But, few
formal models for component were proposed so far [4, 20, 3, 14]. Since the first
ideas about software components, usually dated in 1968 [1], the design of a
reusable piece of software has technically evolved. From the first off-the-shelf
modules, a component has become a complex piece of parameterized code with
attributes to be set. Its behavior can be adapted with various non functional as-
pects (life-cycle, persistence, etc.). Finally, such piece of code is to be deployed
in a hosting infrastructure, sometimes it can also be retrieved for replacement
with a new version. In recent years, one crucial new aspect of component has
been introduced: not only the interfaces being offered are specified, but also the
needed interfaces.

A first key aspect of our work is to take into account this feature: the model
being proposed allows to specify that a software components provides well de-
fined interfaces, and requires well defined services or interfaces. A second and
important contribution is to take into account components that are distributed
over several machines. A given component can span as a unique entity over sev-
eral hosts in the network. This work go further than a distributed-component
infrastructure just allowing two components to talk over the network. Finally,
the components being proposed are hierarchical (allowing a compositional spec-

2 Denis Caromel Ludovic Henrio

ification and verification of the behavior of large scale systems), communicating
with remote method invocations (versus raw messages), and as much as possible
decoupled (asynchronous to scale over large area networks).

When building some kind of component calculus, one has the option to
start from scratch, or on the contrary to rely as much as possible on syntax
and semantics of a programming calculus. This paper clearly takes the latter
approach, relying as much as possible on a long history of research on concurrent
and distributed calculi. It is in accordance with the practical situation where
component infrastructure is usually added on top of a programming language.
The main contributions of this paper are:

– a formalization of a component model featuring distribution, asynchrony, and
hierarchical composition; with two translations defining the semantics;

– usage of components as a convenient abstraction for statically ensuring de-
terminism, which, to our knowledge, is a totally novel approach.

This article is first a direct formalization of the component model imple-
mented in ProActive [5, 11]. More generally, our distributed component model
is minimally characterized by asynchronous components, hierarchy, no shared
memory, and a single threaded lowest level of components; thus, it can be
adapted to turn any object model into distributed decoupled components com-
municating by structured method calls.

Taking advantage of ASP and its properties [10], summarized in Section 2,
this article provides a formal syntax for the description of distributed com-
ponents in Section 3. Then, Section 4 shows an example of a deterministic
component. Two translational semantics are given in Section 5. Finally, com-
ponents provide a suitable abstraction for statically identifying deterministic
programs as shown in Section 6.

2 Background

2.1 Some Related Works

ASP is based on the untyped imperative object calculus of Abadi and Cardelli [2],
with a local semantics inspired from [15]. Futures [16, 13] are used to represent
awaited results of remote calls, determinism is strongly related to process net-
works [17], and linear channels [18]. A comparison of ASP with other calculi
can be found in [10, 9].

Components over Actors are presented in [4], compared to our work, Actor
components neither are hierarchical nor benefit from the notion of futures.
Moreover, the communication and evaluation model of Actors cannot guarantee
the causal ordering and determinism properties featured by ASP. [3] focuses on
the definition of connection and interactions, and on the specification on the
behavior. Connectors having their own activity it is impossible to adapt our
determinism properties to Wright.

Asynchonous Distributed Components: Concurrency and Determinacy 3

Stefani et al. [6, 20] introduced the kell calculus that is able to model com-
ponents and especially sub-components control. We rather demonstrate how to
build distributed components that behave deterministically and for which the
deterministic behavior is statically decidable. Moreover, the properties shown
here rely on properties of communications and semantics of the calculus that are
not ensured directly by the kell calculus, and its adaptation would be more com-
plicated than the new calculus presented here. However, those two approaches
being rather orthogonal, one could expect to benefit of both by adapting a kell
calculus-like control of components with an (adaptation of) ASP as the un-
derlying calculus. Bruneton, Coupaye and Stefani also proposed a hierarchical
component model: Fractal [12], together with its reference implementation Ju-
lia [7]. Our work can also be considered as a foundation for distributed Fractal
components, focusing on the hierarchical aspect rather than on the component
control.

2.2 ASP Calculus: Syntax and Informal Semantics

The ASP calculus [10], is an extension of the impς-calculus [2, 15] with two
primitives (Serve and Active) to deal with distributed objects. The ASP cal-
culus is implemented as a Java library (ProActive [11]). ASP strongly links the
concepts of thread and of object, it is minimally characterized by:

– Sequential activities: each object is manipulated by a single thread,
– Communications are asynchronous method calls, and
– Futures as first class objects representing awaited results.

a, b ∈ L ::= x variable,

| [li = bi; mj = ς(xj , yj)aj]
i∈1..n
j∈1..m object definition,

| a.li field access,
| a.li := b field update,
| a.mj(b) method call,
| clone(a) superficial copy,

|Active(a, mj) activates a. mj defines the service policy
|Serve(M) serves a request among the set M

of method labels, M = {m1, . . . , mk}

Fig. 1. ASP Syntax (li are fields names, mj are methods names)

ASP is formalized as follows. An activity (denoted by α, β, γ, . . .) is com-
posed of a thread manipulating a set of objects put in a store. The primitive
Active(a,m) creates a new activity containing the object a which is said ac-
tive, m is a method called upon the activity creation. Every request (method
call) sent to an activity is actually sent to this master object. An activity also

4 Denis Caromel Ludovic Henrio

contains the pending requests (requests that have been received and should be
served later) and the computed results of the served requests (future values).
AO(α) represents a reference to the remote active object of activity α. A paral-
lel configuration (denoted by P , Q, . . .) is a parallel composition of activities:
P,Q ::= α[aα;σα; ια;Fα;Rα; fα]‖β[. . .]‖ . . . where aα is the term currently eval-
uated in α, σα is the store (association between locations ιi and objects), ια is
the location of the active object inside σα, Fα is the list of calculated futures,
Rα is the request queue, and fα is the future corresponding to aα.

