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Abstract— In this paper, we focus on the construction of an
efficient dominating set in ad hoc and sensor networks. A set
of nodes is said to be dominating if each node is either itself
dominant or neighbor of a dominant node. Application of such
a set may for example be broadcasting, where the size of the
set greatly impacts on energy consumption. Obtaining small sets
is thus of prime importance. As a basis for our work, we use
a heuristic given by Dai and Wu for constructing such a set.
Their approach, in conjunction with the elimination of message
overhead by Stojmenovíc, has been recently shown to be an
excellent compromise with respect to a wide range of metrics. In
this paper, we present an enhanced definition to obtain smaller
sets in the specific case where2-hop information is considered. In
our new definition, a nodeu is not dominant if there exists in its2-
hop neighborhood a connected set of nodes with higher priorities
that covers u and its 1-hop neighbors. This new rule requires
the same level of knowledge used by the original heuristic: only
neighbors of nodes and neighbors of neighbors must be known
to apply it. However, it takes advantage of some topological
knowledge originally not taken into account, that may be used to
deduce communication links between1-hop and2-hop neighbors.
We provide the proof that the new set is a subset of the one
obtained with the original heuristic. We also give the proof that
our set is always dominating for any graph, and connected for any
connected graph. Two versions are considered: with topological
and positional information, which differ in whether or not nodes
are aware of links between their 2-hop neighbors that are not
1-hop neighbors. An algorithm for locally applying the concept
at each node is described. We finally provide experimental data
that demonstrates the superiority of our rule in obtaining smaller
dominating sets. A centralized algorithm is used as a benchmark
in the comparisons. The overhead of the size of connected
dominating set is reduced by about15% with the topological
variant and by about 30% with the positional variant of our
new definition.

I. I NTRODUCTION

Wireless networking has become an essential part of new
technologies, allowing nomadic users to keep in touch with
their family or their office using miscellaneous devices such
as laptops,PDA’s or smartphones. The most deployed tech-
nology, known asWiFi, is still very restrictive as users must
be within the range of a correctly configured access point.
Densely populated area like airports or train stations may
easily be equipped with needed infrastructure, but it is notthe
case for other areas, where multi-hop wireless links may be

desirable. Multi-hop wireless ad hoc and sensor networks have
been widely studied recently. They are composed of a set of
hosts operating in a self-organized and decentralized manner,
which can communicate together using a radio interface. As in
any wireless network, transmission ranges are limited due to
propagation path loss, health and energy considerations. Thus,
each node must act alternately as a terminal and a router,
depending on the needs of the system, leading to a cooperative
multi-hop routing.

Energy conservation is one of the most challenging prob-
lems in ad hoc and sensor networks because batteries have
very limited capacities. Two particular important problems are
activity scheduling and broadcasting. In activity scheduling
problem, some nodes decide to turn off their radio equipment
to preserve energy, but should have at least one active neighbor
to collect messages for them or take over some sensing tasks.
In broadcasting problem, one host needs to send a particular
message to all the other ones in the network. Broadcasting
is applied for route discovery [1], synchronization, alarming
and other operations. In a straightforward solution to this
problem, hosts only need to blindly relay packets once to
their neighborhood. However, this leads to the well-known
broadcast storm problem [2]: while consuming a lot of energy,
this method does not even ensure a complete coverage of the
network due to multiple collisions. Connected dominating sets
may be used to solve these two problems.

In a connected dominating set (CDS), each node either
belongs toCDS or has a (1-hop) neighboring node inCDS.
In an activity scheduling solution, only nodes fromCDS
may remain active. To reduce the set of relaying nodes in
a broadcasting task, only nodes marked as dominant have
to act as routers to relay the broadcasting packet, so that
the broadcasting is performed by retransmitting by as few
nodes as possible. An efficient distributed algorithm, known
as the generalized self-pruning rule [3], has been proposedto
computeCDS by using only local1-hop information. In this
paper, we propose an improvement to this rule: while requiring
the same level of knowledge at each node, our enhanced
rule elects fewer nodes as dominant. No additional message



(a) Topological information. (b) Positional information.

Fig. 1. Positional information may be used at nodea to determine links between its2-hop neighbors.

exchanges are required to apply it, and needed information
may be obtained by using simple beacon messages. We also
give theoretical proofs that the set of nodes elected by our
algorithm is always dominant and connected, and provide
experimental data demonstrating the superiority of our method.

