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Abstract

The mathematical study of travelling waves in the potential flow of two
superposed layers of perfect fluid can be set as an ill-posed evolutionary
problem, in which the horizontal unbounded space variable plays the role of
“time”. In this paper we consider two problems for which the bottom layer
of fluid is infinitely deep: for the first problem, the upper layer is bounded
by a rigid top and there is no surface tension at the interface; for the second
problem, there is a free surface with a large enough surface tension. In both
problems, the linearized operator Lε (where ε is a combination of the phys-
ical parameters) around 0 possesses an essential spectrum filling the entire
real line, with in addition a simple eigenvalue in 0. Moreover, for ε < 0, there
is a pair of imaginary eigenvalues which meet in 0 when ε = 0 and which
disappear in the essential spectrum for ε > 0. For ε > 0 small enough, we
prove in this paper the existence of a two parameter family of periodic trav-
elling waves (corresponding to periodic solutions of the dynamical system).
These solutions are obtained in showing that the full system can be seen as a
perturbation of the Benjamin-Ono equation. The periods of these solutions
run on an interval (T0,∞) possibly except a discrete set of isolated points.

Keywords: nonlinear water waves, travelling waves, infinite-dimensional re-
versible dynamical system, essential spectrum, periodic orbits.
AMS classification: 35B32, 76B15
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La recherche d’ondes progressives dans un système de deux couches su-
perposées de fluides parfaits peut s’écrire comme un problème d’évolution
mal posé, pour lequel la variable horizontale non bornée remplace le temps.
Dans cet article, on étudie deux problèmes pour lesquels la couche inférieur
de fluide est de profondeur infinie : dans le premier problème la couche
supérieure est bornée par une surface rigide et il n’y a pas de tension de sur-
face à l’interface; pour le deuxième problème, la surface est libre mais avec
une tension de surface élevée. Pour les deux problèmes, l’opérateur linéarisé
à l’origine Lε (où ε est une combinaison des paramètres physiques) possède,
en plus d’une valeur propre simple en 0, un spectre essentiel sur tout l’axe
réel. De plus, pour ε < 0, il y a une paire de valeurs propres imaginaires
pures, qui se rencontrent à l’origine pour ε = 0, et qui disparaissent dans le
spectre essentiel pour ε > 0. Pour ε > 0 assez petit, on montre l’existence
d’une famille à deux paramètres d’ondes progressives périodiques (qui corre-
spondent à des solutions périodiques du système dynamique). Ces solutions
sont obtenues en montrant que le système dynamique peut se réduire à une
perturbation de l’équation de Benjamin-Ono. Les périodes de ces solutions
appartiennent à un intervalle (T0,∞) à l’exception possible d’un ensemble
discret de points isolés.

Mot clés : vagues non linéaires, ondes progressives, systèmes dynamiques
réversibles de dimension infinie, spectre essentiel, orbites périodiques.
Classification AMS : 35B32, 76B15

1 Introduction

The search for travelling waves in a system of superposed perfect fluid layers,
having a potential flow in each layer, may be formulated as a “spatial dynamical
system”. Such “spatial dynamics” was introduced in the 80’s by K. Kirchgässner
[8] for solving an elliptic problem in a strip. Writing the system in the frame
moving with the velocity of the travelling wave, we look for steady solutions. In
choosing the unbounded spatial coordinate “x” as the evolutionary variable (and
then replacing “time”) the problem reads

dU

dx
= F (U), x ∈ R, (1)

where U takes its values in general in an infinite dimensional space. The initial
value problem is then ill-posed, but looking for bounded solutions on the real
line leads to a sort of “boundary value” problem. When the initial problem has
a symmetry x → −x, then the vector field F anti-commutes with a symmetry
S, and the dynamical system is said to be “reversible”. An easy consequence is
that if U(x) is a solution, then SU(−x) is also a solution. The spatial dynamics
consideration allows in particular to study the asymptotics at infinity. For instance,
periodic solutions or homoclinic orbits of (1) correspond respectively to periodic
travelling waves or to solitary waves. A review of results concerning problems
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where all layers have finite thickness and treated as a spatial dynamical system is
made in the paper [5].