Futures are generalized references that can be manipulated as local ones,
they can be transmitted to other activities; and future identifiers are unique for
the whole configuration. But, upon a strict operation (field or method access,
field update, clone) on a future, the local execution is stopped until the value
of the future is updated.

Calling a method on an active object atomically adds a new entry in a
request queue, associates a future to the response and deep copies the argument
of the request in the store of the destination activity. Deep copy allows one
to prevent distant references to passive objects, synchronous request delivery
ensures causal order between requests. The primitive Serve(M) can appear at
any point in the source code. Its execution stops the activity until a request on
one of the methods of the set M is found in the request queue. The oldest such
request is then removed from the request queue and executed (served).

Once the response to a request is computed, the corresponding value (future
value) becomes available and every activity can get it. The futures associated
with the currently served requests are called the current futures. Returning
the value associated to a future (also called “updating a future”), consists in
replacing reference to a future by a deep copy of the future value. We proved
that the value of a future can be returned at any time without any consequence
on the execution.

An operational semantics for ASP has been detailed in [10] and is denoted by
−→. It is based on a classical local reduction (→S) on ς-calculus terms [2]. This
reduction specifies a single reduction point inside each activity which ensures a
local sequentiality. R[a] denotes a reduction context, where the reduction point
is inside a; thus aα = R[ι.mj(ι

′)] means the next reduction of activity α will
consist in performing a method call on the object referenced (locally) by ι; if

moreover σα(ι) = AO(β) then this is a remote method call to activity β.
∗

−→
denotes the reflexive transitive closure of −→.

2.3 ASP Properties: Deterministic Objects Networks

This section presents the properties of the ASP calculus; mainly it recalls the
definition of deterministic object networks which identifies a set of ASP terms
that behave deterministically. Though DON terms are based on an intuitionist
notion: “non-determinism only originate from conflicting requests”; ASP is the
first calculus to feature such a property for concurrent imperative objects.

Asynchonous Distributed Components: Concurrency and Determinacy 5

In the following, αP denotes the activity α of configuration P . Without any
restriction, and to allow comparison based on activities identifiers, we suppose
that the freshly allocated activity names are chosen deterministically: the first
activity created by α will have the same identifier for all executions.

Potential Services Let MαP be an approximation of the set of M that can
appear in the Serve(M) instructions that the activity α may perform in the
future. In other words, if an activity may perform a service on a set of method
labels, then this set must belong to MαP :

∃Q, P
∗

−→ Q ∧ aαQ = R[Serve(M)] ⇒M ∈ MαP

This set can be specified by the programmer or statically inferred.

Interfering Requests Two requests on methods m1 and m2 are said to be
interfering in α in a program P if they both belong to the same potential
service, that is to say if they can appear in the same Serve(M) primitive:

Requests on m1 and m2 are interfering if {m1,m2} ⊆M ∈ Mαp

Equivalence Modulo Replies ≡F , defined in [9], is an equivalence relation
considering references to futures already calculated as equivalent to local refer-
ence to the part of store which is the (deep copy of the) future value.

More precisely, ≡F is an equivalence relation on parallel configurations mod-
ulo the renaming of locations and futures and permutations of requests that
cannot interfere. Moreover, a reference to a future already calculated (but not
locally updated) is equivalent to a local reference to the (part of the store which
is the) deep copy of the future value.

Deterministic Object Networks If two interfering requests cannot be sent
to the same destination (β below) at the same moment then the program be-
haves deterministically. Of course, two such request would originate from two
different activities (αQ). “there is at most one” is denoted by ∃1.

Definition 1 (DON) A configuration P , is a Deterministic Object Network
(DON(P)) if it cannot be reduced to a configuration where two interfering re-
quests can be sent concurrently to the same destination activity:

P
∗

−→ Q⇒ ∀β ∈ Q, ∀M ∈ MβQ ,

∃1αQ ∈ Q,∃m ∈M,∃ι, ι′, aαQ= R[ι.m(ι′)] ∧ σαQ(ι) = AO(β)

Theorem 1 (DON determinism).

DON(P) ∧

P
∗

−→ Q1 ∧

P
∗

−→ Q2

⇒ ∃R1, R2,

Q1
∗

−→ R1 ∧

Q2
∗

−→ R2 ∧
R1 ≡F R2

6 Denis Caromel Ludovic Henrio

DON(P) ensures that, for all orders of request sending, we always serve the
requests in the same order. Thus, provided no two requests can be sent at the
same moment on the same potential service of a given destination, the consid-
ered program behaves deterministically. Section 6 will show how components
can ensure this statically.

3 Distributed Components

This section demonstrates how to build hierarchical and distributed compo-
nents upon ASP. The asynchronous components presented below interact with
method calls in an object-oriented way. The component specification presented
in this section can be viewed as an abstraction of a classical ADL (e.g. the
Fractal ADL [12]).

