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PERFORMANCE BOUNDS IN LP NORM FORAPPROXIMATE VALUE ITERATIONRÉMI MUNOS∗Abstra
t.Approximate Value Iteration (AVI) is a method for solving large Markov De
ision Problemsby approximating the optimal value fun
tion with a sequen
e of value fun
tion representations Vnpro
essed a

ording to the iterations Vn+1 = AT Vn where T is the so-
alled Bellman operator and
A an approximation operator, whi
h may be implemented by a Supervised Learning (SL) algorithm.Usual bounds on the asymptoti
 performan
e of AVI are established in terms of the L∞-normapproximation errors indu
ed by the SL algorithm. However, most widely used SL algorithms (su
has least squares regression) return a fun
tion (the best �t) that minimizes an empiri
al approximationerror in Lp-norm (p ≥ 1).In this paper, we extend the performan
e bounds of AVI to weighted Lp-norms, whi
h enablesto dire
tly relate the performan
e of AVI to the approximation power of the SL algorithm, hen
eassuring the tightness and prati
al relevan
e of these bounds. The main result is a performan
ebound of the resulting poli
ies expressed in terms of the Lp-norm errors introdu
ed by the su

essiveapproximations. The new bound takes into a

ount a 
on
entration 
oe�
ient that estimates howmu
h the dis
ounted future-state distributions starting from a probability measure used to assessthe performan
e of AVI 
an possibly di�er from the distribution used in the regression operation.We illustrate the tightness of the bounds on an optimal repla
ement problem.Key words. Markov De
ision Pro
esses, Dynami
 programming, Optimal 
ontrol, Fun
tionapproximation, Error analysis, Reinfor
ement learning, Statisti
al learningAMS subje
t 
lassi�
ations. 49L20, 90C40, 90C59, 93E20.1. Introdu
tion. We 
onsider the problem of solving large state-spa
e MarkovDe
ision Pro
esses (MDPs) [29℄ in an in�nite time horizon, dis
ounted reward setting.The Value Iteration algorithm is a method for 
omputing the optimal value fun
-tion V ∗ by pro
essing a sequen
e of value fun
tion representations Vn a

ording tothe iterations Vn+1 = T Vn, where T is the so-
alled Bellman operator. Due to a 
on-tra
tion property -in L∞−norm- of the Bellman operator, the iterates Vn 
onverge to
V ∗ as n → ∞. However, this method is intra
table when the number of states is solarge that an exa
t representation of the values is impossible. We therefore need torepresent the fun
tions with a moderate number of 
oe�
ients and use methods for�nding an approximate solution.A very popular algorithm is the Approximate Value Iteration (AVI) algo-rithm. It has long been implemented in many di�erent settings in Dynami
 Pro-gramming (DP) [32, 5℄ with online variants in the �eld of Reinfor
ement Learning(RL) [7, 33℄. It is de�ned by a sequen
e of value fun
tion representations Vn that arepro
essed re
ursively by means of the iterations

Vn+1 = AT Vn, (1.1)where T is the Bellman operator and A an approximation operator, whi
h may besampled-based implemented by a Supervised Learning (SL) algorithm (see e.g. [15℄).Sin
e we will make use of di�erent norms, let us remind now their de�nition: Let
u ∈ IRN . Its supremum (L∞) norm is de�ned by ||u||∞ := sup1≤x≤N |u(x)|. Now,for µ being a probability measure on {1, . . . , N}, the weighted Lp-(semi) norm (for
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2 R. MUNOS
p ≥ 1) -denoted by Lp,µ- of u is ||u||p,µ :=

[
∑

1≤x≤N µ(x)|u(x)|p
]1/p. In addition, wewrite || · ||p the unweighted Lp-norm (i.e. when µ is uniform).At typi
al implementation of AVI is Fitted Value Iteration whi
h, given a fun
-tion spa
e F , 
omputes at ea
h iteration a new value representation Vn+1 ∈ F byproje
ting onto F the Bellman image of the 
urrent estimate Vn. For illustration, asampling-based version of this algorithm 
ould be de�ned as follows: At stage n, wedraw a set of independent states {xk ∼ µ}1≤k≤K , where µ is some probability mea-sure on the state spa
e, 
ompute the Bellman values {vk := T Vn(xk)}1≤k≤K for the
urrent approximation Vn at those states, then we make a 
all to a SL algorithm withthe data {(xk, vk)}1≤k≤K (the {xk} being the input and {vk} the desired output).The SL algorithm would return a fun
tion Vn+1 (the best �t) that minimizes someempiri
al loss

Vn+1 := arg min
g∈F

1

K

∑

1≤k≤K

l(g(xk) − vk),where the loss fun
tion l is usually a square or an absolute fun
tion (or variants, su
has the ǫ-insensitive loss used in Support Ve
tors [36℄).This is a sampled-based version of the minimization problem in a weighted (by
µ) absolute or quadrati
 norm (Lp,µ-norm with p = 1 or 2 respe
tively)

arg min
g∈F

||g − T Vn||p,µ.The �eld of Statisti
al Learning analyses the di�eren
e between the minimizedempiri
al loss 1

K

∑

1≤k≤K l(Vn+1(xk)− vk) and the 
orresponding Lp,µ-norm approx-imation error ||Vn+1 − T Vn||p,µ in terms of the number of samples K and a 
apa
-ity measure of the fun
tion spa
e F (su
h as the 
overing number or the Vapnik-Chervonenkis (VC) dimension [28, 36℄ of F).It is therefore natural to sear
h for bounds on the performan
e of AVI that relyon weighted Lp- norms (p ≥ 1) of the approximation errors ||Vn+1 − T Vn||p,µ.Unfortunately, the main �eld of investigation so far in Approximate DP makes useof the supremum norm [4, 5, 6, 29, 7, 16, 13℄. For example, the asymptoti
 performan
eof the poli
ies dedu
ed by the AVI algorithm may be bounded in terms of the L∞-norm of the approximation errors ||Vn+1 − T Vn||∞ (see Se
tion 2). However, thisbound is not very useful sin
e this uniform approximation error is di�
ult to 
ontrolin general and is not very pra
ti
al be
ause most 
urrently known SL algorithmssolve an empiri
al minimization problem in Lp-norm (like least squares regression,neural networks, Support Ve
tor and Kernel regression). Sin
e most approximationoperators provides good approximations in Lp-norm but a poor performan
e withrespe
t to the L∞-norm, it would be relevant to measure the algorithm performan
ewith respe
t to the former norm.The purpose of this paper is to extend error bounds for AVI to Lp-norms. Theperforman
e of AVI 
an therefore be dire
tly related to the approximation power ofthe SL algorithm.To begin with, let us mention that of 
ourse, norms are equivalent (in the 
ase of�nite dimensional spa
es) sin
e || · ||p ≤ || · ||∞ ≤ N1/p|| · ||p (with p ≥ 1 and N beingthe number of states), thus the usual L∞ bound for AVI (detailed in Se
tion 2) mayalso be used to derive an Lp norm bound. However, be
ause of the N1/p fa
tor, thisyields a very loose bound for large s
ale problems.



