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PERFORMANCE BOUNDS IN Lp NORM FOR
APPROXIMATE VALUE ITERATION

REMI MUNOS*

Abstract.

Approzimate Value Iteration (AVI) is a method for solving large Markov Decision Problems
by approximating the optimal value function with a sequence of value function representations V,
processed according to the iterations V,,4+1 = ATV, where 7 is the so-called Bellman operator and
A an approzimation operator, which may be implemented by a Supervised Learning (SL) algorithm.

Usual bounds on the asymptotic performance of AVI are established in terms of the Loo-norm
approximation errors induced by the SL algorithm. However, most widely used SL algorithms (such
as least squares regression) return a function (the best fit) that minimizes an empirical approximation
error in Ly-norm (p > 1).

In this paper, we extend the performance bounds of AVI to weighted Lp-norms, which enables
to directly relate the performance of AVI to the approximation power of the SL algorithm, hence
assuring the tightness and pratical relevance of these bounds. The main result is a performance
bound of the resulting policies expressed in terms of the Lj,-norm errors introduced by the successive
approximations. The new bound takes into account a concentration coefficient that estimates how
much the discounted future-state distributions starting from a probability measure used to assess
the performance of AVI can possibly differ from the distribution used in the regression operation.

We illustrate the tightness of the bounds on an optimal replacement problem.

Key words. Markov Decision Processes, Dynamic programming, Optimal control, Function
approximation, Error analysis, Reinforcement learning, Statistical learning

AMS subject classifications. 49120, 90C40, 90C59, 93E20.

1. Introduction. We consider the problem of solving large state-space Markov
Decision Processes (MDPs) [29] in an infinite time horizon, discounted reward setting.

The Value Iteration algorithm is a method for computing the optimal value func-
tion V* by processing a sequence of value function representations V;, according to
the iterations V,, 11 = TV,,, where 7 is the so-called Bellman operator. Due to a con-
traction property -in Lo, —norm- of the Bellman operator, the iterates V,, converge to
V* as n — oco. However, this method is intractable when the number of states is so
large that an exact representation of the values is impossible. We therefore need to
represent the functions with a moderate number of coefficients and use methods for
finding an approximate solution.

A very popular algorithm is the Approximate Value Iteration (AVI) algo-
rithm. Tt has long been implemented in many different settings in Dynamic Pro-
gramming (DP) [32, 5] with online variants in the field of Reinforcement Learning
(RL) [7, 33]. It is defined by a sequence of value function representations V;, that are
processed recursively by means of the iterations

Vipr = ATV, (1.1)

where 7 is the Bellman operator and A an approzimation operator, which may be
sampled-based implemented by a Supervised Learning (SL) algorithm (see e.g. [15]).

Since we will make use of different norms, let us remind now their definition: Let
u € RN. Tts supremum (L) norm is defined by ||u||s 1= sup;<, <y [u(z)|. Now,
for u being a probability measure on {1,..., N}, the weighted L,-(semi) norm (for
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2 R. MUNOS

p > 1) -denoted by Ly - of wis ||ullp, = [ D cpen #(@)|u(@)]?] Y7 1n addition, we
write || - ||, the unweighted L,-norm (i.e. when p is uniform).

At typical implementation of AVI is Fitted Value Iteration which, given a func-
tion space F, computes at each iteration a new value representation V., € F by
projecting onto F the Bellman image of the current estimate V,,. For illustration, a
sampling-based version of this algorithm could be defined as follows: At stage n, we
draw a set of independent states {zy ~ p}i1<rp<k, where p is some probability mea-
sure on the state space, compute the Bellman values {vy := TV,,(zx) }1<k<xi for the
current approximation V,, at those states, then we make a call to a SL algorithm with
the data {(zx,vr)}1<k<ix (the {zi} being the input and {v;} the desired output).
The SL algorithm would return a function V,,4; (the best fit) that minimizes some
empirical loss

1
Vog1 1= argmin — > — vp),
+1 1= argmin - Ug(zk) — vk)
1<k<K

where the loss function [ is usually a square or an absolute function (or variants, such
as the e-insensitive loss used in Support Vectors [36]).

This is a sampled-based version of the minimization problem in a weighted (by
) absolute or quadratic norm (L, ,-norm with p =1 or 2 respectively)

argmin||g —TVa|lp,p-

The field of Statistical Learning analyses the difference between the minimized
empirical loss + 3, - < g [(Vag1 (i) — ) and the corresponding L, ,-norm approx-
imation error ||V,41 — 7 V,||p,u in terms of the number of samples K and a capac-
ity measure of the function space F (such as the covering number or the Vapnik-
Chervonenkis (VC) dimension [28, 36] of F).

It is therefore natural to search for bounds on the performance of AVI that rely
on weighted L,- norms (p > 1) of the approximation errors ||V, 41 — 7 Va||p,u-

Unfortunately, the main field of investigation so far in Approximate DP makes use
of the supremum norm [4, 5, 6, 29, 7, 16, 13]. For example, the asymptotic performance
of the policies deduced by the AVI algorithm may be bounded in terms of the L.-
norm of the approximation errors ||[Vy,11 — 7V, ||eo (see Section 2). However, this
bound is not very useful since this uniform approximation error is difficult to control
in general and is not very practical because most currently known SL algorithms
solve an empirical minimization problem in L,-norm (like least squares regression,
neural networks, Support Vector and Kernel regression). Since most approximation
operators provides good approximations in Lp-norm but a poor performance with
respect to the Lo,-norm, it would be relevant to measure the algorithm performance
with respect to the former norm.

The purpose of this paper is to extend error bounds for AVI to L,-norms. The
performance of AVI can therefore be directly related to the approximation power of
the SL algorithm.

To begin with, let us mention that of course, norms are equivalent (in the case of
finite dimensional spaces) since || - ||, < || [|oo < NY?||-||, (with p > 1 and N being
the number of states), thus the usual Lo, bound for AVI (detailed in Section 2) may
also be used to derive an L, norm bound. However, because of the NP factor, this
yields a very loose bound for large scale problems.
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The bounds derived here (see Theorem 5.2 in Section 5) depend on a new con-
centration (or stability) measure of the MDP: The concentration coefficient C(v, u)
measures how much the discounted average future-state distribution starting from
some distribution v used to assess the performance of AVI (through the weighting
of the L,—norm of the algorithm’s performance) can possibly diverge from the dis-
tribution p used in the regression step (by the SL algorithm). This concentration
coefficient is defined as an upper-bound, taken for any non-stationary policy, of the
derivative of the discounted future-state distribution (starting from v and following a
policy) with respect to (w.r.t.) the regression distribution .

