
HAL Id: hal-00123884
https://hal.archives-ouvertes.fr/hal-00123884v2

Submitted on 15 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trustworthy interface compliancy: data model
adaptation using B refinement

Samuel Colin, Arnaud Lanoix, Jeanine Souquières

To cite this version:
Samuel Colin, Arnaud Lanoix, Jeanine Souquières. Trustworthy interface compliancy: data model
adaptation using B refinement. Formal Foundations of Embedded Software and Component-Based
Software Architectures (FESCA), Satellite workshop of ETAPS, Mar 2007, Braga, Portugal. 13 p.
�hal-00123884v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50405006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00123884v2
https://hal.archives-ouvertes.fr

Trustworthy interface compliancy:
data model adaptation using B refinement

Samuel Colin, Arnaud Lanoix, Jeanine Souquières

LORIA – Université Nancy 2
Campus Scientifique, BP 239

F-54506 Vandœuvre lès Nancy cedex
{Samuel.Colin,Arnaud.Lanoix,Jeanine.Souquieres}@loria.fr

Abstract

In component-based software development approaches, components are consid-
ered as black boxes, communicating through required and provided interfaces which
describe their visible behaviors. Each component interface is equipped with a suitable
data model defining all the types occurring in the interface operations. The provided
interfaces are checked to be compatible with the corresponding required interfaces,
by the way of adapters. We propose a method to develop and verify these adapters
when the interface data models are different, using the formal method B. The use of
B assembling and refinement mechanisms eases the verification of the interoperability
between interfaces and the correctness of the component assembly.

keywords: Component-based approach, correctness, interoperability, formal
method, adapter, data model, interface.

1 Introduction

Component orientation is a new paradigm for the development of software-based systems.
The basic idea is to assemble the software by combining pre-fabricated parts called software
COTS (Commercial Off-The-Shelf) components, instead of developing it from scratch [22].
This procedure is similar to the construction methods applied in other engineering disci-
plines, such as electrical or mechanical engineering.

Software components are put together by connecting their interfaces. A provided inter-
face of one component can be connected with a required interface of another component
if the former offers the services needed to implement the latter. Hence, an appropriate
description of the interfaces of a software component is crucial. In earlier papers [5, 4, 9]
we have investigated how to formally specify interfaces of software components and how
to prove their interoperability, using the formal method B, as presented in Section 2. Each

1

mailto:Samuel.Colin@loria.fr

component interface is equipped with a suitable data model defining all the types occurring
in the signatures of interface operations.

In this paper, we study how to connect components with different data models by using
adapters. We propose a method in three steps, sketched in Section 3, to build a trustworthy
adapter following a refinement process: we start with the required interface and refine it
until we can include the provided one. Each step expresses a level of interoperability,
is supported by the prover and help us to establish the correctness of the adaptation.
We support the presentation of this method with an example of an embedded system in
Section 4. The paper finishes with the discussion of related work in section 5 and concluding
remarks in section 6.

2 Using B for component-based development

We briefly describe the formal method B and explain how we use it in the context of
component-based software. The architecture is modeled by UML diagrams (the compo-
nents) annotated with B models associated to their interfaces. The B models are then used
to verify the interface compliancy.

2.1 The B method

B is a formal software development method based on set theory, which supports an incre-
mental development process using refinement [1]. Starting out from a textual description,
a development begins with the definition of an abstract model, which can be refined step
by step until an implementation is reached. Model refinement is a key feature for incre-
mentally developing more and more detailed models, preserving correctness in each step.
Each model consists in variables representing the state, operations representing the possible
evolutions of this state and an invariant specifying the safety requirements.

The B method has been successfully applied in the development of several complex
real-life applications, such as the METEOR project [2]. It is one of the few formal meth-
ods which has robust and commercially available support tools for the entire development
life-cycle, from specification down to code generation [3]. It provides structuring primi-
tives that allow one to compose models in various ways. Proofs of invariant consistency
and refinement are part of each development and POs (Proof Obligations) are generated
automatically by support tools such as AtelierB [21] or B4free [6]. Checking POs with B
support tools is an efficient and practical way to detect errors introduced during develop-
ment and to validate the B models.

2.2 Specifying component architectures

We define component-based systems using UML 2.0 composite structure diagrams [16].
They express the overall architecture of the system in terms of components and their

2

required and provided interfaces. UML 2.0 Class diagrams express interface data models
with their different attributes and methods.