The remainder of this paper is organized as follows: in
the next section, we provide the definitions needed by our
network model, while in Sec. III a review of existing work
is proposed. In Sec. IV we describe our algorithm and give
the proof that the designated set is indeed always dominant
and connected. We then provide in Sec. V experimental data
for our new method and comparisons with existing work. We
finally conclude in Sec. VI and give some directions for future
work.

II. PRELIMINARIES

The common representation of a wireless network is a graph
G = (V,E), where V is the set of vertices (the hosts, or
nodes) andE ⊆ V 2 the set of edges giving the available
communications: if a nodev is a physical neighbor of a nodeu
(v lies within the communication range ofu and thus receives
its messages), then there exists(u, v) ∈ E. If we assume that
all nodes have the same communication range, denoted byR,
then the setE is defined by:

E = {(u, v) ∈ V 2 | dist(u, v) ≤ R},

dist(u, v) being the Euclidean distance between nodesu and
v. Each nodeu must be assigned a unique identifier id(u)
(this may be, for instance,IP or MAC address). We define
the neighborhood set N(u) of a nodeu as:

N(u) = {v ∈ V | v 6= u ∧ (u, v) ∈ E},

and the extended neighborhood setṄ(u) as:

Ṅ(u) = N(u) ∪ {u}.

The neighborhood function is naturally extended to sets
of nodes: for a given subsetV ′ ⊆ V , we have N(V ′) =
⋃

u∈V ′ N(u). The degree of a nodeu is simply its number

of neighbors|N(u)|, while the density of the network is the
average size of the extended neighborhood sets. We measure
the distance between two nodesu and v in terms of number
of hops, which is simply the minimum number of edges a
message has to cross to travel fromu to v.

A graphGD = (VD, ED), whereVD ⊆ V andED ⊆ E, is
dominant iff:

∀u ∈ V ∃v ∈ VD | v ∈ Ṅ(u).

In simple terms, each vertex is either dominant or1-hop
neighbor of a dominant node. The setED is the subset ofE
that contains only edges between two dominant neighbors:

ED = {(u, v) ∈ V 2

D | dist(u, v) ≤ R}.

We assume that each node is aware of its2-hop neighbors.
This is achieved in two rounds ofHELLO messages. First,
each node informs its neighbors about its existence (and
position, if this information is available). Next, each node
sends message to all its neighbors informing about its1-
hop neighbors (nodes from whichHELLO message in the
first round was received). In a mobile ad hoc network, each
node (regularly or based on its mobility) emits additional
HELLO messages, to maintain2-hop information. When a
nodeu receives from a nodev such a message,u addsv to
its neighborhood table, or updates the entry if it was already
there. Too old entries are regularly removed from the table,as
corresponding nodes have not signaled themselves recently.

If Euclidean distances between neighbors are needed, a
straightforward method to obtain them is to let nodes add their
position in their beacon messages. Positions may simply be
acquired by using a location system such as theGPS (Global
Positioning System). Other methods may be used, like deduc-
ing distances to neighbors by measuring the reception power
of messages. In the graph representing the2-hop knowledge
at each node, there exists a difference between topological
and positional information that may be used. If positional
information is available, each node may conclude, based on
their locations, whether two of its2-hop neighbors (which



are not1-hop neighbors) are neighbors themselves. Such a
conclusion cannot be made without position information (that
is, based solely on topological information), and therefore no
edge between such neighbors is assumed. Fig. 1 illustrates the
difference between these two assumptions, considering node
a. With topological information, in 1(a), the2-hop neighbors
{c, e, f, g} are assumed to not be directly connected, while it
is not the case with positional information in 1(b). However,
nodec is always known to be a common neighbor of nodesb
andd because it appears in both neighborhood lists.

III. R ELATED WORK

As stated in Sec. I, the easiest method for broadcasting
a packet is to have all nodes act as routers and relay it at
least once to their neighborhood: this method is known as
blind flooding. However, such a simple behavior has huge
drawbacks: too many packets are lost due to collisions between
neighboring nodes (this can lead to only a partial coverage of
the network) and far too much energy is consumed.

A possible method to reduce the energy consumption is to
determine a set of nodes, such that if only those nodes act
as routers, the broadcasting is still achieved. A dominating
set of verticesVD is suitable for this task, as long as it
is connected (there exists a path inGD between any two
vertices). Once such a set has been obtained, the broadcasting
process becomes obvious:

• The source node sends the packet to its neighborhood.
• Each dominant node that receives it acts as a router and

forwards it to its neighbors.
• Each non-dominant node simply drops it.