Definition 2 (Primitive Component - Figure 2) A primitive compo-
nent is characterized with a component name Name, together with names for
a set of Server Interfaces (SI), and a set of Client Interfaces (CI). We denote
by Exported(PC) the set {SIi}

i∈1..k and by Imported(PC) the set {CIj}
j∈1..l.

PC ::= Name < {SIi}
i∈1..k, {CIj}

j∈1..l >

Primitive Component Activity: To give functionalities to a PC, we attach to it
an ASP term, say a, corresponding to an object to be activated and its dependen-
cies (passive objects); the service method of a: srv (the method to be triggered
on activation of a; a mapping from SIs to subsets of the served methods; and
a mapping from CIs to names of fields of the object a, these fields will store
references to components. M ranges over the set of method labels, and L over
the set of field labels of a.

PCAct ::= NameAct < a, srv, ϕS , ϕC >

where ϕS : Exported(PC) → ℘(M) and
ϕC : Imported(PC) → L are total functions

Server Interface Client Interface

SI1

SI2 CI2

CI1Requests

sent to PC

on methods

of SI2

Requests sent

by PC on CI2

PC

Fig. 2. A primitive component PC

Asynchonous Distributed Components: Concurrency and Determinacy 7

This definition requires that a content PCAct is attached to each primitive
component PC, this content consists of a single activity.

Composite components can be built by interconnecting other components –
either primitive or composite – and exporting some SIs and CIs.

We suppose that for all components, every interface has a different name
(but names could also be disambiguated by using qualified names).

Definition 3 (Composite Component) A composite component is a set of
components exporting some server interfaces (εS), some client interfaces (εC),
and connecting some client and server interfaces (defining a partial binding ψ),
only interfaces of the direct sub-components can be used:

CC ::= Name ¿ C1, . . . , Cm; εS ;ψ; εC À

Where a component Ci is either a primitive or a composite one: C ::= PC | CC,
and each client interface CI inside CC can only be connected once, leading to
the following definition:

εS : Exported(CC) →
⋃

sc∈C1...Cm

Exported(sc) is a total function

ψ :
⋃

sc∈C1...Cm

Imported(sc) →
⋃

sc∈C1,...Cm

Exported(sc) is a partial function

εC :
⋃

sc∈C1...Cm

Imported(sc) → Imported(CC) is a partial surjective function

Such that dom(ψ) ∩ dom(εC) = ∅

We define: Exported(CC) = dom(εS) and Imported(CC) = codom(εC).

Defining εS as a function allows to export a given internal server interface as
several external ones, but imposes each incoming request to be communicated
to a single destination (each imported interface is bound to a single server
interface of an internal component). Similarly, a client interface is exported
only once for communications to have a single determinate destination: εC is
a function (each client interface of an internal component is plugged at most
once to an exported interface). ψ is a function so that internal communications
are determinate too (each client interface of an internal component is plugged
at most once to another internal server interface). And finally, also to ensure
unicity of communication destination, εC and ψ have disjunct domain so that
an internal client interface cannot be both bound internally and exported.

Correct Connections Figure 3 sums up the possible bindings that are allowed
according to Definition 3. The component shown in the figure is a valid CC but
not a DCC (DCC will be defined in Section 6.2, Definition 8).

Incorrect Connections Figure 4 shows the impossible bindings that correspond
to the restrictions of Definition 3. The condition of Definition 3 that prevents
the composition from being correct is written above each sub-figure.

8 Denis Caromel Ludovic Henrio

Fig. 3. A composite component

εC is a function dom(εC) ∩ dom(ψ) = ∅
εS is a function

ψ is a function

Fig. 4. Incorrect bindings between components

To conclude this section, we present two useful definitions: closed compo-
nents that have no interface and form independent systems; and complete com-
ponents for which all interfaces are either bound internally or exported: every
request sent on a client interface has a destination and every server interface
can at some point receive requests.

Definition 4 (Closed Component) A component C is closed if it neither
imports nor exports any interface: Imported(C) = ∅ ∧ Exported(C) = ∅

Definition 5 (Complete Component) A primitive component is complete.
A composite component Name ¿ C1, . . . , Cm; εS ;ψ; εC À is complete if it con-
sists of complete components and all its internal interfaces are plugged or ex-
ported:

C1, .., Cm are complete component ∧ dom(ψ) ∪ dom(εC) =
⋃

sc∈C1...Cm

Imported(sc)

∧ codom(ψ) ∪ codom(εS) =
⋃

sc∈C1...Cm

Exported(sc)

Non-complete components contain unplugged interfaces: some of the CIs of the
sub-components must not be used (request without destination) or some of the
SIs never receive any request (potential deadlock). As such it is reasonable to
forbid them.