PERFORMANCE BOUNDS FOR APPROXIMATE VALUE ITERATION 3The bounds derived here (see Theorem 5.2 in Se
tion 5) depend on a new 
on-
entration (or stability) measure of the MDP: The 
on
entration 
oe�
ient C(ν, µ)measures how mu
h the dis
ounted average future-state distribution starting fromsome distribution ν used to assess the performan
e of AVI (through the weightingof the Lp−norm of the algorithm's performan
e) 
an possibly diverge from the dis-tribution µ used in the regression step (by the SL algorithm). This 
on
entration
oe�
ient is de�ned as an upper-bound, taken for any non-stationary poli
y, of thederivative of the dis
ounted future-state distribution (starting from ν and following apoli
y) with respe
t to (w.r.t.) the regression distribution µ.This 
oe�
ient is related to the so-
alled top-Lyapunov exponent, whi
h is 
om-monly used to analyse the stability of sto
hasti
 pro
esses. Further dis
ussion aboutthis 
on
ept in 
ontinuous spa
es (where this 
oe�
ient is de�ned in terms of theRadon-Nykodim derivative of the related probability measures) 
an be found in [27℄.A su�
ient 
ondition for the 
on
entration 
oe�
ient to be small is when theMDP is �smooth� (i.e. when the transition probabilities are strongly sto
hasti
, e.g.
lose to uniform distribution). A
tually, we derive another bound, this time on the L∞performan
e of the AVI algorithm (but still in terms of the Lp approximation errors)using another 
on
entration 
oe�
ient C(µ) that relates the immediate transitionprobabilities of the MDP to the regression distribution µ. For a uniform µ, a smoothMDP will de�ne a small C(µ) value, and our bound will be sharp. However, for aMDP with deterministi
 transitions, the 
oe�
ient C(µ) 
ould heavilly depend onthe number of states N , making our new bounds no more informative than a usual
L∞−norm bound. This is illustrated in the 
hain walk MDP (for whi
h C(µ) = N)des
ribed in Subse
tion 5.5. However, even for deterministi
 MDPs, the 
on
entration
oe�
ient C(ν, µ) may be small, and independent of N , as illustrated in the sameexample. For su
h 
ases, the new Lp bound is arbitrarily better than the usual L∞one.The main intuition underlying this extension of usual L∞ bounds to Lp-normsis a
tually simple (see the �rst paragraph of Se
tion 5) and is a 
onsequen
e of the
omponentwise bounds obtained in Se
tion 4.To the best of our knowledge, this weighted Lp-norm analysis of AVI is new. Pre-vious Lp analyses in Approximate Dynami
 Programming (ADP) in
lude TemporalDi�eren
e learning (for the evaluation of a �xed poli
y) with linear approximation[35℄ and Approximate Poli
y Iteration [26℄ (and [1℄ in the 
ontinuous spa
e, sampled-based 
ase). Let us mention that there is an important body of literature in thedomain of weighted L∞-norm analysis of ADP [7, 17℄, espe
ially for the linear pro-gramming approa
h [10℄. Let us also remark that there exists an important related�eld 
on
erned with stability, ergodi
ity and 
onvergen
e properties of future statedistributions w.r.t. the invariant probability measure (in Markov 
hains [19℄ or MDPs[18, 25℄). This is not the dire
tion followed in this paper sin
e we are interested inthe dis
ounted reward 
ase (with a �xed dis
ount fa
tor) and not the average reward
ase.The paper is organized as follows: In Se
tion 2, we remind some approximationresults in L∞-norm. Se
tion 3 is a rough survey of approximation operators and SLalgorithms. The main tool used in this paper is the derivation of the 
omponentwisebounds for AVI, detailed in Se
tion 4. The performan
e bounds in Lp-norms are statedin Se
tion 5 and the main result of this paper is given in Theorem 5.2. A subse
tionprovides some intuition on these results in 
ase AVI algorithm would 
onverge, whi
hleads to bounds expressed in terms of the Lp Bellman residual. Se
tion 6 details



4 R. MUNOSpra
ti
al implementations of AVI (a sampling-based method using state-a
tion valuefun
tion approximation). The 
ase of a 
ontinuous measurable state spa
e is treated inSe
tion 7 and a numeri
al experiment on an optimal repla
ement problem is detailed.Preliminaries. We now des
ribe the framework of MDPs in the in�nite-timehorizon, dis
ounted reward setting, 
onsidered here.Let X be the state spa
e, assumed to be �nite with N states and A a �nitea
tion spa
e. The results given in this paper extend to in�nite state spa
es (either
ountable spa
es or 
ontinuous spa
es, the latter 
ase being illustrated in Se
tion 7).Let p(x, a, y) be the probability that the next state is y given that the 
urrent stateis x and the a
tion a. Let r(x, a, y) be the (deterministi
) reward re
eived when atransition (x, a) → y o

urs.We 
all a (Markov or stationary) poli
y π a mapping from X to A. We write P πthe N ×N−matrix with elements P π(x, y) := p(x, π(x), y) and rπ the N -ve
tor with
omponents rπ(x) :=
∑

y p(x, π(x), y)r(x, π(x), y).For a given poli
y π, the value fun
tion V π (
onsidered as a ve
tor with N
omponents) is de�ned as the expe
ted sum of dis
ounted rewards:
V π(x) := E

[ ∞
∑

t=0

γt r(xt, at, xt+1)|x0 = x, at = π(xt)

]

,where γ ∈ [0, 1) is the dis
ount fa
tor. It is well known that V π is the �xed-point of theoperator T π : IRN → IRN de�ned, for any ve
tor W ∈ IRN , by T πW := rπ + γP πW.The optimal value fun
tion V ∗ := supπ V π is the �xed-point of the Bellmanoperator T de�ned, for any W ∈ IRN , x ∈ X , by
T W (x) = max

a∈A

∑

y∈X

p(x, a, y)[r(x, a, y) + γW (y)].We say that a poli
y π is greedy with respe
t to W ∈ IRN , if for all x ∈ X ,
π(x) ∈ argmax

a∈A

∑

y∈X

p(x, a, y)[r(x, a, y) + γW (y)].The goal is to �nd an optimal poli
y π∗, whi
h is su
h that for all x ∈ X ,
V π∗

(x) = maxπ V π(x). It is easy to see that a poli
y greedy w.r.t. V ∗ is optimal.Sin
e A is �nite, su
h an optimal poli
y always exits.2. Approximation results in L∞-norm. Consider the AVI algorithm de-�ned by (1.1) and de�ne
εn := T Vn − Vn+1 ∈ IRN (2.1)the approximation error at stage n. In general, AVI does not 
onverge, but nev-ertheless its asymptoti
 behavior may be analyzed. If the approximation errors areuniformly bounded ||εn||∞ ≤ ε, then a bound on the di�eren
e between the asymp-toti
 performan
e of poli
ies πn greedy w.r.t. Vn and the optimal poli
y is (see e.g.[7℄):

lim sup
n→∞

||V ∗ − V πn ||∞ ≤
2γ

(1 − γ)2
ε. (2.2)



PERFORMANCE BOUNDS FOR APPROXIMATE VALUE ITERATION 5Sin
e the proof is very simple, it is reminded here.Proof. From the triangle inequality, the γ-
ontra
tion of the Bellman operators
T and T πn , and the fa
t that πn is greedy w.r.t. Vn (i.e. T πnVn = T Vn), we have

||V ∗ − V πn ||∞ ≤ ||T V ∗ − T πnVn||∞ + ||T πnVn − T πnV πn ||∞

≤ γ||V ∗ − Vn||∞ + γ(||Vn − V ∗||∞ + ||V ∗ − V πn ||∞),thus
||V ∗ − V πn ||∞ ≤

2γ

1 − γ
||V ∗ − Vn||∞. (2.3)Moreover, ||V ∗−Vn+1||∞ ≤ ||T V ∗−T Vn||∞+||T Vn−Vn+1||∞ ≤ γ||V ∗−Vn||∞+ε.Now, taking the upper limit yields lim supn→∞ ||V ∗ − Vn||∞ ≤ ε/(1 − γ), whi
h
ombined with (2.3) yields (2.2).�This L∞-bound is expressed in terms of the uniform approximation error overall states, whi
h is di�
ult to guarantee, espe
ially for large state-spa
e problems.Moreover, it is not very useful in pra
ti
e sin
e most 
urrent approximation operatorsand supervised learning methods perform a minimization problem in L1 or L2 norm(although some ex
eptions of L∞ fun
tion approximation in the framework of DPexist, see e.g. [12, 14℄).3. Approximation operators and Supervised Learning algorithms. Inthis se
tion we present an overview the problem of fun
tion approximation in the
ontext of Statisti
al Learning (see e.g. [36, 15℄). To illustrate, an example of asupervised learning (SL) algorithm would take as input some data {(xk, vk)}1≤k≤K ,where the states {xk ∈ X} are drawn a

ording to some distribution µ on X , and thevalues {vk ∈ IR} are unbiased estimates of some (unknown) random fun
tion withmean f(xk). This SL algorithm would return a fun
tion (
alled the best �t) thatminimizes (within a given 
lass of fun
tions F) the empiri
al loss, solving:

inf
g∈F

1

K

K
∑

k=1

l(vk − g(xk)),where the loss fun
tion l is usually an absolute or a quadrati
 fun
tion (or variants,su
h as the ǫ-insensitive loss fun
tion used in Support Ve
tors or Huber loss fun
tionused for robust regression [36℄).If the unknown fun
tion is deterministi
 (i.e. vk = f(xk)), A may be 
onsideredas an approximation operator that returns a 
ompa
t representation g ∈ F of anunknown fun
tion f by minimizing some empiri
al Lp-norm (p = 1 or 2) based onthe data. This is a sampling-based version of a minimization problem in weightednorm Lp,µ. Statisti
al Learning theory establishes bounds on the error between theminimized empiri
al loss 1