Besides this simple method, dominating sets can also be
used as part of a more sophisticated broadcasting mechanisms
[4].

Another application of connected dominating sets intro-
duced in Sec. I is activity scheduling, especially in sensor
networks. In this problem, only a subset of nodes needs to
keep active its radio equipment to form a backbone. The latter
is used to forward messages from some sensors to the sink.
Nodes that do not belong to the backbone may turn off their
radio equipment, thus saving a lot of energy. When an event
occurs in their neighborhood, they just have to turn on their
radio module to transmit an alert to their dominant neighbors.

The simplest connected dominating set is the unit graph
itself, and using such a set for broadcasting is the same as
performing a blind flooding. The problem of computing the
smallest possible connected dominating set is known to be a
NP-complete problem [5], [6] and requires a global knowledge
of the network topology, thus many centralized and distributed
approximated algorithms for constructing efficient sets have
been proposed. We will describe only one here, which is quite
simple, efficient compared to others, and easy to describe. It
is a centralized algorithm proposed by Guha and Khuller in
[7] as follows. Each node is initially colored as white. The
densest node in the graph is then colored as black, and all its

Fig. 2. Dai and Wu’s heuristic:VD = {g, h, i}.

neighbors as grey nodes. Then, iteratively, while there exists
some white nodes, the grey node with the largest number of
white neighbors is selected, colored as black node, and all its
white neighbors as grey nodes. Ties can be resolved by using
some keys (identifiers). At the end, the set of black nodes is
a connected dominating set, and its size is a good estimate
of the limits one can reach with a localized heuristic. Some
localized efficient heuristics have also been proposed and may
thus be applied in decentralized networks.

Wu and Li proposed in [8] an algorithm that has been
later improved in term of message overhead in [9], [10].
We describe here the latter because it requires no messages
once2-hop neighborhood information is available. A node is
referred to asintermediateif it has at least two neighbors not
directly connected. A nodeu is covered by a nodev ∈ N(u)
if N(u) ⊆ N(v) and key(v) > key(u). Nodes that are not
covered by any neighbor are calledinter-gatewaynodes. A
node u is covered by two connected nodesv ∈ N(u) and
w ∈ N(u) if N(u) ⊆ (N(v) ∪ N(w)), key(v) > key(u) and
key(w) > key(u). Inter-gateway nodes that are not covered
by any pair of connected neighboring nodes becomegateway
nodes.

This rule has been further improved in term of number of
dominating nodes by Dai and Wu [3]: they proposed a more
general rule where coverage can be provided by an arbitrary
number of connected1-hop neighbors. A modification of this
generalized self-pruning rulehas been proposed by Stojmen-
ović in [11] in order to avoid similar message exchanges
between neighbors. A nodeu is covered by a set of1-hop
neighborsAu if Au is connected, N(u) ⊆ N(Au) and if
each node inAu has a higher key thanu. It has been further
computationally simplified by Carle and Simplot-Ryl [12] as
follows. First, each node checks if it is intermediate, thatis,
whether it has at least two neighbors not directly connected.
Then each intermediate nodeu constructs a subgraphGh of
its 1-hop neighbors with higher keys. In the graph composed
by N(u), each node which has a lower key thanu is removed,
as well as the corresponding edges. The resulting subgraph is
denoted byGh. If the latter is empty or disconnected thenu
is in the dominating set. IfGh is connected but there exists
a neighbor ofu which is not neighbor of any node fromGh



(a) key(u) = u. (b) key(u) = {|N(u)|, u}.

Fig. 3. Applying Dai and Wu’s heuristic with different kindsof priorities.

then u is in the dominating set. Otherwiseu is covered and
is not in the dominating set. Dijkstra’s shortest path algorithm
can be used to test the connectivity (it is performed locally
at each node). Non-intermediate nodes are never dominant.
This rule is illustrated by Fig. 2, where black nodes are
dominant, and identifiers of nodes are used as keys using the
lexicographical order for comparisons. Nodes{d, e} are not
intermediate because they do not have unconnected neighbors,
they are thus not dominant. GraphsGh of nodesa({e, g, h}),
b({c, f, i}), c({d, f, h}) andf({g, h, i}) are all connected, and
cover neighbors with lower priority. These nodesa, b, c andf
are thus not dominant. Only nodesg, h and i change their
status to dominant. Finally,VD = {g, h, i}.