This coefficient is related to the so-called top-Lyapunov exponent, which is com-
monly used to analyse the stability of stochastic processes. Further discussion about
this concept in continuous spaces (where this coefficient is defined in terms of the
Radon-Nykodim derivative of the related probability measures) can be found in [27].

A sufficient condition for the concentration coefficient to be small is when the
MDP is “smooth” (i.e. when the transition probabilities are strongly stochastic, e.g.
close to uniform distribution). Actually, we derive another bound, this time on the L.,
performance of the AVI algorithm (but still in terms of the L, approximation errors)
using another concentration coefficient C'(u) that relates the immediate transition
probabilities of the MDP to the regression distribution p. For a uniform g, a smooth
MDP will define a small C(u) value, and our bound will be sharp. However, for a
MDP with deterministic transitions, the coefficient C(u) could heavilly depend on
the number of states N, making our new bounds no more informative than a usual
Loo—mnorm bound. This is illustrated in the chain walk MDP (for which C(u) = N)
described in Subsection 5.5. However, even for deterministic MDPs, the concentration
coefficient C'(v, 1) may be small, and independent of N, as illustrated in the same
example. For such cases, the new L, bound is arbitrarily better than the usual Lo
one.

The main intuition underlying this extension of usual L., bounds to L,-norms
is actually simple (see the first paragraph of Section 5) and is a consequence of the
componentwise bounds obtained in Section 4.

To the best of our knowledge, this weighted L,-norm analysis of AVI is new. Pre-
vious L, analyses in Approzimate Dynamic Programming (ADP) include Temporal
Difference learning (for the evaluation of a fixed policy) with linear approximation
[35] and Approzimate Policy Iteration [26] (and [1] in the continuous space, sampled-
based case). Let us mention that there is an important body of literature in the
domain of weighted Lo,-norm analysis of ADP [7, 17|, especially for the linear pro-
gramming approach [10]. Let us also remark that there exists an important related
field concerned with stability, ergodicity and convergence properties of future state
distributions w.r.t. the invariant probability measure (in Markov chains [19] or MDPs
[18, 25]). This is not the direction followed in this paper since we are interested in
the discounted reward case (with a fixed discount factor) and not the average reward
case.

The paper is organized as follows: In Section 2, we remind some approximation
results in Lo,-norm. Section 3 is a rough survey of approximation operators and SL
algorithms. The main tool used in this paper is the derivation of the componentwise
bounds for AVI, detailed in Section 4. The performance bounds in L,-norms are stated
in Section 5 and the main result of this paper is given in Theorem 5.2. A subsection
provides some intuition on these results in case AVI algorithm would converge, which
leads to bounds expressed in terms of the L, Bellman residual. Section 6 details
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practical implementations of AVI (a sampling-based method using state-action value
function approximation). The case of a continuous measurable state space is treated in
Section 7 and a numerical experiment on an optimal replacement problem is detailed.

Preliminaries. We now describe the framework of MDPs in the infinite-time
horizon, discounted reward setting, considered here.

Let X be the state space, assumed to be finite with IV states and A a finite
action space. The results given in this paper extend to infinite state spaces (either
countable spaces or continuous spaces, the latter case being illustrated in Section 7).
Let p(z,a,y) be the probability that the next state is y given that the current state
is # and the action a. Let r(x,a,y) be the (deterministic) reward received when a
transition (z,a) — y occurs.

We call a (Markov or stationary) policy m a mapping from X to A. We write P7™
the N x N—matrix with elements P™(z,y) := p(z,7(z),y) and r™ the N-vector with
components 7" (z) := >, p(x, 7(z),y)r(z, 7(z),y).

For a given policy 7, the wvalue function V™ (considered as a vector with N
components) is defined as the expected sum of discounted rewards:

oo

Vi(x) := E[thr(a@t,at,xtﬂﬂxo =ux,as = w(xs)|,
t=0

where v € [0,1) is the discount factor. It is well known that V'™ is the fixed-point of the
operator 7™ : IRN — IRN defined, for any vector W € RN, by T™W := 1™ + ~vP™W.

The optimal value function V* := sup, V™ is the fixed-point of the Bellman
operator T defined, for any W € RN, 2 € X, by

TW(z) = max p(z,a,y)[r(z,a,y) + YW (y)].
yeX

We say that a policy 7 is greedy with respect to W € RY, if for all x € X,

m(x) € argmax > p(x, a,y)[r(x, a,y) + W (y)]
yeX

The goal is to find an optimal policy n*, which is such that for all z € X,
V™ (z) = max, V™(x). It is easy to see that a policy greedy w.r.t. V* is optimal.
Since A is finite, such an optimal policy always exits.

2. Approximation results in L,-norm. Consider the AVI algorithm de-
fined by (1.1) and define

en =TV, —Vpy1 € RN (2.1)

the approximation error at stage n. In general, AVI does not converge, but nev-
ertheless its asymptotic behavior may be analyzed. If the approximation errors are
uniformly bounded ||e,||cc < €, then a bound on the difference between the asymp-
totic performance of policies 7, greedy w.r.t. V,, and the optimal policy is (see e.g.

171):

limsup ||V* = V|| € ——5¢. (2.2)
msup|| e < s
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Since the proof is very simple, it is reminded here.
Proof. From the triangle inequality, the y-contraction of the Bellman operators
7T and 7™, and the fact that =, is greedy w.r.t. V,, (i.e. 7™ V,, = 7TV,,), we have

V5=V oo <WTVE =T Valloo + |77 Vo = T V™ ||
<AV =Valloo + (Vi = Voo V7 =V [|oc),

thus

V* =Vl < T2 [V = Vil (23)
-7

Moreover, ||[V* =V, i1lloo < [ TV* =T VallooHIT Vo= Vitilloo < V*—Val|oote.
Now, taking the upper limit yields limsup,,_ . ||[V* — Valleo < €/(1 — 7), which
combined with (2.3) yields (2.2).0

This Lo.-bound is expressed in terms of the uniform approximation error over
all states, which is difficult to guarantee, especially for large state-space problems.
Moreover, it is not, very useful in practice since most, current approximation operators
and supervised learning methods perform a minimization problem in L; or Ly norm
(although some exceptions of L. function approximation in the framework of DP
exist, see e.g. [12, 14]).