Component interfaces are then specified as B models, which increases confidence in
the developed systems: the correctness of the specifications, as well as the correctness of
the refinement process can be checked with support tools. In an integrated development
process, the B models can be obtained by applying systematic derivation rules from UML
to B [14, 12].

2.3 Proving interoperability of component interfaces

The components must be connected in an appropriate way. To guarantee interoperability
of components, we must consider each connection of a provided and a required interface
contained in a software architecture and try to show that the interfaces are compatible.
Using the B method, we prove that the B model of the provided interface is a correct B
refinement of the required one. This result states that the provided interface constitutes a
viable implementation of the required interface, and consequently that the two components
are compliant as intended [4].

Often, to build a working component architecture, adapters need to be defined, con-
necting the required interfaces to the provided ones. An adapter is a piece of code that
expresses the mapping between a required and a provided interface, usually a mapping
between their variables at signature level. In [15], we have studied and proved an adapter
specification defined in terms of a B refinement of the required interface that includes the
B model of the provided (previously incompatible) interface.

2.4 An example of architecture

We illustrate our method with the case study of an embedded system where different sensors
send alarm events. These alarms can be canceled by a control console and are memorized
by a centralized database. The software architecture of this system is shown Figure 1 using
the syntax of composite structure diagrams. It uses three COTS components:

Figure 1: Component architecture

3

• Database provides database functionalities described by its provided interface Database O
as presented Figure 2 by UML diagrams and its associated B model (with only its sig-
nature). The B model of this interface with its data model and one of the operations
is given Listing 1: (i) the types, represented as sets in B, used in the interface, (ii)
variables as far as necessary to express the effects of the operations, (iii) an invariant
on these variables and (iv) an operation specification.

• SensorDriver, the software part of each sensor, requires an interface Sensor U to signal
warning and error alarms to the system. These alarms need to be saved in the
database. This component is used twice.

• ConsoleDriver, in charge to drive an alarm control console, requires an interface Con-
sole U in order to query and cancel the alarms saved in the database.

(a) Interface Database O provided by
Database

(b) Interface Alarms U

Figure 2: The interfaces and their associated B models

The interface Alarms U, described in Figure 2 and Listing 2, expresses the global re-
quirement of the alarms shared between the sensors and the console. Listing 3 presents
the types used in Alarms U.

Figure 3: Adapter Alarms DB

To assemble these three COTS, three adapters have been introduced:

• Alarms DB maps the provided interface Database O to the interface Alarms U that
shares the global resources (see Figures 1 and 3).

• Console Alarms and Sensor Alarms provide the required interface of each driver com-
ponent using the interface Alarms U.

4

MODEL Database 0
SETS

Indices = {Uid, Value, Attribute}
VARIABLES

table
INVARIANT

table ∈ Indices → (N1 7→ N) ∧
dom(table(Uid)) = dom(table(Value)) ∧
dom(table(Uid)) = dom(table(Attribute)) ∧
table (Uid) ∈ (N1 7� N)

INITIALISATION
table := { Uid 7→ ∅, Value 7→ ∅, Attribute 7→ ∅ }

OPERATIONS

add row(uid, value , attr)=
PRE

uid ∈ N ∧
value ∈ N ∧
attr ∈ N ∧
∀ ii .((ii ∈ dom(table(Uid))) ⇒ (uid 6= table (Uid)(ii)))

THEN
ANY indice
WHERE indice ∈ N1 − dom(table(Uid))
THEN

table := table C− { Uid 7→ (table(Uid) C− { indice 7→ uid}),
Value 7→ (table(Value) C− { indice 7→ value}),
Attribute 7→ (table(Attribute) C− { indice 7→ attr})}

END
END;

remove row uid(uid) =
PRE

uid ∈ ran(table (Uid))
THEN

ANY indice
WHERE indice ∈ dom(table(Uid)) ∧ table(Uid)(indice) = uid
THEN

table := table C− { Uid 7→ ((dom(table(Uid)) − {indice}) C table (Uid)),
Value 7→ ((dom(table(Value)) − {indice}) C table (Value)),
Attribute 7→ ((dom(table(Attribute)) − {indice}) C table (Attribute)) }

