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ABSTRACT

We propose in this paper a new formulation of the equation of
the optical flow enabling to compute global and local motions
of multi-structure objects (flowers and petals, trees and leaves,
...). The displacement fields are computed using a Markovian
Random Field (MRF) model. Local and global components
of the vector flow are both explicitly retrieved. The mini-
mization of the Gibbs energy is achieved with a down-scaling
approach, in which we first analyze the motion of the com-
pact object, the sub-structures’ movement being retrievedin
a second stage. We validate and demonstrate the efficiency of
our approach on synthetic and real images for various appli-
cations.

Index Terms— Image motion analysis, stochastic fields

1. INTRODUCTION

The objective of this paper is to propose an efficient formula-
tion and computational framework to estimate local and global
motions of non-compact non-rigid objects. Modeling rigid
and non-rigid objects movement using optical flow (OF) has
been widely studied for various applications including track-
ing, surveillance [1, 2]. Analysis of deformation of non-compact
material such as water or smoke has also recently raised much
attention [3]. However, objects which are composed of sub-
structures (leaves of trees, feathers of birds, petals of flowers,
etc) do not fit into these categories. Existing approaches are
unable to tackle efficiently the problem because the deforma-
tion of this type of object is both global (at the level of the en-
tire object) and local (at the level of the sub-structure, usually
of a few pixels size). Most recent works aim at tackling the
problem of discontinuities [4], of noise [5], to develop hierar-
chical or multi-resolution computational approaches [6, 7].

We propose to generalize the constant intensity constraint
of the optical flow, and to retrieve the optimal solution via
a Markov Random Field (MRF) framework. The problem
we address focuses on the multi-motion analysis of objects
composed of sub-structures, for which both local and global
components of the displacement vectors are modeled.

The rest of the paper is organized as follows: in section2
recalling briefly the basic mathematical foundations of OF
and MRF, we define the generalized constant intensity con-
straint (GCIC) and describe the energy function to be mi-
nimised. We propose a down-scaling approach, thus allowing
to process the image at two different scales and details levels.
Illustrations and analysis of the results on various synthetic
and real data set are given in section 3. Finally, section 4
presents the conclusions.

2. THE APPROACH

While extremely simple, the two key points of the approach
are (i) the formulation of a generalized constant intensitycon-
straint (GCIC) and (ii) the down-scaling optimization scheme
in a MRF framework.

2.1. General concept and definitions
We tackle the problem of one or several object(s) that are
composed of multi-structures (trees, birds, flowers,..). Each
object is animated by a global movement. Each object is it-
self composed of sub-objects or structures (such as leaves,
feathers, petals, ...) which have a local motion independent
from the global displacement of the object.

In order to differentiate the notion of global object and
local structure, we define two graphs associated to different
levels of resolutionG :

Gl = (Sl, Ll) Gg = (Sg, Lg)

whereSl = {sl} represents the local nodes (indicel) de-
fined either by the substructures of the objects or simply by
the pixels of the image –i.e.card(Sl) = dim(I)–, while
Sg = {sg} is represents global nodes (indiceg) defined by the
center of each object in motion in the image –i.e.card(Sg) =
number of objects. Ll andLg are two distinct levels of ver-
tices, linking independently the neighborhood nodessl and
sg respectively. Note that this definition imposesSl ⊃ Sg.

2.2. Modeling the GCIC
Considering objects animated of a double movement –local
and global ones–, the velocity vectorv(i) at each point of the



imagei is expressed by:

v(i) = vg(i) + vl(i) vl(i) << vg(i) (1)

wherevg(i) is the global displacement of the objectO at point
i andvl(i) is the local displacement of the substructure com-
posingO at pointi. Since all the substructures belonging to a
given objectO should possess the same global movement we
have:

vg(i) = constant = vg ∀i ∈ O (2)

If the substructures are of one pixel size and have random
independent movements, then local variations can be assimi-
lated to white noise of zero mean and:

∑

i∈O

v(i) = N vg (3)

whereN is the number of points within the object.

From equation (1), the first order generalized optical flow
equation (so-called Generalised Constant Intensity Constraint)
can be written:

∇I. (vg + vl) +
δI

δt
= 0 vl << vg (4)

By averaging equation (4) over all the points of the object
O and knowing from equation (2) and (3) thatvg + vl =
vg + vl = vg = vg, thus, for a given object and as a first
approximation, we have:

(∇I)T .vg + It ≈ 0 (5)

with a = 1
N

∑N

i=1 ai.