4 Example: A Fibonacci Component

Consider the Process Network that computes the Fibonacci numbers in [19]. Let
us write an equivalent composite component as shown in Figure 5. Both Cons1

Asynchonous Distributed Components: Concurrency and Determinacy 9

Add
Cons1

Cons2

Cont

ComputeFib(k) send(fib(1))... send(fib(k))

FIB

SI1

SI′

SIa

SIb

SI4

SI5

CI′3

CI′

CI1

CI2

CIc

CIa

CC

SI′4

CI :
SI :

FIB ¿Cont < {SI1, SI ′}, {CIc} >,

CC ¿ Cons1 < {SI ′

4}, {CI1, CI2} >, Cons2 < {SI5}, {CI3, CI ′′} >;
{SI4 → SI ′

4}; {CI2 → SI5}; {CI1 → CI ′

1, CI3 → CI ′

3, CI ′′ → CI ′} À,

Add < {SIa, SIb}, {CIa} >;
{SI →SI ′}; {CIc →SI4, CI ′

1 →SIa, CI ′

3 →SIb, CIa →SI1}; {CI ′ →CI} À
AddAct =<[n1 = 0, n2 = 0, out = [];

serv = ς(s,)Repeat(Serve(set1);Serve(set2); s.out.send(s.n1 + s.n2)),
set1 = ς(s, n)s.n1 := n, set2 = ς(s, n)s.n2 := n],

serv, {SIa → {set1}, SIb → {set2}}, {CIa → out} >

Cons1 Act =<[out = [], nxt = [];
serv = ς(s) (out.set1(1); nxt.send(1);Repeat(Serve(send))) ,

send = ς(s, n)(out.set1(n); nxt.send(n))]
serv, {SI ′

4 → {send}}, {CI1 → out, CI2 → nxt} >

Fig. 5. A composite component for computing Fibonacci numbers

and Cons2 forward their input to their two client interfaces (upon initialization
they respectively send 1 and 0 to their client interfaces); they are merged in a
composite component. Add simply sends on its output interface the addition
of what the component receives on its two server interfaces. A controller Cont
exports a server interface (ComputeF ib(k)) taking an integer k and forwarding
k − 1 times its input on the other interface SI1 to CIc.

Primitive components for Add and Cons1 are specified by AddAct and
Cons1 Act, the others can be specified similarly (Repeat performs an infinite
loop, “;” expresses sequential composition, both can be expressed directly in
ASP). Cons2 can be specified by renaming inputs and outputs of Cons1.

Finally, the FIB composite component is built by interconnecting those
components as shown and expressed in the figure. For example, requests sent
by Cons1 on CI1 are first exported on interface CC ′

1 of CC and then sent,
according to the bindings of FIB, to the interface SIa of Add. Cons2 sends send
requests to the exported client interface, thus FIB produces Fib(1) . . . F ib(k).

10 Denis Caromel Ludovic Henrio

5 Translational Semantics

This section gives two possible translational semantics for the component model,
with ASP as the target calculus. The first one only instantiates primitive com-
ponents and directly binds them but is not compositional. The second one
instantiates an additional activity for each primitive and each composite com-
ponent, it is defined recursively on the component structure. Both semantics
first rely on a deterministic deployment phase; then, components can be started
and communicate by asynchronous method calls. Both translations rely on the
fact that the names of the interfaces are pairwise distinct, and thus a single
component corresponds to each interface.

5.1 A Static Deployment

In the case of a closed component CC = Name ¿ C1, . . . , Cm; εS ;ψ; εC À, we
define here a translation from this component system into an ASP configuration.

We denote C < CC the fact that a component C is inside another one CC:

C < Name ¿ C1, . . . , Cm; εS ;ψ; εC À⇔ ∃i ∈ 1..m, C = Ci ∨ C < Ci

The union of two disjunct partial function is denoted ⊕:

(f ⊕ g)(x) = f(x) if x ∈ dom(f),
g(x) if x ∈ dom(g)
else undefined

For each SI of a composite component, ξ returns the primitive component
interface which is (recursively) exported to it (Id

∣

∣

A
is the identity function on

A, C v C ′ ⇔ C = C ′ ∨ C < C ′). And symmetrically, µ recursively follows
imported interfaces.

ξPC = Id
∣

∣

Exported(PC)

ξCC :
⋃

CC′vCC

Exported(CC ′) →
⋃

PC<CC

Exported(PC)

ξName¿C1,...,Cm;εS ;ψ;εCÀ = (ξC1
⊕ . . .⊕ ξCm) ◦ εS

Note that, if C is complete then ξC is total

µPC = Id
∣

∣

Imported(PC)

µCC :
⋃

PC<CC

Imported(PC) →
⋃

CC′vCC

Imported(CC ′)

µName¿C1,...,Cm;εS ;ψ;εCÀ = εC ◦ (µC1
⊕ . . .⊕ µCm)

ΨC defines all the bindings defined inside C:

Asynchonous Distributed Components: Concurrency and Determinacy 11

ΨPC : ∅ → ∅

ΨCC :
⋃

CvCC

Imported(C) →
⋃

CvCC

Exported(C)

ΨName¿C1,...,Cm;εS ;ψ;εCÀ = ψ ⊕ ΨC1
⊕ . . .⊕ ΨCm

In the general case, µC and ΨC are partial functions. In the case of a complete
component C, for any client interface CI of C or a component inside C, either
µC(CI) or ΨC(CI) is defined.