END
END;

update attribute (uid , new attr) =
PRE

uid ∈ ran(table (Uid)) ∧
new attr ∈ N

THEN
ANY indice
WHERE indice ∈ dom(table(Uid)) ∧ table(Uid)(indice) = uid
THEN

table := table C− { Attribute 7→ (table(Attribute) C− { indice 7→ new attr}) }
END

END
END

Listing 1: B model of Database O

5

MODEL Alarms U
SEES Types
VARIABLES

alarms, active alarms
INVARIANT

alarms ⊆ AlarmIds ∧
active alarms ⊆ alarms

INITIALISATION
alarms := ∅ ‖
active alarms := ∅

OPERATIONS

nb ←− number of active alarms =
BEGIN

nb := card(active alarms)
END;

active ←− get active alarms =
BEGIN

active := active alarms
END;

reset alarm (aid) =
PRE aid ∈ active alarms
THEN

active alarms := active alarms − { aid }
END;

aid ←− new alarm(type) =
PRE

type ∈ AlarmTypes
THEN

ANY uid
WHERE uid ∈ AlarmIds − alarms
THEN

aid := uid ‖
alarms := alarms ∪ {uid} ‖
active alarms := active alarms ∪ {uid}

END
END

END

Listing 2: B model of the interface Alarms U

MODEL Types
SETS

DeviceIds ;
AlarmIds;
AlarmTypes;
AlarmStatus = {Inactive, Active}

END

Listing 3: The types used in the development

In the rest of this paper, we focus on the development and the correctness of the adapter
Alarms DB which must provide Alarms U using Database O. In terms of B models, we have
to prove that Alarms DB is a refinement of Alarms U including Database O in a similar way
to [15], as shown Figure 3.

6

3 Trustworthy method to adapt interface data models

Let I U be an interface required by a component A and I O an interface provided by a
component B. Our goal is to develop an adapter that implements the data model of I U
using the data model of I O. In other words, the adapter must express I U in terms of the
variables, data types and operations of I O.

I U and I O are defined by B models as presented Figure 4. We denote by V U and V O
their sets of variables and by OP U and OP O their sets of operations, respectively. We
note D U (resp. D O) the set of data types of the variables V U (resp. V O).

Figure 4: Process of the adapter development

The adapter must be trustworthy and the proof of the adaptation becomes complex
when data models of I U and I O are different. In order to ease this proof, we develop the
adapter by incremental refinements guided by the transformation of the variables of I U
into the variables of I O.

3.1 Process description

The adaptation process is guided by the interface I O and consists of three refinement
steps. Each step is proved by using the B refinement mechanism.

(1) Variables adaptation

This step prepares a matching between the variables of I U and I O:

• each variable of V U is transformed into a new variable of V U’, “corresponding
to” a variable of V O, using the data types D U,

• the body of each operation of OP U is transformed with respect to these new
variables into OP U’.

(2) Data types adaptation

This step provides a matching between the data types of I U and I O:

7

• each variable of V U’ expressed on D U is transformed into a new variable of
V U” expressed using the data types D O. To do that, typecasting functions
between D U and D O (and reciprocally) have to be defined,

• the body of each operation of OP U’ is transformed with respect to the new
variables V U” into OP U”.

(3) Provided interface inclusion

This step, which has been prepared by the two previous ones, consists in:

• associating each variable of V U” to V O variables,

• expressing each operation of OP U” in terms of operations of OP O.

3.2 B as a guideline for the adaptation steps

When the required and the provided interfaces are defined on the same data types, the
adaptation becomes a problem of transforming variables and calling the right operations.
When the interfaces are similar modulo their data types, the problem is reduced to find
whether the elements of D U are subtypes of elements of D O, and then calling the opera-
tions with the transformed variables. In the latter case, the role of the adapter is simply
the role of a variable wrapper.

With the use of B, the adaptation process and therefore the adapter itself, is validated
by the proof of the different refinement steps. A direct consequence is that the adaptation
process is less guided by the intuition of the developer and more by mathematical and
logical laws. Hence each step of the process might require several refinement steps in
practice in order to provably guarantee that the transformation is correct. As a matter of
fact, the B refinement mechanism encourages this practice.