K

∑K
k=1

l(f(xk)−g(xk)) and the Lp,µ−norm di�eren
e ||f−
g||p,µ in terms of the number of samples K and the 
apa
ity (or 
omplexity) measureof the fun
tion spa
e F , 
hara
terized e.g. by the 
overing number or the Vapnik-Chervonenkis dimension [28, 36℄ of F .The proje
tion onto the span of a �xed family of fun
tions (often 
alled features)is 
alled linear approximation and in
lude Splines, Radial Basis, Fourier or Waveletde
omposition. It is often the 
ase that a better approximation is rea
hed when 
hoos-ing the features a

ording to f (i.e. feature sele
tion). This non-linear approximationis parti
ularly e�
ient when f has pie
ewise regularities (e.g. in adaptive wavelet



6 R. MUNOSbasis [24℄ su
h fun
tions are 
ompa
tly represented with few non-zero 
oe�
ients).Greedy algorithms for sele
ting the best features among a given di
tionary of fun
-tions in
lude the Mat
hing Pursuit and variants [9℄. Approximation theory studiesthe approximation error in terms of the smoothness of f [11℄.In Statisti
al Learning, supervised learning algorithms in
lude Neural Network,Lo
ally Weighted Learning and Kernel Regression [2℄, Support-Ve
tors and Reprodu
-ing Kernels [37, 36℄.Hen
e, given the fa
t that we may always bound the empiri
al minimized errorusing statisti
al learning tools, in the sequel, we will establish our bounds using the
Lp,µ−norm of the approximation errors. An extension of these results to sampling-based AVI is des
ribed in [27℄ and a poli
y iteration algorithm with Bellman residualminimization using a single sample-path is des
ribed in [1℄.4. Componentwise performan
e bounds. In this se
tion, we formulate 
om-ponentwise performan
e bounds, from whi
h Lp bounds will be derived in the nextse
tion. The L∞ bound previously stated (2.2) is also an immediate 
onsequen
e ofa 
omponentwise bound.4.1. Performan
e bound for AVI. A 
omponentwise bound on the asymp-toti
 performan
e of the poli
ies πn greedy w.r.t. Vn is provided now.Lemma 4.1. Consider the AVI algorithm de�ned by (1.1) and write εn = T Vn −
Vn+1 ∈ IRN the approximation error at stage n. Let πn be a greedy poli
y w.r.t. Vn.We have

lim sup
n→∞

V ∗ − V πn ≤ lim sup
n→∞

(I − γP πn)−1 (4.1)
(

n−1
∑

k=0

γn−k
[

(P π∗

)n−k + P πnP πn−1 . . . P πk+2P πk+1
]

|εk|
)

,where |εk| denotes the ve
tor of absolute values of εk.In order to prove this lemma, we �rst need this preliminary result.Lemma 4.2. Let A be an invertible matrix su
h that all the elements of itsinverse are positive. Then the solutions to the inequality Au ≤ b are also solutions to
u ≤ A−1b.Proof of Lemma 4.2. Let u be a solution to Au ≤ b. This means that thereexists a ve
tor c with positive 
omponents s.t. Au = b − c, thus u = A−1b − A−1c.Sin
e all 
omponents of A−1c are positive, we dedu
e that u ≤ A−1b. �Proof of Lemma 4.1. From the de�nitions of T and T π we have 
omponentwise
T Vk ≥ T π∗

Vk and T V ∗ ≥ T πkV ∗, thus
V ∗ − Vk+1 = T π∗

V ∗ − T π∗

Vk + T π∗

Vk − T Vk + εk ≤ γP π∗

(V ∗ − Vk) + εk

V ∗ − Vk+1 = T V ∗ − T πkV ∗ + T πkV ∗ − T Vk + εk ≥ γP πk(V ∗ − Vk) + εk,where in the se
ond line, we used the de�nition of πk as a greedy poli
y w.r.t. Vk, i.e.
T πkVk = T Vk. We dedu
e by indu
tion

V ∗ − Vn ≤
n−1
∑

k=0

γn−k−1(P π∗

)n−k−1εk + γn(P π∗

)n(V ∗ − V0), (4.2)
V ∗ − Vn ≥

n−1
∑

k=0

γn−k−1(P πn−1P πn−2 . . . P πk+1)εk

+γn(P πnP πn−1 . . . P π1)(V ∗ − V0). (4.3)



PERFORMANCE BOUNDS FOR APPROXIMATE VALUE ITERATION 7Now, using again the de�nition of πn and the fa
t that T Vn ≥ T π∗

Vn, we have:
V ∗ − V πn = T π∗

V ∗ − T π∗

Vn + T π∗

Vn − T Vn + T Vn − T πnV πn

≤ T π∗

V ∗ − T π∗

Vn + T Vn − T πnV πn

= γP π∗

(V ∗ − Vn) + γP πn(Vn − V πn)

= γP π∗

(V ∗ − Vn) + γP πn(Vn − V ∗ + V ∗ − V πn),thus (I − γP πn)(V ∗ − V πn) ≤ γ(P π∗

− P πn)(V ∗ − Vn). Now, sin
e (I − γP πn) isinvertible and its inverse ∑

k≥0
(γP πn)k has positive elements, we use Lemma 4.2 todedu
e that

V ∗ − V πn ≤ γ(I − γP πn)−1(P π∗

− P πn)(V ∗ − Vn).This, 
ombined with (4.2) and (4.3), and after taking the absolute value (note thatthe ve
tor V ∗ − V πn is non-negative), yields
V ∗ − V πn ≤ (I − γP πn)−1

{

n−1
∑

k=0

γn−k
[

(P π∗

)n−k + (P πnP πn−1 . . . P πk+1)
]

|εk| (4.4)
+γn+1

[

(P π∗

)n+1 + (P πnP πnP πn−1 . . . P π1)
]

|V ∗ − V0|
}

.We dedu
e (4.1) by taking the upper limit. �4.2. Performan
e bound based on the Bellman residual. In this se
tion,we derive a 
omponentwise performan
e bound of a poli
y π greedy w.r.t. somefun
tion V ∈ IRN in terms of the Bellman residual of V . This result extends the
L∞-bound (see a proof in [38℄):

||V ∗ − V π||∞ ≤
2

1 − γ
||T V − V ||∞. (4.5)The 
omponentwise 
ounterpart of this bound is stated now.Lemma 4.3. Let V ∈ IRN and π a poli
y greedy w.r.t. V . Then

V ∗ − V π ≤
[

(I − γP π∗

)−1 + (I − γP π)−1
]

|T V − V |. (4.6)We immediately noti
e that (4.5) is a dire
t 
onsequen
e of this result, sin
e forany sto
hasti
 matrix P , ||(I − γP )−1||∞ = 1/(1 − γ).Proof of Lemma 4.3. We use the fa
t that T V ≥ T π∗

V and the de�nition of
π (i.e. T V = T πV ) to derive

V ∗ − V π = T π∗

V ∗ − T π∗

V + T π∗

V − T V + T V − T πV π

≤ γP π∗

(V ∗ − V π + V π − V ) + γP π(V − V π),hen
e (I − γP π∗

)(V ∗ − V π) ≤ γ(P π∗

− P π)(V π − V ). Again, sin
e (I − γP π∗

) isinvertible and its inverse has positive elements, from Lemma 4.2, we dedu
e
V ∗ − V π ≤ γ(I − γP π∗

)−1(P π∗

− P π)(V π − V ).