2.3. Energy terms of the MRF
The displacement field in the image is given by thev that sa-
tisfy equation (4). Knowing that the solution is undefined at
points wherev is orthogonal to∇I -so called aperture effect-,
some additional constraints –or regularization factor– should
be added.

Using an MRF framework, the solutionv will be given by
the configuration of our random variablex, that maximizes a
joint probability function taking the form of a Gibbs distribu-
tion:

P (x,y) =
1

Z
e−E(x,y) (6)

whereZ is the normalization constant and

E(x,y) = −(
∑

s∈C1

αdVd(ys,xs)+
∑

s,s′∈C2

αpVp(xs,xs′)))

(7)
wherey is a function of the observed data. From a general
point of view,C1 andC2 are single-site and pair-site cliques
respectively; the Gibbs energyE is thus the summation of a
data termEd =

∑

αdVd, and a prior termEp =
∑

αpVp in-
dependent of the data but dependent of its neighborhoodNs;

αd = αd(s) andαp = αp(s, s
′) are two weighting coeffi-

cients.
For our problem, the data term is naturally given from the

GCIC (equation (4)). It should be satisfied at each site of the
graph(Sl, Ll):

|Ed| =
∑

s∈C1

αd

(

∇I(s). (vg(s) + vl(s)) +
δI(s)

δt

)2

(8)

with C1 = Sl.
On the other hand, the prior term is defined such as to

constrain the displacement flow to be continuous: amplitude
and angular variations between neighborhood sites should be
minimized, both at global and local levels. We have therefore:

|Ep| =
∑

s,s′∈C2

βp (||vl(s) − vl(s
′)||)

2 (9)

+
∑

s,s′∈C3

γp (||vg(s) − vg(s′)||)
2

+
∑

s,s′∈C3

λp

(

vg(s).vg(s′)

||vg(s)||||vg(s′)||
− 1

)2

whereC2 = {sl, s
′

l|sl, s
′

l ∈ Sl, s
′

l ∈ Nl} andC3 = {sg, s
′

g|
sg, s

′

g ∈ Sg, s
′

g ∈ Ng}. The neighborhoodsNl andNg are
defined within a 4-connectivity by the connected sites belong-
ing to Gl andGg respectively. The first two terms of equa-
tion (9) impose a smooth variation of the amplitude at local
scale (first term) and global scale (second term). The last
term constrains the motion’s direction to change slowly be-
tween neighboring objects. The site dependent coefficients
αd, βp, γp, λp are set such that :αd 6= 0 if s ∈ O, γp, λp 6= 0
everywhere, and

βp = 0 if s ∈ O, s′ ∈ O′ (10)

βp 6= 0 otherwise.
In other words, the smoothing between local vectorial com-

ponents is to be applied only for intra-object and not inter-
object neighborhood.

It is worth noticing that, in the case of several objects in
the image, the model is properly defined only if the global
movement between two neighborhood objects varies slowly.
However, we will see that in practice we do not encounter this
limitation, because the local term will serve to compensatethe
possible loss generated by the global smoothing.

2.4. Implementation
The optimal solution is retrieved by computing thev that mi-
nimizesE(x, y). It is achieved without major difficulty with
a ICM (iterated conditional mode) algorithm. However, since
the random valuex is a four dimensional vector which has
components that can take any real value within a given range
[vmin

l , vmax
l , vmin

g , vmax
g ], the direct optimization of equation



(7) using (8) would be extremely time consuming. In addi-
tion, the initialization of ICM algorithm would be twice as
critical as traditional approaches (i.e. approaches that do not
search for a local and a global component).

For these reasons, we choose to compute the displacement
field via a down-scaling approach, following two steps :

• Initialization : compute the optimal solution of equa-
tion (7), using (5) and (9) as data term and prior term re-
spectively. This enables to find a realisationv̂0

g, which
will serve as a first approximation. The process is ex-
tremely fast and enables to give a rough picture of the
displacement flow.

• Estimation of v̂g, v̂l, by substituting equation (8) into
(7) and usinĝv0

g as initialization.

Note that the approach is based on the knowledge of the graph
(Sg, Lg), which means that, theoretically, one should be able
to localize the objects within the image, before running the
optical flow. When feasible, a pre-processing segmentation
step can be carried out for this purpose. In most cases how-
ever, we can perform arbitary segmentation using a regular
grid, without affecting the quality of the results. We will il-
lustrate several cases in the next section.