Furthermore, in some transformation steps, functions are introduced as constants,
which need to be explicit in the implementation step. Hence our method is no silver
bullet: great care has to be taken when these functions appear. The developer of the
adapter has to ensure that the transformation functions exist. Their existence can be
more easily stated if the refinement steps are limited to simple, intuitive and progressive
transformations. For instance, instead of transforming enumerated values of a set directly
to the set of natural numbers, it is wiser to first transform it to a set of numbers modulo
the number of enumerated values and then transform it to the full set of natural numbers.
This way the proof of the refinements become easier.

4 Case study

We now show the application of this method to develop and prove the adapter Alarms DB
that must provide the interface Alarms U using the interface Database O, as presented

8

Figure 5. The specification of the B operations (not shown in this figure) is modified
according to the variable transformations realized at each step of the development1.

Figure 5: Refinement steps of the adapter Alarms DB

4.1 Variables adaptation

The first step consists in adapting the variables alarms and active alarms of the interface
data model of Alarms U to the interface data model of Database O. During this step, we
do not introduce new data types. In the database, each entry in the table is characterized
by an identifier Uid which has a corresponding Value and an Attribute. Guided by these
three variables, we consider mapping the alarms with the Uid field, the type of an alarm
with the Value field and its activity status (active alarms) with the Attribute field.

We introduce three new variables corresponding to Uid, Value and Attribute: alarms ids is
directly associated to alarms, whereas AlarmTypes and AlarmStatus are functions expressing
the type and the status of an alarm as illustrated Listing 4. The proof of this refinement
consists of 18 POs, among which 4 have been proved interactively.

4.2 Data types adaptation

Typecasting is a frequent source of bugs, as limit conditions are often overlooked. Conse-
quently, the second step might possibly be the harder one: great care must be taken when
casting the variables from one type to another one. The proof process exhibits these limit
conditions and oblige to check their validity. In our adaptation process, the typecasting
functions are introduced as constants. It means that the validity of the adaptation relies
on the existence of these functions, hence it is wiser to choose typecasting functions with
well-understood mathematical properties. To ease the proof verification, we break down
the data types adaptation step into three refinements:

(2.1) typecasting the non-functional variables (alarms ids),

(2.2) typecasting the domain (in the mathematical sense) of each functional variable (alarms type
and alarms status),

(2.3) typecasting the codomain of each functional variable (the already transformed alarms type
and alarms status).

1Complete B models are published in [7].

9

REFINEMENT Alarms DB ref1
REFINES Alarms U
SEES Types
VARIABLES
alarms ids , alarms status , alarms type

INVARIANT
alarms ids = alarms ∧
alarms status ∈ alarms ids → AlarmStatus ∧
alarms type ∈ alarms ids → AlarmTypes ∧
alarms status = active alarms×{Active} ∪ (alarms ids − active alarms)×{Inactive}

ASSERTIONS
({Active}∗active alarms ∪ { Inactive }∗(alarms−active alarms))[{Active}] = active alarms

INITIALISATION
alarms ids := ∅ ‖
alarms status := ∅×AlarmStatus ‖
alarms type := ∅×AlarmTypes

OPERATIONS

nb ←− number of active alarms =
BEGIN

nb := card(alarms status−1[{Active}])
END;

active ←− get active alarms =
BEGIN

active := alarms status−1[{Active}]
END;

reset alarm (aid) =
BEGIN

alarms status := alarms status C− { aid 7→ Inactive }
END;

aid ←− new alarm(type) =
ANY uid
WHERE uid ∈ AlarmIds − alarms ids
THEN

aid := uid ‖
alarms ids := alarms ids ∪ {uid} ‖
alarms type := alarms type C− { uid 7→ type } ‖
alarms status := alarms status C− { uid 7→ Active }

END

END

Listing 4: Step (1) of the adaptation process

4.2.1 Typecasting the non-functional variables

The alarms ids variable will be represented at the end of the process by the Uid field of the
database. We introduce a constant function id cast in order to typecast from AlarmIds to
the natural numbers, i.e. the type of the Uid field. We therefore represent the alarms ids by
a new variable nat ids and we add a relationship between both variables in the invariant.
The other variables are unchanged, and the result is shown in Listing 5. The invariant
expresses the fact that nat ids is the image of the alarms ids by id cast. The proof of this
refinement consists of 8 POs, among which 2 have been proved interactively.