Φ follows bindings, exportations and importations, to define the bindings
between primitive components:

ΦC :
⋃

PCvC

Imported(PC) →
⋃

PCvC

Exported(PC)

ΦC = ξC ◦ ΨC ◦ µC

For a complete closed component C, ΦC is a total surjective function.
We define below the deployment of the composite component CC: this static

deployment creates as many activities as there are primitive components and
binds their interfaces accordingly. Let PCn range over primitive components de-
fined inside CC: PCn = Namen < {SIni}

i∈1..kn , {CInj}
j∈1..ln > s.t. PCn < CC;

and PCnAct = NamenAct < an, srvn, ϕSn, ϕCn > range over their activities.
We denote Ns(SIp), the index of the primitive component defining the inter-
face SIp: NS(SIni) = n. The term defined in Figure 6 deploys the composite
component CC defined above (the mutually recursive definition of activities
let rec . . . and . . . can be built from core ASP terms). This deployment phase
does not rely on any request and thus is entirely deterministic.

let rec c1=Active((a1.ϕC1(CI11) := cNS(ΦCC (CI11))). · · ·.ϕC1(CI1k1) := cNS(ΦCC (CI1k1
)), srv1)

and c2=Active(a2.ϕC2(CI21) := cNS(ΦCC (CI21)). · · · .ϕC1(CI2k2) := cNS(ΦCC (CI2k2
)), srv2)

and . . .
and cn=Active(an.ϕCn(CIn1) := cNS(ΦCC (CIn)). · · · .ϕCn(CInkn) := cNS(ΦCC (CInkn

)), srvn)

Fig. 6. Deployment of a composite component

This is sufficient to give a semantics to the components with all useful con-
nections bound; but, here, components are not runtime entities and this trans-
lation neither is modular, nor gives any way of manipulating dynamically the
components (e.g. component reconfiguration is far from trivial). An active ob-
ject representation of each composite component will make them accessible and
reconfigurable at runtime.

12 Denis Caromel Ludovic Henrio

5.2 A Compositional Translation

The compositional translational semantics adds one active object for each com-
posite and for each primitive component. This translation does not suppose that
any component is closed but requires that method names can be manipulated.

During the running phase, requests have to be dispatched between com-
ponents: when a PC receives a send request from its contained active object,
it serializes this request, forwards a Call request to the destination to which
the CI is plugged. Then this method call may go through several CCs (first
through CIs and then SIs). Finally, the Call request is received by a PC which
de-serializes the request and calls a function on the contained active object.

Primitive Components Each PC is translated into a functional active object
and a component active object.

The functional active object is built from the object specified in PCAct, but
every ϕC(CIj) field of the active object now references a passive object CIobjj
and requests are sent through this object which acts as a proxy. The CIobjj
serializes (builds a an object containing the method name) each request before
forwarding it to the CI interface of the embedding PC (mj methods range over
the method of the interface CI).

CIobjj , [PC = [],∀mj , mj = ς(s, x)s.PC.send(CIj ,mj , x)]

CIobjj allows the component to systematically communicate using the encap-
sulating active object defined below.

The active object for the primitive component contains CIj fields which
store the destination component and interface to which they are plugged. Every
request arriving at the CIj interface has to be forwarded to the destination
identified and stored inside the CIj fields Figure 7 shows the object that is

JName <{SIi}
i∈1..k, {CIj}

j∈1..l > attached to the activity NameAct < a, srv, ϕS , ϕC >K ,
let pc = Active(

[∀j ∈ 1..l, CIj = [CDest = [], IDest = []],
started = false, act = [];
∀j ∈ 1..l, setCIj = ς(s,CDest′, IDest′)(s.CIj .CDest := CDest′).IDest := IDest′,
setact = ς(s, a)s.act := a,
start = ς(s)s.started := true,
Call = ς(s, SIi,mj , x)s.act.mj(x),
send = ς(s, CIj ,mk, x)s.CIj .CDest.Call(s.CIj .Idest,mk, x),
srv = ς(s)Repeat(if started then Serve(Call, send)

else Serve(setCI1..setCIl, setact, start))
] , srv) in

let ao=Active((a.ϕC(CI1):=(CIobj1.PC := pc) . . .).ϕC(CIl) := (CIobjl.PC := pc), srv)
in pc.setact(ao); pc

Fig. 7. Primitive Component Deployment

instantiated for each primitive component, note that ao is initialized with the
object containing the activity of the component in which ϕC(CIj) fields are
replaced with CIobjj objects.

Asynchonous Distributed Components: Concurrency and Determinacy 13

Composite Components Each CC contains the same CI fields as PCs, to-
gether with SI fields storing destinations to which received method calls must
be forwarded.

For each composite component Name ¿ C1, .., Cm; εS ;ψ; εC À, we define
N ′
S(SIi) the unique number such that CN ′

S
(SIi) defines the server interface SIi;

and similarly N ′
C(CIj) such that CN ′

C
(CIj) is the sub-component containing

the client interface CIj . Figure 8 describes the instantiation of a composite
component: it creates an activity for this component, binds the client interfaces
according to εC and ψ, and the server interfaces according to εS .

JName¿ C1, .., Cm; ; εS ;ψ; εC ÀK ,
let c1 = JC1K in . . . let cm = JCmK in
let Name = Active([

∀SIi∈dom(εS), SIi = [CDest = cN′

S
(εS(SIi))

, IDest = εS(SIi)],

∀CIj∈codom(εC), CIj = [CDest = [], IDest = []],
started = false;
∀CIj∈codom(εC), setCIj = ς(s, Cdst′, Idst′)((s.CIj).CDest := Cdst′).IDest := Idst′,

∀SIi∈dom(εS), setSIi = ς(s, Cdst′, Idst′)((s.SIi).CDest := Cdst′).IDest := Idst′,
Call = ς(s, CI SI,mj , x)s.CI SI.CDest.Call(s.CI SI.IDest,mj , x),
start = ς(s)s.started = true,
srv = ς(s)Repeat(if started then Serve(Call)

else Serve(∀CIj∈dom(εC) setCIj , ∀SIi∈dom(εS) setSIi, start))
] , srv) in
∀CIj ∈ dom(ψ), cN′