8 R. MUNOSMoreover,
(I − γP π)(V π − V ) = V π − V − γP πV π + γP πV

= rπ + γP πV − (rπ + γP πV π) + V π − V

= T πV − T πV π + V π − V = T V − V,thus
V ∗ − V π ≤ γ(I − γP π∗

)−1(P π∗

− P π)(I − γP π)−1(T V − V )

= (I − γP π∗

)−1
[

(I − γP π) − (I − γP π∗

)
]

(I − γP π)−1(T V − V )

=
[

(I − γP π∗

)−1 − (I − γP π)−1
]

(T V − V )

≤
[

(I − γP π∗

)−1 + (I − γP π)−1
]

|T V − V |. �5. Approximation results in Lp-norms. In this se
tion, we generalize thepreviously mentioned L∞ bounds to Lp-norms. The main intuition behing this ex-tension is simple and relies on the 
omponentwise results des
ribed in the previousse
tion.Indeed, assume that there exists two ve
tors u and v with positive 
omponents,su
h that, 
omponentwise u ≤ Qv, where Q is a sto
hasti
 matrix. Of 
ourse, we maydedu
e that ||u||∞ ≤ ||v||∞, but in addition, if ν and µ are probability measures on
X su
h that 
omponentwise νQ ≤ Cµ, where C ≥ 1 is a 
onstant (and using usualmatrix notations with the probability measures being 
onsidered as row ve
tors), thenwe dedu
e that

||u||p,ν ≤ C1/p||v||p,µ.Indeed we have
||u||pp,ν =

∑

x∈X

ν(x)|u(x)|p ≤
∑

x∈X

ν(x)
[

∑

y∈X

Q(x, y)v(y)
]p

≤
∑

x∈X

ν(x)
∑

y∈X

Q(x, y)v(y)p

≤ C
∑

y∈X

µ(y)|v(y)|p = C||v||pp,µ,using Jensen's inequality.For example, if the Markov 
hain indu
ed by Q has an invariant probabilitymeasure ν, then we have ||u||p,ν ≤ ||v||p,ν (i.e. the 
onstant C = 1). This is the maintool used in [35℄ to derive an Lp−norm bound for temporal di�eren
e learning withlinear fun
tion approximation, where one poli
y only is 
onsidered.Now, in an MDP, there are several poli
ies, thus several sto
hasti
 matri
es tobe 
onsidered in order to relate ||u||p,ν to ||v||p,µ. The next subse
tion de�nes the
on
entration 
oe�
ients C1(ν, µ), C2(ν, µ), and C(µ) that generalize the 
onstant Cused here to the 
ase when several poli
ies are 
onsidered.A simple 
ase for whi
h the above idea may apply is the 
ase of Bellman residualbounds: Choose u = V ∗ − V π and v = 2

1−γ |T V − V |, and noti
e that the L∞ bound(4.5) is a 
onsequen
e of (4.6). The above idea will yield an Lp-norm performan
ebound (this will be done in Subse
tion 5.3).



PERFORMANCE BOUNDS FOR APPROXIMATE VALUE ITERATION 9This same idea also holds for deriving performan
e bounds for AVI. We noti
ethat the L∞ bound (2.2) may be dedu
ed from the 
omponentwise bounds (4.1) andextension to Lp-norms is possible with an adequate 
onstant, to be de�ned now.5.1. De�nition of the 
on
entration 
oe�
ients. We now de�ne the 
on-
entration 
oe�
ients C(µ), C1(ν, µ), and C2(ν, µ), that depend on the MDP, underwhi
h the distributions ν and µ may be related. Let ν and µ be two probabilitymeasures on X .Definition 5.1. We 
all C(µ) ∈ IR+ ∪ {+∞} the transition probabilities
on
entration 
oe�
ient, de�ned by
C(µ) = max

x,y∈X, a∈A

p(x, a, y)

µ(y)(with the 
onvention that 0/0 = 0, and we set C(µ) = ∞ if µ(y) = 0 and p(x, a, y) > 0for some x, y, a). Now, let π1, π2, . . . denotes any sequen
e of poli
ies. For all integer
m ≥ 1, we de�ne c(m) ∈ IR+ ∪ {+∞} by

c(m) = max
π1,...,πm, y∈X

(νP π1P π2 . . . P πm)(y)

µ(y)
, (5.1)(with the same 
onvention as above) and write c(0) = 1. Note that these 
onstantsdepend on ν and µ.We de�ne C1(ν, µ) and C2(ν, µ) ∈ IR+ ∪ {+∞}, the �rst and se
ond orderdis
ounted future state distribution 
on
entration 
oe�
ients, by

C1(ν, µ) := (1 − γ)
∑

m≥0

γmc(m), (5.2)
C2(ν, µ) := (1 − γ)2

∑

m≥1

mγm−1c(m). (5.3)Note that sin
e these 
oe�
ients will appear in our bounds we are interested inthe 
ases of �nite values, for whi
h it is su�
ient that the distribution µ be stri
tlypositive.The transition probability 
on
entration 
oe�
ient C(µ) was introdu
ed in [26℄to derive performan
e bounds for approximate poli
y iteration. C(µ) provides infor-mation about the relative smoothness of the immediate transition probabilities w.r.t.
µ, whereas C1(ν, µ) and C2(ν, µ) give information about the worst dis
ounted averagefuture state distribution when starting from ν and following any poli
y. Informally,the future state transition is a probability measure over the state spa
e indu
ed by thestate visitation frequen
y of the Markov 
hain resulting from the MDP when followinga poli
y.The 
oe�
ients c(m) measure how mu
h the future state distributions νP π1 . . .
P πm may possibly di�er from the distribution µ. The de�nition of C1(ν, µ) and
C2(ν, µ) introdu
es an exponential dis
ounting (�rst order dis
ounting weight of γmfor C1(ν, µ), and se
ond order dis
ounting weight of (m + 1)γm for C2(ν, µ), where mis the horizon time). The dis
ounting makes these 
oe�
ients small for a reasonablylarge 
lass of MDPs. For any sequen
e of poli
ies π1, . . . , πm, the (�rst and se
ondorder) dis
ounted future state distributions starting from ν and using this sequen
eof poli
ies (i.e. {xi ∼ p(xi−1, πi(xi−1), ·)}1≤i≤m) is bounded by these 
oe�
ients



10 R. MUNOS(C1(ν, µ) and C2(ν, µ)) times µ: for all x0, y in X ,
(1 − γ)

∑

m≥0

γmPr
(

xm = y
∣

∣x0 ∼ ν, π1, . . . , πm

)

≤ C1(ν, µ)µ(y),

(1 − γ)2
∑

m≥1

mγm−1Pr
(

xm = y
∣

∣x0 ∼ ν, π1, . . . , πm

)