3. Approximation operators and Supervised Learning algorithms. In
this section we present an overview the problem of function approximation in the
context of Statistical Learning (see e.g. [36, 15]). To illustrate, an example of a
supervised learning (SL) algorithm would take as input some data {(zx,vk)}1<k<k,
where the states {z} € X} are drawn according to some distribution p on X, and the
values {v; € IR} are unbiased estimates of some (unknown) random function with
mean f(zy). This SL algorithm would return a function (called the best fit) that
minimizes (within a given class of functions F) the empirical loss, solving:

| X

inf 22> 1w — glan).
k=1

where the loss function [ is usually an absolute or a quadratic function (or variants,

such as the e-insensitive loss function used in Support Vectors or Huber loss function

used for robust regression [36]).

If the unknown function is deterministic (i.e. vy = f(zx)), A may be considered
as an approximation operator that returns a compact representation g € F of an
unknown function f by minimizing some empirical Ly-norm (p = 1 or 2) based on
the data. This is a sampling-based version of a minimization problem in weighted
norm L, ,. Statistical Learning theory establishes bounds on the error between the
minimized empirical loss Eszl I(f(zx)—g(xx)) and the L, ,—norm difference || f —
9l|p,,. in terms of the number of samples K and the capacity (or complexity) measure
of the function space F, characterized e.g. by the covering number or the Vapnik-
Chervonenkis dimension |28, 36| of F.

The projection onto the span of a fixed family of functions (often called features)
is called linear approzimation and include Splines, Radial Basis, Fourier or Wavelet
decomposition. It is often the case that a better approximation is reached when choos-
ing the features according to f (i.e. feature selection). This non-linear approximation
is particularly efficient when f has piecewise regularities (e.g. in adaptive wavelet
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basis [24] such functions are compactly represented with few non-zero coefficients).
Greedy algorithms for selecting the best features among a given dictionary of func-
tions include the Matching Pursuit and variants [9]. Approximation theory studies
the approximation error in terms of the smoothness of f [11].

In Statistical Learning, supervised learning algorithms include Neural Network,
Locally Weighted Learning and Kernel Regression 2], Support-Vectors and Reproduc-
ing Kernels [37, 36].

Hence, given the fact that we may always bound the empirical minimized error
using statistical learning tools, in the sequel, we will establish our bounds using the
L, ,—norm of the approximation errors. An extension of these results to sampling-
based AVTI is described in [27] and a policy iteration algorithm with Bellman residual
minimization using a single sample-path is described in [1].

4. Componentwise performance bounds. In this section, we formulate com-
ponentwise performance bounds, from which L, bounds will be derived in the next
section. The Lo, bound previously stated (2.2) is also an immediate consequence of
a componentwise bound.

4.1. Performance bound for AVI. A componentwise bound on the asymp-
totic performance of the policies 7, greedy w.r.t. V,, is provided now.

LemMA 4.1. Consider the AVI algorithm defined by (1.1) and write €, = TV,, —
Vos1 € RN the approzimation error at stage n. Let m, be a greedy policy w.r.t. V,,.
We have

limsup V* — V™ < limsup(l — yP™) " (4.1)

n—oo n—oo

n—1
( Y oAmR[(PT )R g PPt Pk P |6k|)’
k=0

where |ei| denotes the vector of absolute values of €.

In order to prove this lemma, we first need this preliminary result.

LeEMMA 4.2. Let A be an invertible matriz such that all the elements of its
inverse are positive. Then the solutions to the inequality Au < b are also solutions to
u< A 1b.

Proof of Lemma 4.2. Let u be a solution to Au < b. This means that there
exists a vector ¢ with positive components s.t. Au = b — ¢, thus u = A~1b — A~ 'c.
Since all components of A~ !¢ are positive, we deduce that v < A=1b. O

Proof of Lemma 4.1. From the definitions of 7 and 7™ we have componentwise
TV >T™ Vi and TV* > T™V*, thus

V- Vit =TV =T Vi + T" Vi = TVi + 66 < YP™ (V¥ = Vi) + e
V- Va1 =TV =TV 4+ TV — TV 45 > "yPﬂ'k(V* — Vk) + €k,

where in the second line, we used the definition of 7 as a greedy policy w.r.t. Vi, i.e.
TV, = TVi. We deduce by induction

n

|
—

Vv — V'n, ,Ynfkfl(Pﬂ-*)nfkflsk + ,_Yn(Pﬂ-*yz(V* _ VO); (42)

IA
1T
= O

V-V,

Y

AR (P P2 L PR gy
0
(PP P (V= V). (4.3)

E
Il
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Now, using again the definition of m, and the fact that 7V,, > T V,, we have:

V5V =TTV T Vo + T V=TV, + TV, =T V™
<T "V —T"Vy+ TV, —T™V™
=y P™ (V" = V) + 4P (V,, = V™)
= AP (V* = V) + 7P (V,, = V* 4+ V* = V),

thus (I — yP™)(V* — V™) < 4(P™ — P™)(V* — V,,). Now, since (I — yP™) is
invertible and its inverse Y, (vP™)F has positive elements, we use Lemma 4.2 to
deduce that -

V*—V™ < y(I —yP™) Y P™ — P™)(V* = V,).

This, combined with (4.2) and (4.3), and after taking the absolute value (note that
the vector V* — V™ is non-negative), yields

V*_Vﬂ'ng I—’}/PF")_l
n—1
n—k T*\n—k TTn DTn—1 Tht1
{ D [Pyt (PPt Py (4.4)
=0

Eod

[P g (PR PP PRIV - Vil

We deduce (4.1) by taking the upper limit. [

4.2. Performance bound based on the Bellman residual. In this section,
we derive a componentwise performance bound of a policy 7 greedy w.r.t. some
function V € IRY in terms of the Bellman residual of V. This result extends the
Loo-bound (see a proof in [38]):

* T 2
v*=v ||oo§m||TV—V||oo- (4.5)
The componentwise counterpart of this bound is stated now.
LEMMA 4.3. Let V € RN and 7 a policy greedy w.r.t. V. Then

VE VT < [(1—713”*)—1 + (I =P TV - V. (4.6)

We immediately notice that (4.5) is a direct consequence of this result, since for
any stochastic matrix P, [|(I —vP) || = 1/(1 — 7).