C
(CIj)

.setCIj(cN′

S
(ψ(CIj))

, ψ(CIj))

∀CIj ∈ dom(εC), cN′

C
(CIj)

.setCIj(Name, εC(CIj));

c1.start(); . . . ; cm.start(); Name

Fig. 8. Composite Component Deployment

Once deployed, the main component has to be started:
JName ¿ ...ÀK.start()

The deployment phase relies on setact, and setCI requests but the order
of these requests is always the same as first the setact requests are sent during
the primitive component creation; and then the setCI are sent by the unique
embedding composite component, and thus the deployment phase is determin-
istic.

This translation reveals the importance of the first class nature of futures.
Indeed, every request transits through several primitive and composite compo-
nents; if futures could not be transmitted between activities, then every compo-
nent activity would be blocked as soon as a request transits through it, leading
almost systematically to a deadlock. Of course, the first class nature of futures
is also a major advantage from a functional point of view for both translations.

5.3 Perspective: Reconfiguration and Component Controllers

In the last translation extra activities are added (a kind of component mem-
branes), and requests must transit through them. But this additional cost is

14 Denis Caromel Ludovic Henrio

counterbalanced by a promising expressiveness: it permits to envision the dy-
namic manipulation of components and requests at execution. Indeed, the se-
mantics only forwards Call and send requests but it could be extended in order
to add non-functional behaviors to components (e.g., fault-tolerance, security),
intercept requests, and perform treatments on transiting messages; or reconfig-
ure them. Reconfiguration consists in providing primitives allowing to change
dynamically εS , εC , or ψ for a given composite; with the last encoding, this can
be realized by convenient calls of setCIj and setSIi methods at the same level
as the reconfiguration occurs. Although very interesting, defining safe and co-
herent reconfiguration of a whole distributed component system is a challenging
perspective that is beyond the scope of this paper.

6 Deterministic Assembly of Objects and Components

6.1 Static DON

Suppose one has, for each runtime object, a static approximation of the activity
it belongs to, denoted α̇, β̇, o ∈ α means o is an object stored in α. Let
Part(α̇) be true if the abstract activity α̇ may dynamically be partitioned into
several different activities:

Part(α̇) ⇔ ∃o, o′, o ∈ α, o′ ∈ γ α 6= γ ∧ α̇ = γ̇

In other words, ∀α,¬Part(α̇) iff some abstract activities can be merged to form
a single activity at runtime, but no abstract activity is split dynamically. Then,
an object which can be either active or passive should be considered statically
as active. To summarize:

∀α,¬Part(α̇) ⇒ (α 6= γ ⇒ α̇ 6= γ̇)

Moreover, let G(P) be an approximated call graph:
If a request on the method foo can be sent from o to o′, and o ∈ α̇ and o′ ∈ β̇

then (α̇, β̇, foo) ∈ G(P), which means:

P
∗

−→ Q ∧ aαQ = R[ι.foo(ι′)] ∧ σαQ(ι) = AO(β) ⇒ (α̇, β̇, foo) ∈ G(P)

Finally, let us characterize Mβ̇P
by

∀β, M ∈ Mβ ⇒M ∈ Mβ̇

Then, the following property is an approximation of DON terms:

Definition 6 (Static DON) Suppose the approximation of the set of activi-
ties is such that two activities cannot be merged: ∀α, ¬Part(α̇). A program P is
a Static Deterministic Object Network SDON(P) if for all methods that can be
sent at any time from two different activities toward a given destination, those
methods cannot interfere:

Asynchonous Distributed Components: Concurrency and Determinacy 15

SDON(P) ⇔

(α̇, β̇,m1) ∈ G(P)

(α̇′, β̇,m2) ∈ G(P)
α̇ 6= α̇′

⇒ ∀M ∈ Mβ̇P
, {m1,m2} 6⊆M

Theorem 2 (SDON determinism). SDON terms behave deterministically.

Proof : It is sufficient to prove that SDON(P) ⇒ DON(P), or that
¬DON(P) ⇒ ¬SDON(P). Suppose P is not a DON, then it may send in the
future two concurrent requests, and thus there is an activity β of a configuration
Q such that P

∗
−→ Q and:

∃M ∈ MβP ,∃α 6= α′, ∃m1,m2 ∈M,

{

aα = R[ι.m1(ι
′)] ∧ σα(ι) = AO(β)

aα′ = R[ι2.m2(ι
′
2)] ∧ σα′(ι2) = AO(β)

Then, as G(P) is an approximated call graph:

∃M ∈ MβP , ∃α 6= α′, ∃m1,m2 ∈MβP (α̇, β̇,m1) ∈ G(P) ∧ (α̇′, β̇,m2) ∈ G(P)

and, as ∀α,¬Part(α̇), and by definition of Mβ̇P
:

∃α̇ 6= α̇′ ∧ (α̇, β̇,m1) ∈ G(P) ∧ (α̇′, β̇,m2) ∈ G(P) ∧ m1,m2 ∈M ∧M ∈Mβ̇P

Finally, P is not a SDON. 2

Of course, not every DON is a SDON, but SDON can be considered as the
best approximation of DON that does not require control flow analysis.