≤ C2(ν, µ)µ(y).These 
oe�
ients are related to the so-
alled top-Lyapunov exponent Γ, whi
hplay a fundamental role in the stability analysis of sto
hasti
 pro
esses. It turns outthat the stability of a sto
hasti
 system, as related to the top-Lyapunov 
ondition
Γ ≤ 0 [8℄, is equivalent to the �niteness of the 
on
entration 
oe�
ients. Hen
e, asmall value of these 
oe�
ients 
an be interpreted as a stability 
ondition too. Furtherdis
ussion about this 
on
ept 
an be found in the report [27℄.5.2. Lp-norm performan
e bounds for AVI. The next result establishesperforman
e bounds for AVI in terms of the Lp,µ-norm of the approximation errors
εn = Vn+1 − T Vn.Theorem 5.2. Let µ and ν be two probability measures on X. Consider the AVIalgorithm de�ned by (1.1), write πn a poli
y greedy w.r.t. Vn, and εn = Vn+1−T Vn ∈
IRN the approximation error. Let ε > 0 and assume that A returns ε−approximations
Vn+1 in Lp,µ-norm (p ≥ 1) of T Vn, i.e. ||εn||p,µ ≤ ε, for n ≥ 0. Then:

lim sup
n→∞

||V ∗ − V πn ||∞ ≤
2γ

(1 − γ)2
[

C(µ)
]1/p

ε, (5.4)
lim sup

n→∞
||V ∗ − V πn ||p,ν ≤

2γ

(1 − γ)2
[

C2(ν, µ)
]1/p

ε. (5.5)Noti
e that the l.h.s. of the �rst result (5.4) evaluates the performan
e in termsof a L∞-norm whereas the l.h.s. of the se
ond result (5.5) makes use of a Lp norm(although the r.h.s. of both results is expressed in Lp norm). The �rst result does notdepend on the distribution ν and may dire
tly be 
ompared to the L∞ bound (2.2).A
tually (5.4) dire
tly implies (2.2) when p → ∞ (for any stri
tly positive measure
µ). Proof of Theorem 5.2. First, noti
e that the 
oe�
ient C(µ) is always largerthan C2(ν, µ) for any distribution ν. Indeed, for all m ≥ 1, c(m) ≤ C(µ). Thus
C2(ν, µ) ≤ (1 − γ)2

∑

m≥1
mγm−1C(µ) = C(µ). Thus, if the bound (5.5) holds forany ν, 
hoosing ν to be a Dira
 at ea
h state implies that (5.4) also holds. Therefore,we only need to prove (5.5). We may rewrite (4.4) as

V ∗ − V πn ≤
2γ(1 − γn+1)

(1 − γ)2

[

n−1
∑

k=0

αkAk|εk| + αnAn|V
∗ − V0|

]

,with the positive 
oe�
ients {αk}0≤k≤n

αk :=
(1 − γ)γn−k−1

1 − γn+1
, for 0 ≤ k < nand αn :=

(1 − γ)γn

1 − γn+1
,
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e that the sum ∑n
k=0

αk = 1), and the sto
hasti
 matri
es {Ak}0≤k≤n:
Ak :=

1 − γ

2
(I − γP πn)−1

[

(P π∗

)n−k + (P πnP πn−1 . . . P πk+1)
]

, for 0 ≤ k < n

An :=
1 − γ

2
(I − γP πn)−1

[

(P π∗

)n+1 + (P πnP πn . . . P π1)
]

.Sin
e the two sides of this 
omponentwise bound are positive, we may take the
Lp,ν norm of those two ve
tors:
||V ∗ − V πn ||pp,ν

≤
[2γ(1 − γn+1)

(1 − γ)2

]p ∑

x∈X

ν(x)
[

n−1
∑

k=0

αkAk|εk| + αnAn|V
∗ − V0|

]p

(x)

≤
[2γ(1 − γn+1)

(1 − γ)2

]p ∑

x∈X

ν(x)
[

n−1
∑

k=0

αkAk|εk|
p + αnAn|V

∗ − V0|
p
]

(x), (5.6)using two times Jensen's inequality (sin
e the 
oe�
ients {αk}0≤k≤n sum to 1 andthe matrix Ak are sto
hasti
) (i.e. 
onvexity of x → |x|p). The se
ond term in thebra
kets disappears when taking the upper limit. Now, from the de�nition of the
oe�
ients c(m), νAk ≤ (1 − γ)
∑

m≥0
γmc(m + n − k)µ, thus the �rst term in (5.6)satis�es

∑

x

ν(x)

n−1
∑

k=0

αkAk|εk|
p(x) ≤

n−1
∑

k=0

αk(1 − γ)
∑

m≥0

γmc(m + n − k)||εk||
p
p,µ

≤
(1 − γ)2

1 − γn+1

∑

m≥0

n−1
∑

k=0

γm+n−k−1c(m + n − k)εp

≤
1

1 − γn+1
C2(ν, µ)εp,where we repla
ed αk by their values, and used the fa
t that ||εk||p,µ ≤ ε. By takingthe upper limit in (5.6), we dedu
e (5.5). �What if AVI 
onverges ?. We know that there is no guarantee that AVI 
on-verges. However, experimentally, we observe that in some 
ases 
onvergen
e o

urs.It is interesting to noti
e that in su
h 
ases, better bounds may be derived (in anynorm) whenever γ > 1/2. Indeed, 
onvergen
e of AVI would mean that there exists

V ∈ IRN su
h that limn→∞ Vn = V . Thus, by taking the limit in (1.1), we dedu
ethat V is a �xed-point of the operator AT , i.e. V = AT V , and the approximationerror (2.1) tends to the residual T V − V of V .We dedu
e that the asymptoti
 performan
e of AVI is the performan
e of a poli
y
π greedy w.r.t. V , thus may be expressed in terms of the residual T V − V . Hen
e,the bounds based on the Bellman residual (the L∞-norm bound (4.5) or the 
om-ponentwise bound (4.6)), whi
h yields a 
oe�
ient 2/(1 − γ) instead of 2γ/(1 − γ)2(for AVI bounds), provides a better bound whenever γ > 1/2. The next subse
tionprovides an extension of Bellman residual bounds to Lp-norms.5.3. Lp-norm bounds based on the Bellman residual. Here, we relate theperforman
e of a poli
y π greedy w.r.t. V (where V ∈ IRN ) in terms of the Lp,µ-normof its residual T V − V .



12 R. MUNOSTheorem 5.3. Let V be a ve
tor of size N and π a poli
y greedy w.r.t. V . Let
µ and ν be two probability measures on X. Then

||V ∗ − V π||∞ ≤
2

(1 − γ)

[

C(µ)
]1/p

||T V − V ||p,µ, (5.7)
||V ∗ − V π||p,ν ≤

2

(1 − γ)

[

C1(ν, µ)
]1/p

||T V − V ||p,µ. (5.8)Here also, the �rst result (5.7) provides a L∞-norm bound on the performan
e,whi
h may dire
tly be 
ompared to the L∞ bound (4.5) (letting p → ∞) whereas a
Lp norm performan
e bound is stated in the se
ond result (5.8).Proof of Theorem 5.3. We may rewrite (4.6) as

V ∗ − V π ≤
2

1 − γ
A|T V − V |,where A is the sto
hasti
 matrix

A =
1 − γ

2

[

(I − γP π∗

)−1 + (I − γP π)−1
]

.Using the idea des
ribed in the introdu
tion of this se
tion, we have
||V ∗ − V π ||pp,ν ≤

[ 2

1 − γ

]p ∑

x∈X

ν(x)
[

A|T V − V |
]p

(x)

≤
[ 2

1 − γ

]p ∑

x∈X

ν(x)
[

A|T V − V |p
]

(x), (5.9)from Jensen's inequality. Now, from the de�nition of the 
oe�
ients c(m), νA ≤
(1 − γ)

∑

m≥0
γmc(m)µ = C1(ν, µ)µ, thus

||V ∗ − V π||pp,ν ≤
[ 2

1 − γ

]p

C1(ν, µ)µ|T V − V |p =
[ 2

1 − γ

]p

C1(ν, µ)||T V − V ||pp,µ,whi
h proves (5.8). Now, sin
e C(µ) ≥ C1(ν, µ) for any ν, 
hoosing ν to be a Dira
at ea
h state yields (5.7). �For intuition purpose, the 
omponents A(x, y) of the matrix A indi
ates a boundon the 
ontribution of the (absolute value of the) residual at a state y to the perfor-man
e error at the state x. Indeed,
V ∗(x) − V π(x) ≤