10

REFINEMENT Alarms DB ref2
REFINES Alarms DB ref1
SEES Types
CONSTANTS

id cast
PROPERTIES

id cast ∈ AlarmIds �→ N
VARIABLES

nat ids , alarms status , alarms type
INVARIANT

nat ids = id cast [alarms ids]
ASSERTIONS
∀aid .((aid ∈ alarms ids) ⇒ (id cast (aid) ∈ id cast [dom(alarms type)]))

INITIALISATION
nat ids := ∅ ‖
alarms status := ∅×AlarmStatus ‖
alarms type := ∅×AlarmTypes

OPERATIONS

aid ←− new alarm(type) =
ANY uid nat
WHERE

uid nat ∈ N ∧
uid nat /∈ nat ids

THEN
aid := id cast−1(uid nat) ‖
nat ids := nat ids ∪ {uid nat} ‖
alarms type := alarms type C− { id cast−1(uid nat) 7→ type } ‖
alarms status := alarms status C− { id cast−1(uid nat) 7→ Active }

END

END

Listing 5: Step (2.1) of the adaptation process

4.2.2 Typecasting the domain of each functional variable

The variables alarms status and alarms type depend on alarms ids. As alarms ids has been
transformed into nat ids, we must also transform alarms status and alarms type so that they
depend rather on nat ids. We thus replace them by the variables nat status and nat type.
The result is presented in Listing 6. The invariant helps relating nat status with nat ids, i.e.
it states that nat status is the composition of the functions alarm status and id cast. The
proof of this refinement consists of 14 POs, among which 5 have been proved interactively.

11

REFINEMENT Alarms DB ref3
REFINES Alarms DB ref2
SEES Types
VARIABLES
nat ids , nat status , nat type

INVARIANT
nat status ∈ nat ids → AlarmStatus ∧
nat type ∈ nat ids → AlarmTypes ∧
nat status−1 = (alarms status−1; id cast)

INITIALISATION
nat ids := ∅ ‖
nat status := ∅ ‖
nat type := ∅

OPERATIONS

nb ←− number of active alarms =
BEGIN

nb := card(nat status−1[{Active}])
END;

active ←− get active alarms =
BEGIN

active := id cast−1[nat status−1[{Active}]]
END;

reset alarm (aid) =
BEGIN

nat status := nat status C− { id cast (aid) 7→ Inactive }
END;

aid ←− new alarm(type) =
ANY uid nat
WHERE

uid nat ∈ N ∧
uid nat /∈ nat ids

THEN
aid := id cast−1(uid nat) ‖
nat ids := nat ids ∪ {uid nat} ‖
nat type := nat type C− { uid nat 7→ type } ‖
nat status := nat status C− { uid nat 7→ Active }

END

END

Listing 6: Step (2.2) of the adaptation process

4.2.3 Typecasting the codomain of each functional variable

Before this step, the codomains of nat status and nat type are not in the data types of
Database O. We need to typecast these codomains, namely AlarmStatus and AlarmTypes,
to the corresponding data types of the fields of the database, i.e. Attribute and Value
respectively. These fields contain natural numbers, hence we introduce two constant func-
tions named status cast and type cast which map AlarmStatus and AlarmTypes to natural
numbers.

12

REFINEMENT Alarms DB ref4
REFINES Alarms DB ref3
SEES Types
CONSTANTS
type cast , status cast

PROPERTIES
type cast ∈ AlarmTypes �→ 1..card(AlarmTypes) ∧
status cast ∈ AlarmStatus �→ 1..card(AlarmStatus)

CONCRETE VARIABLES
uid gen

VARIABLES
ids nn , status nn , type nn

INVARIANT
uid gen ∈ N ∧
ids nn = nat ids ∧
status nn ∈ nat ids → 1.. card(AlarmStatus) ∧
type nn ∈ nat ids → 1.. card(AlarmTypes) ∧
uid gen > max(nat ids) ∧
status nn = (nat status ; status cast) ∧
type nn = (nat type; type cast)

ASSERTIONS
status cast −1[status cast[{Active }]] = {Active}

INITIALISATION
uid gen := 0 ‖
ids nn := ∅ ‖
status nn := ∅ ‖
type nn := ∅

OPERATIONS

nb ←− number of active alarms =
BEGIN

nb := card(status nn−1[status cast[{Active }]])
END;

active ←− get active alarms =
BEGIN

active := id cast−1[status nn−1[status cast[{Active}]]]
END;

reset alarm (aid) =
BEGIN

status nn := status nn C− { id cast (aid) 7→ status cast(Inactive) }
END;

aid ←− new alarm(type) =
BEGIN

aid := id cast−1(uid gen) ‖
ids nn := ids nn ∪ {uid gen} ‖
type nn := type nn C− { uid gen 7→ type cast(type) } ‖
status nn := status nn C− { uid gen 7→ status cast(Active) } ‖
uid gen := uid gen + 1