Proof of Lemma 4.3. We use the fact that 7V > 77 V and the definition of
m (l.e. TV =T7V) to derive

VeV =T "V - T " V4T " V-TV+TV TV~
<APT (V¥ = VT4 V™ —V)+~4P™(V —VT),

hence (I — yP™ ) (V* = V™) < y(P™ — P™)(V™ — V). Again, since (I —yP™ ) is
invertible and its inverse has positive elements, from Lemma 4.2, we deduce

V¥— VT <y(I—~P" ) YP™ — P VT=V).
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Moreover,
(I =P (V™ = V)= V™ =V — 4P V™ £ APV
=r"+yP"V - (r" 4+ 4PV + VT -V
=TV TV V"V =TV -V,
thus
V= VT <A(I=yP™ ) N (PT = PT)Y(I —yP") TV - V)

= (=P ) (I =P™) = (I =P )|(I = P") {(TV = V)

= [=~P" ) =g =P TV - V)

< [(I — AP (T - vP”)‘l} TV -V|. O

5. Approximation results in L,-norms. In this section, we generalize the
previously mentioned Lo, bounds to L,-norms. The main intuition behing this ex-
tension is simple and relies on the componentwise results described in the previous
section.

Indeed, assume that there exists two vectors u and v with positive components,
such that, componentwise u < Qu, where () is a stochastic matrix. Of course, we may
deduce that ||u||cc < ||v||co, but in addition, if v and p are probability measures on
X such that componentwise vQ) < Cu, where C' > 1 is a constant (and using usual
matrix notations with the probability measures being considered as row vectors), then
we deduce that

llullp < CH2]J0]lp.p

Indeed we have

lallp,, =D~ v(@)u@)” <Y v@)] ) Qe y(y)]”

zeX zeX yeX
< Y i) Y Qe y)u(y)
z€X yeX
<O uy) o)l = Clll,.
yeX

using Jensen’s inequality.

For example, if the Markov chain induced by @ has an invariant probability
measure v, then we have ||u||p., <|v||p,, (i-e. the constant C' = 1). This is the main
tool used in [35] to derive an L,—norm bound for temporal difference learning with
linear function approximation, where one policy only is considered.

Now, in an MDP, there are several policies, thus several stochastic matrices to
be considered in order to relate ||u||p. to ||[v||p,. The next subsection defines the
concentration coefficients C1(v, p), Co(v, 1), and C(u) that generalize the constant C
used here to the case when several policies are considered.

A simple case for which the above idea may apply is the case of Bellman residual
bounds: Choose u =V* — V™ and v = %U’V — V|, and notice that the Lo, bound
(4.5) is a consequence of (4.6). The above idea will yield an Lp-norm performance
bound (this will be done in Subsection 5.3).
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This same idea also holds for deriving performance bounds for AVI. We notice
that the Lo, bound (2.2) may be deduced from the componentwise bounds (4.1) and
extension to Ly-norms is possible with an adequate constant, to be defined now.

5.1. Definition of the concentration coefficients. We now define the con-
centration coefficients C'(u), C1(v, 1), and Ca(v, ), that depend on the MDP, under
which the distributions v and g may be related. Let v and p be two probability
measures on X.

DEFINITION 5.1. We call C(n) € R U {+oc} the transition probabilities
concentration coefficient, defined by

Clu)= max p(z,a,y)
z,y€X,a€A M(y)

(with the convention that 0/0 = 0, and we set C(u) = oo if u(y) =0 and p(z,a,y) >0
for some x,y,a). Now, let w1, 72, ... denotes any sequence of policies. For all integer
m > 1, we define ¢(m) € RT U {+oc} by

pmpra . pTm
c(m) = max (V )(y)j (5'1)
T1yeensTm, YEX :u(y)

(with the same convention as above) and write ¢(0) = 1. Note that these constants
depend on v and p.

We define Cy(v,p) and Ca(v,u) € R U {400}, the first and second order
discounted future state distribution concentration coefficients, by

Ci(vop) = (1=7) Y_ 7" e(m), (5.2)

m>0

Ca(v,p) == (1=7)* Y my™ "e(m). (5.3)

m>1

Note that since these coefficients will appear in our bounds we are interested in
the cases of finite values, for which it is sufficient that the distribution p be strictly
positive.

The transition probability concentration coefficient C'(u) was introduced in [26]
to derive performance bounds for approximate policy iteration. C'(u) provides infor-
mation about the relative smoothness of the immediate transition probabilities w.r.t.
1, whereas C1 (v, ) and Cy (v, ) give information about the worst discounted average
future state distribution when starting from r and following any policy. Informally,
the future state transition is a probability measure over the state space induced by the
state visitation frequency of the Markov chain resulting from the MDP when following
a policy.

The coefficients ¢(m) measure how much the future state distributions vP7 ...
P™ may possibly differ from the distribution p. The definition of Cy(v, ) and
Cs(v, p) introduces an exponential discounting (first order discounting weight of y™
for C1 (v, ), and second order discounting weight of (m + 1)y™ for Ca(v, u), where m
is the horizon time). The discounting makes these coefficients small for a reasonably
large class of MDPs. For any sequence of policies 71, ..., 7T,,, the (first and second
order) discounted future state distributions starting from v and using this sequence
of policies (i.e. {x; ~ p(xi—1,m(®i—1),)}1<i<m) is bounded by these coefficients
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(C1(v,n) and Ca(v, p)) times p: for all zg,y in X,

(1= > A" Pr(2m = ylzo ~ v, 71, .., M) < Cilv, w)paly),
m>0

(1=92> my"  Pr(zm = ylzo ~ v, 1, ) < Ca(v, @) pa(y)-
m>1

These coefficients are related to the so-called top-Lyapunov exponent I', which
play a fundamental role in the stability analysis of stochastic processes. It turns out
that the stability of a stochastic system, as related to the top-Lyapunov condition
I' < 0 [8], is equivalent to the finiteness of the concentration coefficients. Hence, a
small value of these coefficients can be interpreted as a stability condition too. Further
discussion about this concept can be found in the report [27].