2

1 − γ

∑

y∈X

A(x, y)|T V − V |(y).It is 
lear from (5.9) that if we 
hose µ = νA, then the Lp bound be
omes
||V ∗ − V π ||p,ν ≤

2

(1 − γ)
||T V − V ||p,µ. (5.10)This bound may inspire us for solving a dire
t Bellman residual minimizationproblem, in some given fun
tion spa
e F :

min
V ∈F

||T V − V ||pp,µ



PERFORMANCE BOUNDS FOR APPROXIMATE VALUE ITERATION 13where the distribution µ now depends on V , through the poli
y π greedy w.r.t. V ,i.e. µ = νA = 1−γ
2

ν
[

(I − γP π∗

)−1 + (I − γP π)−1

]. We write µ = (µπ + µ∗)/2 with
µπ = (1−γ)ν(I−γP π)−1 being the dis
ounted future state distribution starting from
ν and following poli
y π, and µ∗ = (1 − γ)ν(I − γP π∗

)−1, similarly de�ned from theoptimal poli
y π∗.Thus the Lp,µ-norm of the residual to be minimized is 
omposed of two 
ontribu-tions:
||T V − V ||pp,µ =

1

2

(

||T V − V ||pp,µπ + ||T V − V ||pp,µ∗

)

. (5.11)One may 
onsider an iterative optimization method, su
h as a gradient method,where at ea
h iteration an empiri
al residual would be 
omputed and minimized.Minimization of the �rst term in (5.11) is easy to implement by designing a samplingdevi
e from µπ (i.e. start from an initial state x ∼ ν and follow transitions using the
urrent poli
y π during a horizon time that is a exponential random variable with
oe�
ient γ). The se
ond term is more di�
ult to deal with be
ause there is nosampling devi
e from µ∗ sin
e π∗ is unknown; one may 
onsider a somehow uniformdensity instead or use a dis
ounted future state distribution using a sto
hasti
 poli
y(where ea
h a
tion has a stri
t positive probability to be 
hosen).5.4. Some intuition about the 
oe�
ients C(µ), C1(ν, µ), and C2(ν, µ).Let us give some more insight about these 
oe�
ients in the 
ase of a uniform distri-bution µ = ( 1

N . . . 1

N ). In that 
ase, from its de�nition, the 
oe�
ient C(µ) is alwayssmaller than the number of states N . C(µ) equals N if there exists at least a deter-ministi
 transition (i.e. for some x, y ∈ X , a ∈ A, we have p(x, a, y) = 1). In that
ase, the Lp (say, for p = 1) bound (5.4) would be not better than the L∞ one (2.2)
ombined with the simple norm 
omparison result || · ||∞ ≤ N || · ||1.Hen
e, the Lp bound (5.4) (resp. (5.7)) is more informative than the usual L∞one (2.2) (resp. (4.5)) whenever the 
on
entration 
oe�
ient C(µ) is smaller than thenumber of states. An interesting 
ase for whi
h this happens is when the state spa
eis 
ontinuous and the transition kernel admits a density w.r.t. µ, for whi
h 
ase, C(µ)is the upper bound of this density. This 
ontinuous spa
e 
ase will be 
onsidered inSe
tion 7 and illustrated on an optimal repla
ement problem.Now, 
onsider the 
oe�
ients C1(ν, µ) and C2(ν, µ) when ν and µ are both uni-form.
• Their largest possible value is obtained in a MDP where for a spe
i�
 poli
y

π, all states jump to a given state -say state 1- with probability 1. Thus, forany ν, for all m, ν(P π)m = (1 0 . . . 0) ≤ c(m)µ holds with c(m) = N (withequality in state 1), and therefore C1(ν, µ) = C2(ν, µ) = N . This is the worst
ase be
ause the future state distribution a

umulates on a single state. Inthat 
ase, the Lp bound (5.5) (resp. (5.8)) may a
tually be derived from the
L∞ one (2.2) (resp. (4.5)) sin
e || · ||p ≤ || · ||∞ and || · ||∞ ≤ N1/p|| · ||p.

• Their lowest possible value is obtained in a MDP with uniform transitionprobabilities p(x, a, y) = 1/N , for all x, y ∈ X and a ∈ A. When ν and µ areboth uniform then c(m) = 1 and C1(ν, µ) = C2(ν, µ) = 1 (this is the lowestpossible value sin
e for a uniform ν and any sto
hasti
 matrix P , we have
maxy

∑

x ν(x)P (x, y) ≥ 1/N).Noti
e however that any deterministi
 MDP would not ne
essarily lead to a highvalue of the 
oe�
ients C1(ν, µ) and C2(ν, µ) (
ontrarily to the 
ase of C(µ)). Indeed,in an MDP where the poli
ies 
onsist in permutations of the states (for whi
h ea
h
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r=1 r=1Figure 5.1. The 
hain walk MDP.state has a unique su

essor and unique prede
essor), then C(µ) = N (sin
e thetransitions are deterministi
, as seen previously), but C1(ν, µ) = C2(ν, µ) = 1 foruniform distributions ν and µ (sin
e for all m ≥ 0, c(m) = 1). Another examplewhere the dis
ounted future state distribution 
on
entration 
oe�
ients is low (andindependent of the number of states N) is provided in the 
hain walk MDP des
ribedin the next subse
tion.The 
on
entration 
oe�
ients C1(ν, µ) and C2(ν, µ) express how the (�rst andse
ond order) dis
ounted future state distribution, starting from the initial distribu-tion ν, may possibly di�er from µ. A low value of these 
oe�
ients means that themass of the dis
ounted future state distribution starting from ν does not a

umulateon few spe
i�
 states for whi
h the distribution µ is low. For the purpose of obtaininglow values of these 
oe�
ients (thus probably good performan
e for AVI), it is desir-able that µ be somehow uniformly distributed (this 
ondition was already mentionedin [22, 20, 26℄ to se
ure the poli
y improvement steps in approximate poli
y iteration).5.5. Illustration on the 
hain walk MDP. We illustrate the fa
t that the Lp-norm bound (5.5) given in Theorem 5.2 is tighter than the L∞−norm (2.2) (
ombinedwith the norm 
omparison || · ||∞ ≤ N1/p|| · ||p) on the 
hain walk MDP de�ned in [23℄(see Figure 5.1). This 
ase provides an example for whi
h the 
oe�
ient C(µ) is high(its value is the number of states N) but C1(ν, µ) and C2(ν, µ) are low (independentof N).This is a linear 
hain with N states with two dead-end states: states 1 and N .On ea
h of the interior states 2 ≤ x ≤ N − 1 there are two possible a
tions: right orleft, whi
h moves the state in the intended dire
tion with probability 0.9, and failswith probability 0.1, leaving the state un
hanged. The reward simply depends on the
urrent state and is 1 at boundary states and 0 elsewhere: r = (1 0 . . . 0 1)′.We 
onsider an approximation of the value fun
tion in the two dimensional fun
-tion spa
e F := {fα(x) = α1+α2x}α∈IR2 where x ∈ {1, . . . , N} is the state index. As-sume that the initial approximation is zero: V0 = (0 . . . 0)′. Then T V0 = (1 0 . . . 0 1)′.The best �t (in L∞-norm) of T V0 in F is the 
onstant fun
tion V1 = (1

2
. . . 1

2
)′ whi
hprodu
es an error ||V1 − T V0||∞ = 1

2
.Let us 
hoose uniform distributions ν = µ = ( 1

N . . . 1

N ). In L1-norm, the best �tof T V0 in F is V1 = (0 . . . 0)′ (for N > 4) and the resulting error is ||V1 −T V0||1 = 2

N .In L2-norm the best �t is also 
onstant V1 = ( 2

N . . . 2

N )′ and the error is ||V1−T V0||2 =
√

2N−4

N .In these three 
ases, we observe by indu
tion that the su

essive approximations
Vn are 
onstant, thus T Vn = r + γVn and the approximation errors remain the sameas in the �rst iteration: for all n ≥ 0, ||Vn+1 − T Vn||∞ = 1