The key of a node represents its priority, and it is assumed to
be unique for each node. A simple priority can be the identifier
of the node, but it may also be any collection of values with
the aim of increasing the efficiency of the dominating set. For
example, in [13] the proposed key for a nodeu is:

key(u) = {energy(u),degree(u), id(u)}.

This means that nodes with higher energy level have a larger
probability to be elected as dominant. If the energy levels are
equal for two nodes, then the second key, degree, is used for
comparison. Finally, if there is a tie with the degree as well,
the identifier is used. Fig. 3 illustrates the differences obtained
when using different kinds of keys: in 3(a), the keys are the
identifiers of nodes, while in 3(b) the degree is used a the
primary key and the identifier as the secondary one. Some
other keys were later proposed and studied in [14].

Liu, Pan and Cao recently proposed in [15] an iterative
localized algorithm for connected dominating sets, improving
the concept of [8] in terms of size of connected dominating
sets, but at the expense of additional messages between
neighboring nodes. The principle is to have nodes exchange
messages with their neighbors (there are exactly5 messages

exchanged) in order to decide whether they should be domi-
nant, using information received from their neighbors. At each
step, each node that decides not to be dominant becomes
passive; otherwise it is active and reevaluates this decision
in the next round. There can be6 messages exchanged if
each node wants to know which of its neighbors are domi-
nant. The authors claimed that this process prevents ‘illegal
simultaneous’ removals from the dominating set, which may
disconnect it. The experimental performances show that the
computed set is efficient, but the communication overhead and
the synchronization needed make it more difficult to apply in
a distributed environment. Furthermore, beacon messages are
also needed for the first step to take place.

In [16], authors proposed a performance comparison of vari-
ous protocols for computing backbones in ad hoc networks, in-
cluding the previously cited protocols. They measured miscel-
laneous parameters, like the computation complexity (needed
time to create the backbone), the backbone size or even the
energy consumption per node in order to determine which
protocol suits the best to ad hoc networks. They concluded
that Wu and Li’s algorithm used in conjunction with the
variant by Stojmenović, Seddigh and Zunic [9] is an excellent
compromise with respect to all the considered metrics, and
overall far superior than any other approach that exists in
literature. This study completely justifies our approach on
working on this concept to propose a more efficient one.

IV. D OMINATING SETS BASED ON COVERAGE BY TWO-HOP

NEIGHBORS

In this section, we give an enhanced definition for com-
puting a connected dominating set over a connected graph by
using only2-hop topological or positional information. Note
that a very general definition for computing such sets was
given by Wu and Dai in [17].

We also provide proofs that the set obtained with this new
definition is:



(a) Original rule. (b) Enhanced rule.

Fig. 4. Dai and Wu’s heuristic and its enhanced variant. Identifier of nodes gives their priority, using the lexicographical order.

• a subset of the one obtained with Dai and Wu’s heuristic,
• always dominating for any graph,
• always connected for any connected graph.

We finally provide an efficient algorithm to apply this rule
in a practical context.

A. Description

Our new definition of dominating sets is based on the
observation that the method described by Dai and Wu [3]
requires2-hop topological knowledge, because nodes need to
know their neighbors and the neighbors of their neighbors, and
that this knowledge could be better used by applying some
enhanced concepts. To illustrate this, let us consider Fig.4(a)
where the generalized self pruning rule has been applied using
the lexicographical order to determine the priority of nodes.
The nodea has been marked as dominant because it has two
neighbors{b, f} not covered by any set of neighbors with
higher priority. In fact,a is itself covered by{b, e, f} although
e is not a1-hop neighbor, anda could be marked as passive
as illustrated in 4(b): the set of black nodes would remain
connected and dominant. Whilee is not a direct neighbor of
a, this does not prevent the latter from verifying whether any
of its neighbors are neighbors ofe, or whether{b, e, f} are
connected, sincee appears in the list of neighbors sent toa by
its 1-hop neighbors, therefore such conclusion can be made.
Similarly in 4(b), nodeb concludes that it is not dominant
since all its neighbors{a, c, e} and itself are covered by its
connected higher key2-hop neighbors{e, f}.

Therefore, our new definition of the dominating setVD may
be described as follows:

∀u ∈ V u /∈ VD ⇔ (1)

∃Au ⊆ Ṅ(u)2 \ {u}







∀v ∈ Au, key(v) > key(u)
Au connected

Ṅ(u) ⊆ Ṅ(Au)

In other words, an intermediate nodeu is not dominant if
there exists in its2-hop neighborhood a connected setAu

of nodes with higher priorities, such that each neighbor ofu
either belongs toAu or is a neighbor of a node inAu (i.e.,
Au coversṄ(u)).