5.2. L,-norm performance bounds for AVI. The next result establishes
performance bounds for AVI in terms of the L, ,-norm of the approximation errors
En = Vn+1 — TVn

THEOREM 5.2. Let p and v be two probability measures on X. Consider the AVI
algorithm defined by (1.1), write m, a policy greedy w.r.t. V,, and e, = V41 —TV, €
RN the approzimation error. Let e > 0 and assume that A returns e—approzimations
Vat1 in Ly y-norm (p > 1) of TV, i.e. |len||pu < €, for n > 0. Then:

2
limsup|[V* = V™| < ———[C(u)]"" e, (5.4)
n—o0 (I—=7)
. . om 2
limsup |[V* — V™|, < ﬁ [Ca(v, m)] P e. (5.5)

Notice that the L.h.s. of the first result (5.4) evaluates the performance in terms
of a Lo-norm whereas the Lh.s. of the second result (5.5) makes use of a L, norm
(although the r.h.s. of both results is expressed in L, norm). The first result does not
depend on the distribution v and may directly be compared to the L., bound (2.2).
Actually (5.4) directly implies (2.2) when p — oo (for any strictly positive measure
1)

Proof of Theorem 5.2. First, notice that the coefficient C(u) is always larger
than Co(v, u) for any distribution v. Indeed, for all m > 1, ¢(m) < C(u). Thus
Colvyp) < (1 —7)2Y, <y my™ 1C(p) = C(p). Thus, if the bound (5.5) holds for
any v, choosing v to be a Dirac at each state implies that (5.4) also holds. Therefore,
we only need to prove (5.5). We may rewrite (4.4) as

n—1

2~(1 — n+1 .
1= )[Zamusmamw - Vol

veoym < I
— _ 2
(1-7)?2 L&

with the positive coeflicients {a }o<k<n

1— n—k—1
ak::%, for0<k<n
1— n
and o, = ﬂ

1_,Yn+1 )
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(we notice that the sum >, _, a, = 1), and the stochastic matrices { Ay }o<p<n:

1-— .
Ay = TFY(I - ”yP”")fl [(PTr )”7]“ + (P™ P P”’““)}, for0<k<n

1- — T\ T T T
Ay = — (I =y P™) T (P74 (PP P,

Since the two sides of this componentwise bound are positive, we may take the
L, ., norm of those two vectors:

Vs=vmg.,
on4l » n—1 p
el SECI) SOPHEER RIS (B
xeX k=0
oty n—1
[2/78_71)2)} Z v(z) [ Z arAglerl? + anAn|V* — VOH (), (5.6)
zeX k=0

using two times Jensen’s inequality (since the coefficients {a}o<k<n sum to 1 and
the matrix Ay are stochastic) (i.e. convexity of © — |z|P). The second term in the
brackets disappears when taking the upper limit. Now, from the definition of the
coefficients c¢(m), vAr < (1 =), .~ 7" c(m 4+ n — k)p, thus the first term in (5.6)
satisfies

n—1 n—1
D v(@) Y onAglerlP(x) <D a1 —7) Y yme(m +n = k)|lexl[?,
T k=0 k=0

m>0

1 _ 2 n—1
< Lo S S i g e
v m>0 k=0

1_77,1“02 (v, p)e?,
where we replaced oy, by their values, and used the fact that ||ex||p,, < . By taking
the upper limit in (5.6), we deduce (5.5). O

What if AVI converges 7. We know that there is no guarantee that AVI con-
verges. However, experimentally, we observe that in some cases convergence occurs.
It is interesting to notice that in such cases, better bounds may be derived (in any
norm) whenever v > 1/2. Indeed, convergence of AVI would mean that there exists
V € IRYN such that lim, .o V,, = V. Thus, by taking the limit in (1.1), we deduce
that V is a fixed-point of the operator A7, i.e. V = ATV, and the approximation
error (2.1) tends to the residual 7V — V of V.

We deduce that the asymptotic performance of AVI is the performance of a policy
m greedy w.r.t. V, thus may be expressed in terms of the residual 7V — V. Hence,
the bounds based on the Bellman residual (the Lo.-norm bound (4.5) or the com-
ponentwise bound (4.6)), which yields a coefficient 2/(1 — ) instead of 2v/(1 — v)?
(for AVI bounds), provides a better bound whenever v > 1/2. The next subsection
provides an extension of Bellman residual bounds to L,-norms.

5.3. Ly,-norm bounds based on the Bellman residual. Here, we relate the
performance of a policy 7 greedy w.r.t. V (where V € IRY) in terms of the L, ,-norm
of its residual 7V — V.
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THEOREM 5.3. Let V' be a vector of size N and 7 a policy greedy w.r.t. V. Let
w and v be two probability measures on X. Then

* m 1
IV* =Vl < [Cu] P NTV = V[pps (5.7)

(1-7)

2
(1=7)
Here also, the first result (5.7) provides a Lso-norm bound on the performance,
which may directly be compared to the Lo, bound (4.5) (letting p — o0) whereas a

L, norm performance bound is stated in the second result (5.8).
Proof of Theorem 5.3. We may rewrite (4.6) as

* T 1
IV* =V < [C (v, )] PN TV = V[ e (5.8)

2
V —VT < —A|TV - V|,
L=~
where A is the stochastic matrix
1-— M
A: TW{(I—’YPTF )_1 +(I—'}/PT()_1:|

Using the idea described in the introduction of this section, we have

v =vip, <[] v [amv - v @)
zeX
< [%]p > @) ATV = V@), (5.9)
zeX

from Jensen’s inequality. Now, from the definition of the coefficients ¢(m), vA <
(1 =) > 0™ e(m)u = Ci(v, p)p, thus

2 7P 2 1P
*_YTIP < |2 _VIP— | = _ P
W=V, < ;== Ty = v = [ [ awmiTy - VI,

which proves (5.8). Now, since C(u) > Cy(v,u) for any v, choosing v to be a Dirac
at each state yields (5.7). O

For intuition purpose, the components A(z,y) of the matrix A indicates a bound
on the contribution of the (absolute value of the) residual at a state y to the perfor-
mance error at the state z. Indeed,

V(@) - V() < e 3 Al )TV - Vi),
v yeX

It is clear from (5.9) that if we chose p = v A, then the L, bound becomes

* 0 2
V=Vl < WHTV_VHP#' (5.10)

This bound may inspire us for solving a direct Bellman residual minimization
problem, in some given function space F:

TV - VP
min [|7V = VI,
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where the distribution g now depends on V', through the policy 7 greedy w.r.t. V,
ie. u=vA= I_TVV[(I — AP (T - ”yP”)*l}. We write g = (p™ + p*)/2 with
u™ = (1—~)v(I —yP™)~! being the discounted future state distribution starting from
v and following policy 7, and p* = (1 — y)v(I —yP™ )~', similarly defined from the
optimal policy 7*.