END

END

Listing 7: Step (2.3) of the adaptation process

The variables status nn and type nn that we have introduced correspond to nat status
and nat type respectively. As the codomains of status nn and type nn are the natural num-
bers, the codomains of nat status and nat type are transformed by the typecasting functions
mentioned above. For notation consistency, we rename nat ids into ids nn. Moreover, we
introduce a new variable uid gen for producing a new unique index each time a new alarm

13

is added in the database. All these transformations are shown in Listing 7. The proof of
this refinement consists of 20 POs, among which 6 have been proved interactively.

Note that with this last invariant, we obtain that alarm status can be replaced by all
the constants and variables we introduced along the refinements.
We have: alarm status = status cast−1 ◦ status nn ◦ id cast. The functions status nn ◦ id cast
and status cast ◦ alarm status commute. This property is illustrated by Figure 6.

Figure 6: Commutation diagram

4.3 Provided interface inclusion

In the last step, we establish the relationships between the ids nn, status nn and type nn
variables and the fields Uid, Attribute and Value of table as illustrated in Listing 8. We
also perform the operation calls to Database O to express the operations of Alarms U: the
body of the operation new alarm consists mainly of a call to the operation add row of
Database O. The proof of this refinement consists of 19 POs, among which 5 have been
proved interactively.

The proof of this last step is at the crossroad of the POs of the refinements and the POs
of the included (provided) interface, hence the POs here tend to be unreadable because of
the size of the terms. Fortunately, the shape of the formulas also tend to resemble the POs
of the refinements and the POs of Database O. Hence most of the time similar strategies
with the proof strategies of the refinements and the included interface can be used for
proving the last step.

The proof process for the development of this example, including the proofs of the
consistency of the B models of the interfaces (Listings 1 and 2) and the proofs of the
different refinement steps (Listings 4, 5, 6, 7 and 7), is composed of 108 POs, among
which 30 POs have been proved interactively (see Table 1 for details).

Obvious POs POs Interactive POs
Database O 3 24 8
Alarms U 11 5 0
Alarms DB ref1 26 18 4
Alarms DB ref2 21 8 2
Alarms DB ref3 25 14 5
Alarms DB ref4 39 20 6
Alarms DB ref5 23 19 5
TOTAL 148 108 30

Table 1:

14

REFINEMENT Alarms DB ref5
REFINES Alarms DB ref4
SEES Types
INCLUDES Database O
INVARIANT
table (Uid)[dom(table(Uid))] = ids nn ∧
(table (Uid)−1;table(Attribute)) = status nn ∧
(table (Uid)−1;table(Value)) = type nn

INITIALISATION
uid gen := 0

OPERATIONS

nb ←− number of active alarms =
BEGIN

nb := card(table (Uid) [table (Attribute)−1[status cast[{Active }]]])
END;

active ←− get active alarms =
BEGIN

active := id cast−1[table(Uid)[(table (Attribute))−1[status cast[{Active }]]]]
END;

reset alarm (aid) =
BEGIN

update attribute (id cast (aid), status cast (Inactive))
END;

aid ←− new alarm(type) =
BEGIN

aid := id cast−1(uid gen) ‖
uid gen := uid gen + 1 ‖
add row(uid gen, type cast (type), status cast (Active))

END

END

Listing 8: Step (3) of the adaptation process

5 Related work

One of the first approaches of module reuse through interface adaptation is the approach
of Purtilo and Atlee [17]: they use a dedicated language (called Nimble) for relating a
required interface to a provided one, where the adaptation is made by the developer. Our
approach is similar modulo the formalism used for representing the interfaces: instead of
a dedicated language, we use UML and the B method. We have the benefit of relying on
standards. Furthermore we overcome the limited semantics of their approach because we
use a formal tool for expressing and verifying the interface adaptation.