Note that, when topological information is used,u is not
aware of possible links between its2-hop neighbors, and
therefore may declare the set disconnected although in reality
it may be connected (refer to Fig. 1). This can be avoided
if nodes are able to determine their location: they can add
it to their beacon messages, and thus links between2-hop
neighbors will be part of the knowledge of nodes. This variant
is considered from an experimental point of view in Sec. V.

B. Proof of inclusion

Theorem 1:The dominating setVD computed with our new
definition is a subset of the one obtained with the generalized
self-pruning rule.

Proof: In the generalized self-pruning rule, a nodeu is
marked as not dominant if there exists a connected subset of
N(u) composed by higher priority neighbors such thatṄ(u)
is covered by this subset. As N(u) ⊆ Ṅ(u)2 \ {u}, if there
exists such a set in N(u), then it also exists iṅN(u)2 \ {u}.
We can thus deduce that nodes marked as not dominant by the
generalized self-pruning rule are also marked as not dominant
by our new definition, which can only remove more nodes
from the dominating set.

This proof demonstrates that our new definition cannot
generate a larger setVD than the one obtained with the
generalized self-pruning rule.

C. Proof of dominance

Theorem 2:For any given graphG = (V,E), each node
u ∈ V either belongs toVD or is a neighbor of a nodev ∈ VD.

Proof: Assume that the setVD is not dominating. Let
u be a node which is not in the dominating set and has no
dominant neighbor. Nodeu is covered byAu, set of 2-hop
neighbors with higher key values thanu. Let v be the node
with the highest key value in N(u). Nodev has higher priority



thanu because of the existence ofAu and the need for at least
one node fromAu to be1-hop neighbor ofu. Nodev is not
dominant becauseu is not covered byVD. It is thus covered
by a setAv. Thereforeu is neighbor of a nodew from Av.
Node w is therefore neighbor ofu and has higher key value
thanv, which is a contradiction with respect to the choice of
v.

D. Proof of connectivity

Theorem 3:For any given connected graphG = (V,E),
there exists a path between any two vertices in the graphGD =
(VD, ED) produced by our algorithm.

Proof: We may assume that nodes are removed one by
one in ascending order of priority instead of simultaneous
removal and will show that the removal of any nodeu
preserves the connectivity. Letvuw be a path via nodeu.
Nodeu is removed because of the setAu, which is connected
and covers its neighbors, as illustrated by Fig. 5. Moreover,
no nodes ofAu has already been removed sinceAu contains
nodes with higher priority thanu. This means that there are
two nodesv′ andw′ from Au so thatv is neighbor ofv′, w is
neighbor ofw′, andv′ andw′ are connected inAu. This means
that nodesv andw remain connected after removal of nodeu.
We can thus deduce that a nodeu will never ‘remove’ itself
from the dominating graph if there does not exist another path
between any two components that are ‘glued’ together thanks
to u.

All three proofs do not depend on the possible links between
2-hop neighbors. They are therefore valid for both topological
and positional information. This does not mean that they will
result in the same dominating set. On the contrary, they can
differ, since these ‘special’ links may be used to make a set
of neighbors with higher priorities connected.

E. Algorithm

It could seem at first that the algorithm used for Dai and
Wu’s heuristic described in Sec. III could also be used for
our new definition: instead of computing the graphGh using
the1-hop neighborhood, it could be computed using the2-hop
neighborhood (minus the links between the2-hop neighbors in

Fig. 5. Removal of vertexu does not lead to a loss of connectivity between
verticesv andw.

Fig. 6. A new algorithm must be used for the enhanced definition.

case of topological information). However this may not work
correctly, as illustrated by Fig. 6: nodeu is not dominant
because there exists a connected set{v, w} which covers
{a, u}. However, the set of nodes of higher priority within
the2-hop neighborhood{v, w, x} is not connected. Using the
original algorithm,u would have been marked as dominant.

We therefore describe here a new algorithm for testing
whether or not nodeu will declare itself as being in dominat-
ing set as follows. This algorithm takesO(k2d2) time, where
d is the average density.

1) Create a graphGh composed from the nodes of higher
priority thanu within the 2-hop neighborhood ofu.

2) Find the connected components inGh; this can be
done by repeated application of Dijkstra’s shortest path
algorithm starting each time from an unseen node. Alter-
nately, depth first search or breath first search protocols
can be repeatedly applied to find all components.

3) If u and its1-hop neighbors are covered by at least one
component, then marku as not dominant.