Thus the L, ,-norm of the residual to be minimized is composed of two contribu-
tions:

1
1TV =Vl =3 (||Tv — V|2 . +|TV - vngyu*). (5.11)

One may consider an iterative optimization method, such as a gradient method,
where at each iteration an empirical residual would be computed and minimized.
Minimization of the first term in (5.11) is easy to implement by designing a sampling
device from p™ (i.e. start from an initial state  ~ v and follow transitions using the
current policy 7 during a horizon time that is a exponential random variable with
coefficient ). The second term is more difficult to deal with because there is no
sampling device from p* since 7* is unknown; one may consider a somehow uniform
density instead or use a discounted future state distribution using a stochastic policy
(where each action has a strict positive probability to be chosen).

5.4. Some intuition about the coefficients C(u), Ci(v, ), and Ca(v, p).
Let us give some more insight about these coefficients in the case of a uniform distri-
bution = (4 ...+ ). In that case, from its definition, the coefficient C(y) is always
smaller than the number of states N. C(u) equals N if there exists at least a deter-
ministic transition (i.e. for some z,y € X, a € A, we have p(z,a,y) = 1). In that
case, the L, (say, for p = 1) bound (5.4) would be not better than the L., one (2.2)
combined with the simple norm comparison result || - ||oo < N|| - ||1-

Hence, the L, bound (5.4) (resp. (5.7)) is more informative than the usual Lo
one (2.2) (resp. (4.5)) whenever the concentration coefficient C'(u) is smaller than the
number of states. An interesting case for which this happens is when the state space
is continuous and the transition kernel admits a density w.r.t. u, for which case, C(u)
is the upper bound of this density. This continuous space case will be considered in
Section 7 and illustrated on an optimal replacement problem.

Now, consider the coefficients C; (v, ) and Ca(v, 1) when v and p are both uni-
form.

e Their largest possible value is obtained in a MDP where for a specific policy
m, all states jump to a given state -say state 1- with probability 1. Thus, for
any v, for all m, v(P™)™ = (10...0) < ¢(m)p holds with ¢(m) = N (with
equality in state 1), and therefore Cy (v, u) = Ca(v, u) = N. This is the worst
case because the future state distribution accumulates on a single state. In
that case, the L, bound (5.5) (resp. (5.8)) may actually be derived from the
Lo one (2:2) (tesp. (4.5)) since || [lp < || - [loc and || - [loc < NV2][- [,

e Their lowest possible value is obtained in a MDP with uniform transition
probabilities p(x, a,y) = 1/N, for all z,y € X and a € A. When v and p are
both uniform then ¢(m) = 1 and Cy (v, ) = Ca(v,u) = 1 (this is the lowest
possible value since for a uniform v and any stochastic matrix P, we have
maxy » . v(z)P(xz,y) > 1/N).

Notice however that any deterministic MDP would not necessarily lead to a high
value of the coefficients C; (v, u) and Ca(v, ) (contrarily to the case of C'(u)). Indeed,
in an MDP where the policies consist in permutations of the states (for which each
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0.1 0.1

Ficure 5.1. The chain walk MDP.

state has a unique successor and unique predecessor), then C'(u) = N (since the
transitions are deterministic, as seen previously), but Cy(v,u) = Ca(v,pu) = 1 for
uniform distributions v and g (since for all m > 0, ¢(m) = 1). Another example
where the discounted future state distribution concentration coefficients is low (and
independent of the number of states N) is provided in the chain walk MDP described
in the next subsection.

The concentration coefficients Cy(v, ) and Ca(v, u) express how the (first and
second order) discounted future state distribution, starting from the initial distribu-
tion v, may possibly differ from p. A low value of these coefficients means that the
mass of the discounted future state distribution starting from v does not accumulate
on few specific states for which the distribution p is low. For the purpose of obtaining
low values of these coefficients (thus probably good performance for AVI), it is desir-
able that p be somehow uniformly distributed (this condition was already mentioned
in [22, 20, 26] to secure the policy improvement steps in approximate policy iteration).

5.5. Illustration on the chain walk MDP. We illustrate the fact that the L,-
norm bound (5.5) given in Theorem 5.2 is tighter than the Lo, —norm (2.2) (combined
with the norm comparison ||-||c < N'/?||-||,) on the chain walk MDP defined in [23]
(see Figure 5.1). This case provides an example for which the coefficient C'(p) is high
(its value is the number of states N) but Cy (v, u) and Ca(v, 1) are low (independent
of N).

This is a linear chain with N states with two dead-end states: states 1 and N.
On each of the interior states 2 < x < N — 1 there are two possible actions: right or
left, which moves the state in the intended direction with probability 0.9, and fails
with probability 0.1, leaving the state unchanged. The reward simply depends on the
current state and is 1 at boundary states and 0 elsewhere: » = (10...01)".

We consider an approximation of the value function in the two dimensional func-
tion space F := {fo(2) = a1 + asx}pe gz where z € {1,..., N} is the state index. As-
sume that the initial approximation is zero: V5 = (0...0)". Then 7V, = (10...01)".
The best fit (in Log-norm) of TV, in F is the constant function Vi = (3 ...1)" which
produces an error |[V; — T Vp|so = 3.

Let us choose uniform distributions v = p = (% . %) In Li-norm, the best fit
of TVyin Fis V4 = (0...0)" (for N > 4) and the resulting error is ||[V; — T Vy|[1 = £.

In Ly-norm the best fit is also constant V4 = (% ... %)’ and the error is ||[V1 =T V|2 =
IN—4
-

In these three cases, we observe by induction that the successive approximations
V,, are constant, thus 7V,, = r + vV, and the approximation errors remain the same
as in the first iteration: for all n > 0, [[Voy1 — TValloo = &, |[Vas1 — TValh = £,

and [|Vyq1 — TV, |2 = 222,
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Since V,, is constant, any policy m, is greedy w.r.t. V,. Hence for m,, = 7* the
Lh.s. of (2.2) and (5.5) are equal to zero. Now, in order to compare the r.h.s. of
these inequalities, let us calculate the coefficients C(u) and Ci(v, ) and Ca(v, p).
Since state 1 jumps to itself with probability 1, we have no better coefficient than
C(p) = N.