Dynamic component adaptation [13, 10] goes further than our approach by proposing
methods for adapting at run-time components by finding suitable adapter components
based on the interfaces of the components to adapt. Unfortunately these methods have
strong requirements (knowing inheritance relationships, runtime mapping of interface re-
lationships, . . .) and rely primarily on types and/or object-oriented peculiarities, hence
they are limited to subtype-like adaptations. This is not possible with our approach be-
cause trustworthiness would require also proving these strong requirements at run-time.

15

Our method allows nevertheless a broader range of possible adaptations (not limited to
subtypes of a provided interface).

The paper [8] presents a framework for modeling component architectures using formal
techniques (Petri Net and CSP): connections between required and provided interfaces
(called import and export interfaces) of components are represented by graph transfor-
mations (composition, embedding, extension and refinement). Our approach is similar.
We use B formal method to express transformations as refinement between the required
interface and the provided one.

Zaremski and Wing [23] propose an interesting approach to compare two software com-
ponents. It is determined whether one component can be substituted for another. They
use formal specifications to model the behavior of components and the Larch prover to
prove the specification matching of components.

Reussner et al. [18, 19] present adapters in the context of concurrent systems. They
consider only a certain class of protocol interoperability problems and generate adapters
for bridging component protocol incompatibilities, using interface described by finite pa-
rameterized state machines.

The refinement steps of our approach for building an adapter can also be viewed as
steps for building morphisms between interfaces. Such methods, for instance the methods
presented by Smith [20], are based on signature algebras and theory category. Our approach
is rather practical because we choose the B method for expressing the interfaces. The B
method is indeed easier for software engineers to understand because it is based on set
theory. Our results resemble much with interface morphisms, thus these methods could
provide means for automating our approach better.

6 Conclusion

The component-based paradigm has received considerable attention in the software devel-
opment field in industry and academia like in other engineering domains. In this approach,
components are considered as black-boxes described by their visible behavior and their re-
quired and provided interfaces. To construct a working system out of existing components,
adapters are introduced. An adapter is a piece of glue code that realizes the required
interface using the provided interfaces. It expresses the mapping between required and
provided variables and how required operations are implemented in terms of the provided
ones. We have presented a method in three steps to adapt complex data models, each step
expressing a level of interoperability and establishing the correctness of the adaptation.

Using the formal method B and its refinement and assembling mechanisms to model the
component interfaces and the adapters, we pay special attention to the question of guar-
anteeing the interoperability between the different components. The B prover guarantees
that the adapter is a correct implementation of the required functionalities in terms of the
existing components. With this approach, the verification of the interoperability between
the connected components is achieved at the signature, the semantic and the protocol
levels.

16

We are currently working on a method for adding dependability features to component-
based software systems. The method is applicable if the dependability features add new
behavior to the system, but do not change its basic functionality [11]. The idea is to start
with a software architecture whose central component is an application component that
implements the behavior of the system in the normal case. The application component is
connected to other components, possibly through adapters. It is then possible to enhance
the system by adding dependability features in such a way that the central application
component remains untouched. Adding dependability features necessitates to evolve the
overall system architecture by replacing or newly introducing hardware or software com-
ponents. The adapters contained in the initial software architecture have to be modified,
whereas the other software components need not to be changed. Thus, the dependability
of a component-based system can be enhanced in an incremental way.

References

[1] J.-R. Abrial. The B Book. Cambridge University Press, 1996.

[2] P. Behm, P. Benoit, and J.M. Meynadier. METEOR: A Successful Application of B in a
Large Project. In Integrated Formal Methods, IFM99, volume 1708 of LNCS, pages 369–387.
Springer Verlag, 1999.

[3] D. Bert, S. Boulmé, M-L. Potet, A. Requet, and L. Voisin. Adaptable Translator of B
Specifications to Embedded C Programs. In Integrated Formal Method, IFM’03, volume
2805 of LNCS, pages 94–113. Springer Verlag, 2003.

[4] S. Chouali, M. Heisel, and J. Souquières. Proving Component Interoperability with B Re-
finement. Electronic Notes in Theoretical Computer Science, 160:157–172, 2006.

[5] S. Chouali and J. Souquières. Verifying the compatibility of component interfaces using the B
formal method. In CSREA Press, editor, International Conference on Software Engineering
Research and Practice (SERP’05), pages 850–856, 2005.

[6] Clearsy. B4free. Available at http://www.b4free.com, 2004.