2
, ||Vn+1 − T Vn||1 = 2

N ,and ||Vn+1 − T Vn||2 =
√

2N−4

N .
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e Vn is 
onstant, any poli
y πn is greedy w.r.t. Vn. Hen
e for πn = π∗ thel.h.s. of (2.2) and (5.5) are equal to zero. Now, in order to 
ompare the r.h.s. ofthese inequalities, let us 
al
ulate the 
oe�
ients C(µ) and C1(ν, µ) and C2(ν, µ).Sin
e state 1 jumps to itself with probability 1, we have no better 
oe�
ient than
C(µ) = N .Now, the maximum in (5.1) is rea
hed when the mass of the future state distri-bution is mostly 
on
entrated on one spe
i�
 state -say state 1- whi
h 
orresponds toa poli
y πLeft that 
hooses everywhere a
tion left. We see that for ν = µ,

ν(P πLeft)m(x) ≤ ν(P πLeft)m(1) ≤ (1 + 0.9m)µ(x),for all x ≥ 0, thus c(m) ≤ 1 + 0.9m. We dedu
e that the 
oe�
ients C1(ν, µ) ≤
(1 − γ)

∑

m≥0
γm(1 + 0.9m) and C2(ν, µ) ≤ (1 − γ)2

∑

m≥1
mγm−1(1 + 0.9m) areupper bounded by a value that is independent of the number of states N .Thus, if we 
onsider the performan
e of AVI in L1-norm, the bound (5.5) (for

p = 1) provides an approximation of order O(N−1), whereas the L1 bound thatwould be obtained from the usual L∞ result (2.2) 
ombined with the norm 
omparison
|| · ||∞ ≤ N || · ||1 would provide a O(1) approximation only.Similarly, the L2−norm bound is of order O(N−1/2), whereas the L∞−normbound (2.2) 
ombined with || · ||∞ ≤ N1/2|| · ||2 would only be of order O(1).Thus, if our supervised learning algorithm returns the best regression fun
tion byminimizing an approximation error in Lp-norm (whi
h is usually the 
ase in pra
ti
e),the bound (5.5) may be arbitrarily more informative than (2.2) for largevalues of N .6. Pra
ti
al algorithms. Pra
ti
al implementations of AVI depend on theamount of knowledge available on the state dynami
s as well as the way the ex-pe
tation operation (in the Bellman operator) may be pro
essed.In the 
ase of a 
omplete model (when the state transitions p(x, a, y) are per-fe
tly known) and if the expe
tation operation is 
omputationally tra
table, then apossible implementation of AVI has already been des
ribed in the introdu
tion: atea
h stage n, we sele
t a set of states {xk ∈ X}1≤k≤K drawn a

ording to some dis-tribution µ, 
ompute the ba
ked-up values {vk = T Vn(xk)}1≤k≤K , and make a 
allto a SL algorithm with the data {(xk; vk)}1≤k≤K , whi
h returns an ε−approximation
Vn+1 in Lp,µ-norm, i.e. ||Vn+1 − T Vn||p,µ ≤ ε. Of 
ourse, we need additional as-sumptions on the number of samples K and the 
omplexity of the fun
tion spa
e
F (in terms of 
overing number or VC dimension) to guarantee that the empiri
alloss (

1

K

∑K
k=1

|Vn+1(xk) − vk|
p
)1/p is 
lose to the norm of the approximation error

||Vn+1 − T Vn||p,µ, but su
h 
onsiderations are omitted here, and we dire
t the inter-ested reader to [36, 15, 30℄.However, it is often the 
ase that no expli
it representation of the transitionprobabilities p(x, a, y) is available, but there exists a sampling devi
e that allows togenerate states y a

ording to the distribution p(x, a, ·) at any state x and a
tion
a of our 
hoi
e. We 
all this a generative model (see [21℄ for a survey of severalsampling models). One possible way to 
ompute the expe
tation operation in theBellman operator is to repla
e it by an empiri
al mean using this sampling devi
e.This leads to sampling based �tted value iteration, studied in [34℄.Another alternative, 
loser in spirit to Reinfor
ement Learning (RL) [33℄, 
onsistsin introdu
ing the state-a
tion value fun
tion, or Q-fun
tion, de�ned, for ea
h state-
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tion (x, a) ∈ X × A by
Q∗(x, a) :=

∑

y∈X

p(x, a, y)
[

r(x, a, y) + γV ∗(y)
]

.We have the properties that V ∗(x) = maxa∈A Q∗(x, a), and Q∗ is the �xed pointof the operator R, mapping from the spa
e of fun
tions X ×A → IR to itself, de�nedfor any Q : X × A → IR by
RQ(x, a) :=

∑

y∈X

p(x, a, y)
[

r(x, a, y) + γ max
b∈A

Q(y, b)
]

.An AVI algorithm using this representation would 
onsist in de�ning su

essiveapproximations Qn (with any initial Q0) a

ording to the re
ursion
Qn+1 = ARQn, (6.1)where A is a SL algorithm on X × A. A model-free RL algorithm would 
olle
t anumber of transitions of the form {(xk, ak)

rk→ yk}1≤k≤K , where ak is an a
tion 
hosenin state xk, the next state yk being generated a

ording to the generative model (i.e.
yk ∼ p(xk, ak, ·)), and rk = r(xk , ak, yk) is the re
eived reward. We then 
ompute theba
k-up values vk = rk + γ maxb∈A Qn(yk, b) (whi
h provides an unbiased estimate of
RQn(xk, ak)), and make a 
all to the SL algorithm with the data {(xk, ak); vk}1≤k≤K(the inputs being the 
ouples {(xk, ak)}, and the desired output {vk}), whi
h returnsthe next Q-fun
tion Qn+1.An interesting 
ase is when A is a linear operator in the values {vk} su
h as in lin-ear approximation, memory-based learning (k-Nearest Neighbors, Lo
ally WeightedLearning [3, 15℄) or Support Ve
tor Regression (in the 
ase of a quadrati
 loss fun
-tion). In that 
ase, the approximation A and expe
tation E operators 
ommute andthe approximation Qn+1 returned by the SL algorithm is therefore an unbiased esti-mate of ARQn. Thus when K is large, su
h an iteration a
ts like a (model-based)AVI iteration, and bounds similar to those of Theorem 5.2 may be derived.Noti
e that a poli
y π′

n derived from the approximate Q-fun
tion: π′
n(x) ∈

arg maxa∈A Qn(x, a) is di�erent from the poli
y πn greedy w.r.t. Vn, de�ned by
Vn(x) = maxa Qn(x, a). Indeed, the latter satis�es πn(x) ∈ arg maxa∈A RQn(x, a).However, bounds similar to (2.2), (5.4), and (5.5) on the performan
e of su
h poli
ies
π′

n may be derived analogously. An example of su
h bound in L∞-norm is providednow. Extension to Lp bounds would follow the same lines as in Se
tions 4 and 5.The performan
e Qπ : X × A → IR of a poli
y π is de�ned as follows: Qπ(x, a)is the expe
ted sum of rewards when starting from x, 
hoosing a
tion a and usingpoli
y π thereafter. Qπ is also the �xed-point of the Bellman operator Rπ , mappingfrom the spa
e of fun
tions X × A → IR to itself, de�ned by
RπQ(x, a) :=

∑

y∈X

p(x, a, y)
[

r(x, a, y) + γQ(y, π(y))
]

.Theorem 6.1. Consider the AVI algorithm de�ned by the Q-fun
tion iteration(6.1). Let ε be a uniform bound on the L∞ approximation errors of the Q-fun
tions,i.e. ||Qn+1 −RQn||∞ ≤ ε. The asymptoti
 performan
e of the poli
y π′
n (de�ned by

π′
n(x) ∈ arg maxa∈A Qn(x, a)) satisfy

lim sup
n→∞

||Q∗ − Qπ′

n ||∞ ≤
2γ

(1 − γ)2
ε.