6.2 Deterministic Components

We define a deterministic assemblage of components based on the fact that
PCs provide an abstraction for activities and thus the SDON definition can be
entirely expressed in terms of specifications of PCs and connections of interfaces.
Indeed, suppose that for any two methods of the same SI cannot interfere, then
a component system is deterministic if each SI can be accessed by a single
activity (that is by a single component). Then, ensuring that only one CI is
finally plugged to each SI is sufficient to ensure confluence.

As each PC can be considered as an abstraction of an activity, for each PC,
we denote MPC is the potential service of the activity defined by PCAct.

Definition 7 (Deterministic Primitive Component (DPC))
A primitive component PC = Name < {SIi}

i∈1..k, {CIj}
j∈1..l > is a DPC if its

activity NameAct < a, srv, ϕS , ϕC > associates its server interfaces to disjoint
subsets of the served methods of the embedded active object; and such that two
interfering requests necessarily belong to the same SI:

∀M ∈ MPC , ∀m1,m2 ∈M (m1 ∈ ϕS(SIi) ∧m2 ∈ ϕS(SIj)) ⇒ i = j

16 Denis Caromel Ludovic Henrio

Definition 8 (Deterministic Composite Component (DCC)) A DCC is
a composite component built by connecting deterministic components.

DC ::= DCC |DCP

DCC ::= Name ¿ DC1, . . . , DCm; εS ;ψ; εC À

Where each SI is only used once, either bound or exported:

ψ, εC and εS are injective ∧ codom(ψ) ∩ codom(εS) = ∅

Non-Deterministic Connections Figure 9 illustrates the non-deterministic bind-
ings between components, corresponding to restrictions expressed in Defini-
tion 8. The condition of Definition 8 that prevents the composition from being
determinate is written above each sub-figure.

εC is injective
codom(εS) ∩ codom(ψ) = ∅

εS is injective
ψ is injective

Fig. 9. Non-deterministic bindings between components

A DCC assemblage verifies the SDON property because each DPC statically
identifies an activity; and the absence of sharing of SIs ensures that two activities
cannot send concurrent requests on the same SI. Finally, the definition for DPC
ensures that two requests on different SIs are not interfering.

Theorem 3 (DCC determinism). DCC components behave deterministi-
cally.

This theorem relies on the fact that composite components only forward re-
quests if necessary, that is to say a request sent by a PC will be directly or
indirectly transmitted to the PC that is finally plugged to the concerned in-
terface, according to the ΨCC function defined in Section 5.1. In other words,
neither the content nor the order of requests on a given binding is modified by
the composite components involved in the communication.

Let us formally prove Theorem 3 in the case of the first translational seman-
tics. In the case of the compositional semantics, more intermediate activities are
created but each of them still verifies the SDON property.

Proof : Let Φ = ΦCC for CC a DCC. A DCC is only composed of injective
ψ, εC and εS functions, codomains of ψ and εS are disjoint, and domain of ψ
and domain of εC are disjoint, thus the Φ function is injective. In this transla-
tion, there is a bijection between the set of deployed activities and the set of

Asynchonous Distributed Components: Concurrency and Determinacy 17

PCs (statically defined), thus we can consider PCs as the abstract domain for
activities. This abstraction does not merge activities: ∀PC, ¬Part(PC). We de-
note comp(SI) the PC such that SI ∈ Exported(PC) and similarly comp(CI)
the PC such that CI ∈ Imported(PC). An approximation of G(P) becomes:

{(PC,PC ′,m)|CI ∈ dom(Φ) ∧ PC = comp(CI) ∧ PC ′ = comp(Φ(CI))
∧ PC ′

Act =< a, s, ϕS , ϕC > ∧m ∈ ϕS(Φ(CI))}

And thus the SDON property is verified (with PC ′
Act =< a, s, ϕS , ϕC >):

(PC, PC ′, m1) ∈ G(P)
(PC2, PC′, m2) ∈ G(P)
PC 6= PC2

9

=

;

⇒∀k∈1, 2, mk ∈ϕS(SIk) ∧ PC ′ = comp(SIk) ∧ SI16=SI2

⇒ ∀M ∈ MPC′ , {m1, m2} 6⊆ M

Indeed, m1,m2 ∈ M and M ∈ MPC′ would imply SI1 = SI2 because PC ′ is
a DPC. Finally a DCC behaves deterministically when deployed with the first
translational semantics. 2

DCC assemblage allows to statically ensure deterministic behavior of com-
ponents, only based on the following requirements.

– Potential services can be statically determined, or are statically specified
(every served set has been declared as a potential service).

– SI interfaces are respected: they only receive requests on the methods they
define; this could be checked by typing techniques [2] on ASP source terms.

– Requests follow bindings and are not modified while following these bindings.
– There is a bijection between primitive components and functional activities.

The two first requirements correspond to static analysis or specification; whereas
the two last ones must be guaranteed by the components semantics which is
the case for both translational semantics of Section 5.

We have shown in [9] that every Process Network can be translated into a
(deterministic) ASP term, which can then be fit into a deterministic assemblage
of components. Such a bijection between process networks and DCCs will finally
provide a large number of DCCs.