[7] S. Colin, A. Lanoix, and J. Souquières. Trustworthy interface compliancy: data
model adaptation. Research Report hal-00123884, LORIA, Jan 2007. http://hal.
archives-ouvertes.fr/hal-00123884.

[8] H. Ehrig, J. Padberg, B. Braatz, M. Klein, F. Orejas, S. Perez, and E. Pino. A generic frame-
work for connector architectures based on components and transformation. In FESCA’04,
satellite of ETAPS’04, number 108, pages 53–67. ENTCS, 2004.

[9] D. Hatebur, M. Heisel, and J. Souquières. A Method for Component-Based Software and
System Development. In IEEE Computer Society, editor, Proceedings of the 32tnd Euromicro
Conference on Software Engineering And Advanced Applications, pages 72–80, 2006.

[10] G. Kniesel. Type-safe delegation for run-time component adaptation. Lecture Notes in
Computer Science, 1628:351–366, 1999.

17

http://hal.archives-ouvertes.fr/hal-00123884
http://hal.archives-ouvertes.fr/hal-00123884

[11] A. Lanoix, D. Hatebur, M. Heisel, and J. Souquières. Enhancing Dependability of
Component-based Systems. Research Report hal-00123999, LORIA, Dec 2006. http:
//hal.archives-ouvertes.fr/hal-00123999.

[12] H. Ledang and J. Souquières. Modeling class operations in B: application to UML behav-
ioral diagrams. In ASE’2001 : 16th IEEE International Conference on Automated Software
Engineering, pages 289–296. IEEE Computer Society, 2001.

[13] K.-U. Mätzel and P. Schnorf. Dynamic component adaptation. Technical report, Ubilab,
Union Bank of Switzerland, Zürich, Switzerland, June 1997.

[14] E. Meyer and J. Souquières. A systematic approach to transform OMT diagrams to a B
specification. In Proceedings of the Formal Method Conference, LNCS 1708, pages 875–895.
Springer-Verlag, 1999.

[15] I. Mouakher, A. Lanoix, and J. Souquières. Component Adaptation: Specification and
Verification. In Proc. of the 11th Int. Workshop on Component Oriented Programming
(WCOP 2006), pages 23–30, July 2006.

[16] Object Management Group (OMG). UML Superstructure Specification, 2005. version 2.0.

[17] J.M. Purtilo and J.M. Atlee. Module reuse by interface adaptation. Software - Practice and
Experience, 21(6):539–556, 1991.

[18] R. H. Reussner and H. W. Schmidt. Using Parameterised Contracts to Predict Properties
of Component Based Software Architectures. In Ivica Crnkovic, Stig Larsson, and Judith
Stafford, editors, Workshop On Component-Based Software Engineering (in association with
9th IEEE Conference and Workshops on Engineering of Computer-Based Systems), Lund,
Sweden, 2002, 2002.

[19] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo. Reasoning on software architectures
with contractually specified components. In A. Cechich, M. Piattini, and A. Vallecillo,
editors, Component-Based Software Quality: Methods and Techniques. 2003.

[20] D. R. Smith. Constructing specification morphisms. Journal of Symbolic Computation,
15(5/6):571–606, 1993.

[21] Steria – Technologies de l’information. Obligations de preuve: Manuel de référence, version
3.0, 1998.

[22] C. Szyperski. Component Software. ACM Press, Addison-Wesley, 1999.

[23] A. M. Zaremski and J. M. Wing. Specification matching of software components. ACM
Transaction on Software Engeniering Methodolology, 6(4):333–369, 1997.

18

http://hal.archives-ouvertes.fr/hal-00123999
http://hal.archives-ouvertes.fr/hal-00123999

	1 Introduction
	2 Using B for component-based development
	2.1 The B method
	2.2 Specifying component architectures
	2.3 Proving interoperability of component interfaces
	2.4 An example of architecture

	3 Trustworthy method to adapt interface data models
	3.1 Process description
	3.2 B as a guideline for the adaptation steps

	4 Case study
	4.1 Variables adaptation
	4.2 Data types adaptation
	4.2.1 Typecasting the non-functional variables
	4.2.2 Typecasting the domain of each functional variable
	4.2.3 Typecasting the codomain of each functional variable

	4.3 Provided interface inclusion

	5 Related work
	6 Conclusion