PERFORMANCE BOUNDS FOR APPROXIMATE VALUE ITERATION 17Proof of Theorem 6.1. The proof is similar to that of (2.2); it su�
es torepla
e the V -value by the Q-values, the T (resp. T π) operator by the R (resp. Qπ)operators, and noti
e that Rπ′

nQn = RQn.�7. Numeri
al experiment in the 
ontinuous 
ase. All previous results ex-tend to the 
ase of 
ontinuous measurable state spa
es. We �rst rede�ne the 
on-
entration 
oe�
ients in this 
ontext and illustrate numeri
ally the method on anoptimal repla
ement problem, for whi
h the 
oe�
ient C(µ) is expli
itly 
omputed.Let us write P (x, a, B) the transition probability kernel, where B is any mea-surable subset of X . For a stationary poli
y π : X → A, we write P π(x, B) =
P (x, π(x), B), whi
h de�nes a right linear operator (de�ned on the spa
e of boundedmeasurable fun
tion V with domain X): P πV (x) :=

∫

X
V (y)P π(x, dy), and a left-linear operator (de�ned on the spa
e of probability measures µ on X): µP π(B) :=

∫

X
P π(x, B)µ(dx). The produ
t of two kernels P π1 and P π2 is de�ned by P π1P π2

(x, B) :=
∫

X P π1(x, dy)P π2(y, B).7.1. Con
entration 
oe�
ients. With these notations, the 
on
entration 
o-e�
ients are de�ned as follows: let ν and µ be two probability distributions on X .We assume that for all x ∈ X , a ∈ A, P (x, a, ·) is absolutely 
ontinuous w.r.t. µand the Radon-Nikodym derivative of P (x, a, ·) w.r.t. µ(·) is bounded uniformly in xand a. Then, the transition probabilities 
on
entration 
oe�
ient C(µ) is de�ned by
C(µ) := sup

x∈X,a∈A

dP (x, a, ·)

dµ
.Noti
e that if µ is the Lebesgue measure over X , and if P (x, a, ·) admits a uni-formly bounded density, then the 
on
entration 
oe�
ient C(µ) is equal to the upperbound of this density. This 
ase is illustrated in the numeri
al experiment below. The�rst and se
ond order dis
ounted future state distribution 
on
entration 
oe�
ients

C1(ν, µ) and C2(ν, µ) are de�ned similarly from (5.2) and (5.3).7.2. An optimal repla
ement problem. This experiment illustrates the re-spe
tive tightness of the L∞, L1, and L2 norm bounds on a 
ontinuous spa
e 
ontrolproblem ex
erpted from [31℄.A one-dimensional 
ontinuous variable xt ∈ [0, xmax] measures the a

umulatedutilization (su
h as the odometer reading on a 
ar) of a produ
t. xt = 0 denotes abrand new produ
t. At ea
h dis
rete time t, there are two possible de
isions: eitherkeep (at = K) or repla
e (at = R), in whi
h 
ase an additional 
ost Creplace (ofselling the existing produ
t and repla
ing it for a new one) o

urs. The transitiondensities are exponential with parameter β with a trun
ated queue. Moreover, ifthe next state y is larger than the maximal value xmax (e.g. the 
ar breaks downbe
ause it is too damaged) then a new state is immediately redrawn and a penalty
Cdead > Creplace o

urs. The transition densities are thus de�ned as follows: de�ning
q(x) := βe−βx/(1 − e−βxmax),

p(x, a = R, y) =

{

q(y) if y ∈ [0, xmax]
0 otherwise.

p(x, a = K, y) =







q(y − x) if y ∈ [x, xmax]
q(y − x + xmax) if y ∈ [0, x)
0 otherwise.



18 R. MUNOSThe 
urrent 
ost (opposite of a reward) c(x) is the sum of a slowly in
reasing fun
tion(maintenan
e 
ost) and a dis
ontinuous pun
tual 
ost (e.g. whi
h may represent 
arinsuran
e fees).The 
urrent 
ost fun
tion and the optimal value fun
tion (
omputed by a dis-
retization on a high resolution grid) are shown on Figure 7.1.

0 10
0

70

Accumulated utilization

Value function
Cost function

Figure 7.1. Cost and value fun
tions.

0

70

0 10

Accumulated utilization

TV0

V20
V1

Figure 7.2. T V0 (
rosses), V1 and V20.We 
hoose the numeri
al values γ = 0.6, β = 0.6, Creplace = 50, Cdead = 70,and xmax = 10. We 
onsider a uniform distribution µ on the domain [0, xmax]. We
hoose K points (with K = 200 or 2000 points) uniformly lo
ated over the domain
{xk := kxmax/K}0≤k<K to perform the L2 minimization �tting problem at ea
h
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Vn+1 = arg min

f∈F

1

K

K
∑

k=1

[f(xk) − T Vn(xk)]2,where F is the spa
e spanned by a trun
ated 
osine basis (with M = 20 or M = 40basis fun
tions):
F :=

{

f(x) =

M
∑

m=1

αm cos(mπ
x

xmax

)
}

α∈IRM

.We start with initial values V0 = 0. In Figure 7.2 we show the �rst iteration (forthe grid with K = 200 points): the ba
ked-up values T V0 (indi
ated with 
rosses), the
orresponding approximation V1 (best �t of T V0 in the 
osine approximation spa
e
F). The approximate value fun
tion 
omputed after 20 iterations (when there are nosigni�
ant improvement of the approximations) is also plotted.The 
on
entration 
oe�
ient C(µ) is the highest peak of the transition densitywith respe
t to the uniform distribution µ, thus C(µ) = q(0)xmax = βxmax/(1 −
e−βxmax) ≃ 6.

||εn||∞ C(µ)||εn||1
√

C(µ)||εn||2
K = 200, M = 20 12.4 0.367 1.16
N = 2000, M = 40 12.4 0.0552 0.897Table 7.1Comparison of the r.h.s. of the L∞, L1 and L2 bounds.Table 1 
ompares the right hand side (up to the 
onstant 2γ/(1−γ)2) of equations(2.2) and (5.4) for p = 1 and 2, their left hand side being the same sin
e they use thesame L∞-norm. We noti
e that the L1 and L2 bounds (5.4) are mu
h tighter thanthe L∞ one (2.2). Moreover we observe that the L1 and L2 approximation errors tendto 0 when the number K of sampling points and the number M of basis fun
tionsgo to in�nity, whereas the L∞ bound does not. Indeed, sin
e the 
ost fun
tion isdis
ontinuous, the L∞ approximation error (using 
ontinuous fun
tion approximationsu
h as the 
osine basis used here) will never be smaller than half the value of thelargest jump, even for large values of K and M . This example illustrates the fa
t thatthe Lp bound (5.4) may be arbitrarily tighter than the L∞ one (2.2).8. Con
lusion. Theorem 5.2 provides a useful tool to bound the performan
e ofAVI from the Lp-norm of the approximation errors, thus in terms of the approximationpower of most SL algorithms. Expressing the performan
e of AVI in the same normas the norm used by the supervised learner to solve the regression problem guaranteesthe tightness and pra
ti
al appli
ation of the bounds.In order that these bounds be of any use, we need to estimate an upper boundon the 
on
entration 
oe�
ients C(µ), C1(ν, µ), and C2(ν, µ), whi
h may be di�
ultin general. We illustrate the 
ase of low values of C1(ν, µ), and C2(ν, µ) in the 
hainwalk MDP, and the 
ase of a low value of C(µ) in the optimal repla
ement problem.Future work would 
onsider de�ning 
lasses of problems for whi
h these 
oe�
ientsmay be evaluated.Extension to other loss fun
tions l, su
h as ǫ-insensitive (used in Support Ve
tors)or Huber loss fun
tion (for robust regression) [36℄ is straightforward (as long as l is
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reasing and 
onvex fun
tion over IR+). Another possible extension is AVI forMarkov games.A
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