Now, the maximum in (5.1) is reached when the mass of the future state distri-
bution is mostly concentrated on one specific state -say state 1- which corresponds to
a policy 7resy that chooses everywhere action left. We see that for v = p,

V(PR ) (1) < p(P™e )™ (1) < (14 0.9m)p(z),

for all > 0, thus ¢(m) < 1+ 0.9m. We deduce that the coefficients Cy (v, u) <
(1=7)3,507™ (1 +0.9m) and Co(v,p) < (1 —7)2> 51 my™ (1 + 0.9m) are
upper bounded by a value that is independent of the number of states N.

Thus, if we consider the performance of AVI in Li-norm, the bound (5.5) (for
p = 1) provides an approximation of order O(N~1), whereas the L; bound that
would be obtained from the usual Lo result (2.2) combined with the norm comparison
[| - 1loc < NJ|-||1 would provide a O(1) approximation only.

Similarly, the Ly—norm bound is of order O(N~1/2), whereas the L., —norm
bound (2.2) combined with || - ||oo < N'/2||-||2 would only be of order O(1).

Thus, if our supervised learning algorithm returns the best regression function by
minimizing an approximation error in L,-norm (which is usually the case in practice),
the bound (5.5) may be arbitrarily more informative than (2.2) for large
values of N.

6. Practical algorithms. Practical implementations of AVI depend on the
amount of knowledge available on the state dynamics as well as the way the ex-
pectation operation (in the Bellman operator) may be processed.

In the case of a complete model (when the state transitions p(z,a,y) are per-
fectly known) and if the expectation operation is computationally tractable, then a
possible implementation of AVI has already been described in the introduction: at
each stage n, we select a set of states {z; € X }1<x<k drawn according to some dis-
tribution p, compute the backed-up values {vy = TV, (zx)}1<k<i, and make a call
to a SL algorithm with the data {(x; vi)}1<k<k, which returns an e—approximation
Vat1 in Ly y-norm, ie. ||[Vig1 — TVyllpu < €. Of course, we need additional as-
sumptions on the number of samples K and the complexity of the function space
F (in terms of covering number or VC dimension) to guarantee that the empirical

1/p
loss (% Zszl [Vig1(xg) — vk|p) is close to the norm of the approximation error

[[Viir1 — T Va||p,u, but such considerations are omitted here, and we direct the inter-
ested reader to [36, 15, 30].

However, it is often the case that no explicit representation of the transition
probabilities p(z, a,y) is available, but there exists a sampling device that allows to
generate states y according to the distribution p(z,a,-) at any state z and action
a of our choice. We call this a generative model (see [21] for a survey of several
sampling models). One possible way to compute the expectation operation in the
Bellman operator is to replace it by an empirical mean using this sampling device.
This leads to sampling based fitted value iteration, studied in [34].

Another alternative, closer in spirit to Reinforcement Learning (RL) [33], consists
in introducing the state-action value function, or Q-function, defined, for each state-
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action (z,a) € X x A by

Q*(z,a) ==Y p(x,a,y)[r(z,a,y) + V" (y)].

yeX

We have the properties that V*(z) = max,eca Q*(z,a), and Q* is the fixed point
of the operator R, mapping from the space of functions X x A — IR to itself, defined
for any @ : X x A — IR by

RQ(w,a) := Y p(,a,y)[r(z,a,y) +ymax Q(y, b)].
yeX

An AVI algorithm using this representation would consist in defining successive
approximations @Q,, (with any initial Q) according to the recursion

Qn-i—l = ARQnu (61)

where A is a SL algorithm on X x A. A model-free RL algorithm would collect a
number of transitions of the form {(zx, ax) LY Yk }1<k<k, where ay is an action chosen
in state xy, the next state y, being generated according to the generative model (i.e.
Yk ~ p(Tk, ak, ), and r, = r(xg, ag, yx) is the received reward. We then compute the
back-up values vy = 7 +ymaxpe 4 Qn(yk, b) (which provides an unbiased estimate of
RQn(zk,ar)), and make a call to the SL algorithm with the data {(zk, ar); vk }1<k<i
(the inputs being the couples {(zx, ax)}, and the desired output {vy}), which returns
the next Q-function Q41.

An interesting case is when A is a linear operator in the values {vg} such as in lin-
ear approximation, memory-based learning (k-Nearest Neighbors, Locally Weighted
Learning [3, 15]) or Support Vector Regression (in the case of a quadratic loss func-
tion). In that case, the approximation A and expectation E operators commute and
the approximation @,1 returned by the SL algorithm is therefore an unbiased esti-
mate of ARQ,. Thus when K is large, such an iteration acts like a (model-based)
AVTI iteration, and bounds similar to those of Theorem 5.2 may be derived.

Notice that a policy m/, derived from the approximate @Q-function: =/, (x) €
argmaxge A Qn(z,a) is different from the policy m, greedy w.r.t. V,,, defined by
Vo(z) = max, Qn(x,a). Indeed, the latter satisfies m,(x) € argmax,ca RQn(x,a).
However, bounds similar to (2.2), (5.4), and (5.5) on the performance of such policies
m), may be derived analogously. An example of such bound in Lo,-norm is provided
now. Extension to L, bounds would follow the same lines as in Sections 4 and 5.

The performance Q™ : X x A — IR of a policy = is defined as follows: Q™ (z,a)
is the expected sum of rewards when starting from x, choosing action a and using
policy 7 thereafter. Q™ is also the fixed-point of the Bellman operator R™, mapping
from the space of functions X x A — IR to itself, defined by

R™Q(e,a) == 3 ple,a,y) [r(z.a.9) + Q. 7(v))].

yeX

THEOREM 6.1. Consider the AVI algorithm defined by the Q-function iteration
(6.1). Let ¢ be a uniform bound on the Lo, approzimation errors of the Q-functions,
i.e. [|Qnt1 — RQnlloo < e. The asymptotic performance of the policy w!, (defined by
7, (x) € argmaxgea Qn(z,a)) satisfy

2y

limsup [|Q" = Qoo < —— .
e (1-9)?
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Proof of Theorem 6.1. The proof is similar to that of (2.2); it suffices to
replace the V-value by the Q-values, the 7 (resp. 7™) operator by the R (resp. Q™)
operators, and notice that R™Q,, = RQ,.O]

7. Numerical experiment in the continuous case. All previous results ex-
tend to the case of continuous measurable state spaces. We first redefine the con-
centration coefficients in this context and illustrate numerically the method on an
optimal replacement problem, for which the coefficient C(u) is explicitly computed.