V. PERFORMANCESEVALUATION

In our simulation, we compared our enhanced definition
with the original heuristic by Dai and Wu. We did not consider
other methods because of their communication overhead for
construction and maintenance and other significant drawbacks
as verified in [16]. On the other hand, only beacon (‘HELLO’)
messages are required for the two compared rules. We used a
very efficient centralized algorithm by Guha and Khuller [7]as
the benchmark in our comparisons. That algorithm is a good
measure of the ability of localized algorithms to produce small
connected dominating sets, and a good indicator of progress
made among localized protocols.

We use the following abbreviations:
• CH: Centralized heuristic.
• ED: Enhanced definition.
• EDPOS: Enhanced definition with positioning informa-

tion, this means that nodes are aware of links between
their 2-hop neighbors.

• GSPR: Generalized self-pruning rule.

The parameters of the simulations are the following. The
network is static and always composed of500 nodes randomly
distributed in a uniform manner over a square area whose size
is computed in order to obtain a given degree. We define the
latter as the number of nodes in a communication area. For
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Fig. 7. Percentage of dominant nodes for varying degree.

each measure, we took the average value obtained after500
iterations.

We give in Fig. 7 the average percentage of dominant nodes
obtained by applying the different schemes for varying degree
between10 and100. Not surprisingly, the centralized greedy
heuristic performs the best in obtaining small dominating sets
for all ranges, and for high degree like50, only 5.15% of nodes
are marked as dominant. As theoretically proven in previous
section, our enhanced definition always performs better in
giving smaller dominating sets in the average case. For the
value of20 nodes per communication area, only26% of nodes
are elected as dominant, against28.19% for the generalized
self-pruning rule. As expected, using positioning information
brings even better results, and only23% of nodes are then
marked as dominant. For higher density (50) the percentage of
dominant nodes even decreases down to respectively11.56%
and10.32%.

We provide in Fig. 8 the overhead of the localized heuristics
over the centralized one. Considering degree30 in 8(a),GSPR
has an overhead equal to151%: this means that this heuristic
elects151% more nodes as dominant thanCH. For the same
degree,ED has an overhead of129%, this is a difference of
22%. With positioning information,EDPOS scores only an
overhead of105%, the difference being equal this time to46%.
In summary, as illustrated in 8(b), the overhead of the size of
connected dominating set was reduced by about15% with
the topological variant and by about30% with the positional
variant of our new definition, with respect to the generalized
self prunning rule. These percentages appears rather stable
with respect to the network densities, for dense networks.

We finally give in Fig. 9 a comparison of the protocols in
terms of the dominant graphs they produce. In 9(a) is given
the average degree of theCDS’s (this is the average number
of dominant neighbors per dominant node). Not surprisingly,
this value is dependent on the average size of theCDS’s: the
smallest is the set, and the smallest is the average degree, so
CH obtains the best results andGSPR the highest ones. An
interesting remark is that the degree of the producedCDS’s is

relatively constant for varying degree of the unit graph. The
degree of the localized algorithms varies between3 and 4,
while the average degree of the centralized heuristic is around
2. We also consider in 9(b) the average length of the edges
between two dominant neighbors divided byR. Once again,
this value is relatively stable and does not really depend onthe
degree of the unit graph. The three localized schemes obtain
nearly the same results, whileCH has higher values. This
can be easily explained: in this heuristic, at each step, the
node with the highest number of ‘non-covered’ neighbors is
chosen, and we can expect this value to increase with the
distance between the nodes.

VI. CONCLUSION

In this paper, we have presented an enhanced definition for
computing a dominating set in ad hoc and sensor networks,
using as a basis a work from Dai and Wu when2-hop
information is considered. We have proved that our rule gives
a subset of the one obtained thanks to the original heuristic.
We have also prover that this subset is always dominating,
and connected for any connected graph. We finally provided
experimental results which demonstrate the superiority ofour
rule over the original one in electing fewer nodes as domi-
nant. This is especially interesting in the dynamic networks
we considered, where fewer dominant nodes induces greater
energy savings.

As future research associated to this paper, we would like
to consider specific usage of our heuristic (e.g., broadcasting)
in a realistic environment, where mobility might be involved.
We believe that the gain obtained thanks to our enhanced
heuristic may be emphasized in such environment, compared
to an algorithm that requires additional messages exchange
that could get lost due to mobility. Maintenance of connected
dominating structure in the presence of moving nodes is also
a nontrivial operation that should be specifically studied.
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