3. RESULTS ANALYSIS

Results analysis is performed on a set of very different syn-
thetic and real images, thus illustrating various possibleap-
plications. All results presented in this section have been
obtained with the values(αd, βp, γp, λp) = (1, 10, 50, 100)
for forest sequence and(1, 10, 10, 10) for the others. Video
sequences have been previously smoothed in space and time
with Gaussian filter of variance 1.5; the synthetic forest ima-
ges, have been spatially smoothed only. The derivation mask
we used is similar to [5, 8].

3.1. Synthetic data : forest

The initial motivation of this work was to analise the Earth
ground displacement observed from forest trees aerial ima-
ges. This phenomena can be observed on terrains of steep
slopes and are characteristic of forthcoming landslides. Here
we make use of synthetic images simulating a plantation of
trees on a steep terrain, generated by the AMAP software
[9]. Two sequences of two images each have been gene-rated.
The first sequence shows a unidirectional displacement along
the slope in the vertical direction, the second is a radial dis-
placement. The position of the camera is unchanged between
the two “acquisitions”. One of the simulated image and the
known displacements are illustrated on figure 1.

The objects we consider are the trees, the local structures
being defined by the leaves. The images are particularly diffi-
cult to process because the intensity constancy is hardly veri-
fied at pixel level.

Figure 2 illustrates the results obtained from our approach
(top), compared to those from Horn and Shunk (H&S) imple-
mented by Barron [8, 10] (bottom). The computed displace-
ment field, for transverse and radial motions, are both con-
sistant with the ground truth. A contrario, H&S algorithm
appears to be more sensitive to the texture effect and non uni-
form brightness variation of the leaves. Table 1 compares the
average angle error between H &S and our approach.

In these images in which segmentation is rather easy to
perform, we have analysed the impact of the pre-propressing
step on the results. In figure 3, we compare the vector flow ob-
tained with and without presegmentation. In case of preseg-
mentation, each tree is treated as an individual object. Other-
wise, the image is organised into a matrix of squared paches,
each patch being associate to an object. Table 1 shows that
the effect of the square size is negligeable, as expected.

(a) Entire image

(b) Detail of (a).

(c) Transverse displacement (d) Radial displacement.

Fig. 1. Simulated forest trees and ground truth motion.

Transverse motion Radial motion
Fig. 2. Results of GCIC (top) - Horn & Shunk (bottom).



vg & segm. (vg + vl) & segm. vg & grid 40x40
Fig. 3. Local vs global motion, with and without segmentation

Displacement Tranversal Radial
H & S 32.1 32.0

GCIC & seg 14.4 16.6
GCIC & grid 30x30 15.1 17.5
GCIC & grid 40x40 15.0 17.8
GCIC & grid 50x50 15.7 17.7

Table 1. Average angle error in degrees with presegmenta-
tion (seg) and with arbitrary patchs (grid size NxN).

3.2. Reference data set : synthetic and real data
Results on synthetic and real video sequences –data are down-
loaded from ftp.csd.uwo.ca/pub/vision– have been computed.
For the synthetic sequences, we obtained the same range of
average angle error than shown by [5].We illustrate here only
one of them, i.e. the Magic Cube, given in figure 4. The
computed displacement (v = vg + vl) shows a clear smooth
motion tracking of the cube and of the bottom part of the tray.
The motion of the white part however has not been detected
at all, due to the perfect uniformity of the gray level (constant
white). Barron’s result with Horn and Shunk approach is also
illustrated for comparison.

(a) Original image(b) GCIC(vg + vl) (c) H & S
Fig. 4. Results on the Magic Cube sequence

3.3. Flower video
The last illustration is on a flower video sequence (down-
loaded data). The sequence visualizes the blooming of the
flower. Each petal can be considered as an individual object.
The global displacement is first computed in each patch grid
of the image. Edge points detection is performed by a Canny
filter for each frame of the sequence. The displayed result
in figure 5 represents thevg component of the displacement
taken at each edge point. Result on the entire video provides
clear cue of the flower blooming.

4. CONCLUSION

We proposed in this work an approach dedicated at first to the
movement analysis of objects composed by sub-structures,

Fig. 5. Two flower frames and the associated computedvg

i.e. animated by global and local motions. We illustrated
that the introduction of a local displacement vector enables to
handle efficiently the problem of discontinuity. With regard to
forestry application, ongoing works are dedicated to textural
movement analysis.
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