7 Conclusion

This article defines a hierarchical component calculus that provides a very con-
venient abstraction of activities and method calls. This abstraction allows static
verification of determinism properties. Our component model is aimed at dis-
tribution, featuring asynchronous remote method invocations, and futures as
generalized references passing through components. Primitive components are
defined as a set of Server Interfaces (SI) and client interfaces (CI), together
with an ASP term for the primitive component content. Intuitively, each SI
corresponds to a set of methods, each CI to a field. Composite components
are recursively made of primitives and other composites, with a partial binding
between SIs and CIs, and some SIs and CIs exported.

18 Denis Caromel Ludovic Henrio

Primitive deterministic components are defined by imposing that each set
of interfering requests belongs to the same server interface. A deterministic
composite (DCC) avoids potential interferences by imposing at most a single
binding towards a server interface. For DCC, both translational semantics lead
to configurations that respect the SDON properties, hence their deterministic
nature. This results mainly relies on the fact that primitive components provide
an abstraction of activities, and interfaces provide an abstraction of potential
services.

One might have noticed the absence of any notion of location or machine, in
contrast to calculus such as Ambient [8]. Because of the ASP calculus properties,
an activity and further a component, can be placed “anywhere” without any
semantic consequence. A given hierarchical component can be entirely mapped
on a single machine, within the same address space, or fully distributed over the
network, each inner component being located alone on its own machine. Ab-
stracting activities by components is also convenient for distribution; allowing
to map each primitive to a single location and to span composites over several
machines.

Two translational semantics for the component model are proposed. The sec-
ond translation allows to envision an even more interesting perspective: deter-
ministic component reconfiguration. As components and bindings are achieved
by ASP active objects, one can imagine to apply the general deterministic prop-
erty (DON) to reconfiguration phase and to design coherent reconfigurations.

References

1. Icse ’79: Proceedings of the 4th international conference on software engineering,
1979. Chairman-F. L. Bauer and Chairman-Leon G. Stucki and Chairman-M. M.
Lehman.

2. Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, New
York, 1996.

3. Robert Allen and David Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, July 1997.

4. Mark Astley and Gul A. Agha. Customization and composition of distributed ob-
jects: Middleware abstractions for policy management. In Proceedings of the ACM
SIGSOFT 6th International Symposium on Foundations of Software Engineering
(FSE), 1998.

5. Françoise Baude, Denis Caromel, and Matthieu Morel. From distributed objects to
hierarchical grid components. In International Symposium on Distributed Objects
and Applications (DOA), Catania, Sicily, Italy, 3–7 November, LNCS. Springer
Verlag, Berlin, Heidelberg, 2003.

6. Philippe Bidinger and Jean-Bernard Stefani. The kell calculus: operational se-
mantics and type system. In Proceedings 6th IFIP International Conference on
Formal Methods for Open Object-based Distributed Systems (FMOODS 03), Paris,
France, 2003.

7. Eric Bruneton, Thierry Coupaye, Matthieu Leclerc, Vivien Quema, and Jean-
Bernard Stefani. An open component model and its support in java. In Ivica

Asynchonous Distributed Components: Concurrency and Determinacy 19

Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau, editors,
CBSE, volume 3054 of Lecture Notes in Computer Science. Springer, 2004.

8. Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, 2000. An extended abstract appeared in Proceedings of
FoSSaCS ’98, pages 140–155.

9. Denis Caromel and Ludovic Henrio. A Theory of Distributed Objects. Springer-
Verlag New York, Inc., 2005. To appear.

10. Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. Asynchronous and
deterministic objects. In Proceedings of the 31st ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, pages 123–134. ACM Press, 2004.

11. Denis Caromel, Wilfried Klauser, and Julien Vayssière. Towards seamless com-
puting and metacomputing in Java. Concurrency: Practice and Experience,
10(11–13):1043–1061, 1998. ProActive available at http://www.inria.fr/oasis/
proactive.

12. Bruneton E., Coupaye T., and Stefani J.B. Recursive and dynamic software com-
position with sharing. In Proceedings of the 7th ECOOP International Workshop
on Component-Oriented Programming (WCOP’02), 2002.

13. Cormac Flanagan and Matthias Felleisen. The semantics of future and an appli-
cation. Journal of Functional Programming, 9(1):1–31, 1999.

14. Dimitra Giannakopoulou, Jeff Kramer, and Shing Chi Cheung. Behaviour analysis
of distributed systems using the tracta approach. Automated Software Engg., 6(1),
1999.

15. Andrew D. Gordon, Paul D. Hankin, and Sren B. Lassen. Compilation and equiv-
alence of imperative objects. FSTTCS: Foundations of Software Technology and
Theoretical Computer Science, 17:74–87, 1997.

16. Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic compu-
tation. ACM Transactions on Programming Languages and Systems (TOPLAS),
7(4):501–538, 1985.

17. Gilles Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP Congress,
pages 471–475. North-Holland, New York, 1974.

18. Uwe Nestmann and Martin Steffen. Typing confluence. In Stefania Gnesi
and Diego Latella, editors, Proceedings of FMICS’97, pages 77–101. Consiglio
Nazionale Ricerche di Pisa, 1997. Also available as report ERCIM-10/97-R052,
European Research Consortium for Informatics and Mathematics, 1997.

19. Thomas Parks and David Roberts. Distributed Process Networks in Java. In
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS2003), Nice, France, April 2003.

20. Alan Schmitt and Jean-Bernard Stefani. The kell calculus: A family of higher-
order distributed process calculi. Lecture Notes in Computer Science, 3267, Feb
2005.