Let us write P(z,a,B) the transition probability kernel, where B is any mea-
surable subset of X. For a stationary policy 7 : X — A, we write P™(x,B) =
P(z,m(x), B), which defines a right linear operator (defined on the space of bounded
measurable function V' with domain X): P™V(z) := [, V(y)P"(z,dy), and a left-
linear operator (defined on the space of probability measures p on X): pP™(B) :=
Jx P™(x, B)u(dz). The product of two kernels P™ and P™ is defined by P™ P72
(z,B) := [y P™ (x,dy)P™ (y, B).

7.1. Concentration coefficients. With these notations, the concentration co-
efficients are defined as follows: let v and p be two probability distributions on X.

We assume that for all x € X, a € A, P(z,a,-) is absolutely continuous w.r.t. u
and the Radon-Nikodym derivative of P(z,a,-) w.r.t. p(-) is bounded uniformly in
and a. Then, the transition probabilities concentration coefficient C'(u) is defined by

dP(z,a,-)
C(p) := su —_—
(M) zGX,tlz)GA du

Notice that if y is the Lebesgue measure over X, and if P(x,a,-) admits a uni-
formly bounded density, then the concentration coefficient C () is equal to the upper
bound of this density. This case is illustrated in the numerical experiment below. The
first and second order discounted future state distribution concentration coefficients
Cy (v, ) and Co(v, ) are defined similarly from (5.2) and (5.3).

7.2. An optimal replacement problem. This experiment illustrates the re-
spective tightness of the Lo, L1, and Ls norm bounds on a continuous space control
problem excerpted from [31].

A one-dimensional continuous variable z; € [0, Zyax] measures the accumulated
utilization (such as the odometer reading on a car) of a product. z; = 0 denotes a
brand new product. At each discrete time ¢, there are two possible decisions: either
keep (a; = K) or replace (a; = R), in which case an additional cost Chreprace (0f
selling the existing product and replacing it for a new one) occurs. The transition
densities are exponential with parameter # with a truncated queue. Moreover, if
the next state y is larger than the maximal value zpn.x (e.g. the car breaks down
because it is too damaged) then a new state is immediately redrawn and a penalty
Caead > Creplace occurs. The transition densities are thus defined as follows: defining

) i= e (1 = e=Pms),

if y € [0, Zmax]
otherwise.

p(x,a =R, y) = { g(y)

Q(y - ,T) if Yy e [:v, xmax]
p(r,a=K,y) = q(y — 4 Tmax) if y€l0,z)
0 otherwise.
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The current cost (opposite of a reward) ¢(z) is the sum of a slowly increasing function
(maintenance cost) and a discontinuous punctual cost (e.g. which may represent car
insurance fees).

The current cost function and the optimal value function (computed by a dis-
cretization on a high resolution grid) are shown on Figure 7.1.

70
—— Vauefunction

---- Cost function

-7 Accumulated utilization
0 10

Ficure 7.1. Cost and value functions.

0 10

FI1GURE 7.2. TV (crosses), Vi and Vag.

We choose the numerical values v = 0.6, 8 = 0.6, Crepiace = 50, Cgeaa = 70,
and Tymax = 10. We consider a uniform distribution g on the domain [0, Zyax]. We
choose K points (with K = 200 or 2000 points) uniformly located over the domain
{zx = kZmax/K}o<k<rk to perform the L, minimization fitting problem at each
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iteration:

1 K

Va1 = arginin - D () = TVala)P?,

where F is the space spanned by a truncated cosine basis (with M = 20 or M = 40
basis functions):

€T

M
F = {f(:E) = mZ:l Qm, cos(rmrmmax }aeﬂ%M'

We start with initial values Vo = 0. In Figure 7.2 we show the first iteration (for
the grid with K = 200 points): the backed-up values 7V} (indicated with crosses), the
corresponding approximation Vi (best fit of 7V} in the cosine approximation space
F). The approximate value function computed after 20 iterations (when there are no
significant improvement of the approximations) is also plotted.

The concentration coefficient C'(p) is the highest peak of the transition density

with respect to the uniform distribution p, thus C(u) = ¢(0)Zmax = BTmax/(1 —
_ﬁmmax) ~ 6
e ~ 6.

llealloe | Cullenlls | VCW)llenll2
K =200, M =20 12.4 0.367 1.16
N = 2000, M =40 12.4 0.0552 0.897
TaBLE 7.1

Comparison of the r.h.s. of the Loo, L1 and L2 bounds.

Table 1 compares the right hand side (up to the constant 2v/(1—~)?) of equations
(2.2) and (5.4) for p =1 and 2, their left hand side being the same since they use the
same L..-norm. We notice that the L; and Ly bounds (5.4) are much tighter than
the Lo one (2.2). Moreover we observe that the L; and Lo approximation errors tend
to 0 when the number K of sampling points and the number M of basis functions
go to infinity, whereas the L., bound does not. Indeed, since the cost function is
discontinuous, the L., approximation error (using continuous function approximation
such as the cosine basis used here) will never be smaller than half the value of the
largest jump, even for large values of K and M. This example illustrates the fact that
the L, bound (5.4) may be arbitrarily tighter than the Lo, one (2.2).

8. Conclusion. Theorem 5.2 provides a useful tool to bound the performance of
AVI from the L,-norm of the approximation errors, thus in terms of the approximation
power of most SL algorithms. Expressing the performance of AVI in the same norm
as the norm used by the supervised learner to solve the regression problem guarantees
the tightness and practical application of the bounds.

In order that these bounds be of any use, we need to estimate an upper bound
on the concentration coefficients C(p), C1(v, 1), and Ca(v, i), which may be difficult
in general. We illustrate the case of low values of C; (v, u), and Ca(v, ) in the chain
walk MDP, and the case of a low value of C() in the optimal replacement problem.
Future work would consider defining classes of problems for which these coefficients
may be evaluated.

Extension to other loss functions [, such as e-insensitive (used in Support Vectors)
or Huber loss function (for robust regression) [36] is straightforward (as long as [ is
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an increasing and convex function over IR"). Another possible extension is AVI for
Markov games.
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