In the present paper, we study two problems for which the bottom layer of
fluid is infinitely deep. The two problems consist in a system of two superposed
layers of immiscible perfect fluids (densities ρ1 (upper layer) and ρ2 (bottom layer))
assuming that there is no surface tension at the interface and assuming that the
flow is potential in each layer and subject to gravity. The thickness at rest of the
upper layer is h while the bottom layer is infinitely deep. We are interested in
travelling waves of horizontal velocity c. The dimensionless parameters are ρ =
ρ1/ρ2 ∈ (0, 1) and λ = gh/c2 (inverse of (Froude number)2). In the first problem
we assume that the upper layer is bounded above by a rigid horizontal top (see
Figure 1). Such a case was treated, using a different formulation, by Amick [1] and
Sun [11], where the existence of a solitary wave is shown, asymptotically looking
like the Benjamin-Ono solitary wave.

ξ0

h

ρ1

ρ2g

c η

g

c

0

h

ρ1

ρ2

η

ξ

Figure 1: Problem 1. Two layers, the
upper one being bounded by a rigid top.

Figure 2: Problem 2. Two layers, free
upper surface with large surface ten-
sion.

In the second problem we assume that there is a free upper surface with surface
tension T (see Figure 2), and there is a new dimensionless number b = T/(ρ1hc2)
(Weber number). Notice that this situation is studied in [7] in the case when b = 0,
where the existence of generalized solitary waves is shown, the principal part being
again solution of the Benjamin-Ono equation. In the present paper, the physical
problem is different since we consider it for a large enough parameter b.

We show in section 2 how these problems can be formulated as a reversible
dynamical system (1), where U = 0 corresponds to a uniform state, and where F
depends on the parameters λ and ρ (and b for problem 2) . The Galilean invariance
of the physical problem induces a reflection symmetry of the system in the moving
frame. This leads to the reversibility of system (1).

The study near the origin of dynamical systems (1), which depend on a param-
eter ε consists first on the computation of the spectrum of the linearized operator
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Lε around an equilibrium, taken at the origin. The system (1) reads

dU

dx
= LεU + Nε(U), x ∈ R, (2)

where Nε is the non linear term. The reversibility symmetry S leads to the symme-
try of the eigenvalues with respect to real and imaginary axis. In the case when the
linear operator Lε has a “spectral gap”, the system (2) can be reduced to a system
of finite dimensional ordinary differential equations by using the center manifold
reduction theorem. This leads to the study of a perturbed reversible normal form.
In such a case the description near the imaginary axis of the spectrum of the linear
operator is sufficient to understand the dynamics of small reversible solutions of
(2) (see for instance [5]).

ε < 0 ε > 0

Figure 3: Spectrum of Lε

In the present work, the linearized operator around 0: Lε = DUF (0), where
ε = ρ− λ(1− ρ) for problem 1, and ε = 1− λ(1− ρ) for problem 2, possesses an
essential spectrum on the entire real axis. Therefore, there is no spectral gap and
the center manifold reduction cannot apply. In addition to the essential spectrum,
the linear operator Lε possesses a simple eigenvalue in 0. This eigenvalue results
from the existence of a one parameter family of stationary solutions of (1) which
correspond physically to the sliding with uniform velocity of the upper surface over
the bottom one. More precisely, the family of equilibria of (1) reads U(x) = uξ0,
u ∈ R, where ξ0 is the (symmetric) eigenvector associated with the 0 eigenvalue.
Moreover (when b is large enough for problem 2), for ε < 0, Lε has two conjugated
imaginary eigenvalues, which meet at the origin for ε = 0 and which disappear in
the essential spectrum for ε > 0 (see Figure 3).

This bifurcation has been encountered in [3], in which the existence of a one
parameter family of bifurcated homoclinic solutions of (1) approximated by the
Benjamin-Ono solitary wave is proved. Because of the presence of the essential
spectrum in this paper, the sole description of the spectrum is not sufficient to
prove the existence of these solutions. In particular, the proof of the existence of
these solutions is based on a delicate study of the Fourier transform of (2), then
the main tool is the resolvent operator (ik − Lε)−1 for k real. In presence of an
essential spectrum on the real axis, the singularity of the resolvent in k = 0 is
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unknown. That’s why a meticulous description of the resolvent is performed in
[3] : some assumptions on the resolvent of Lε are given in order to describe the
singularity in k = 0. It is checked in [3] that these assumptions are satisfied in both
water-wave problems presented above. Therefore, there exists a one parameter
family of solitary waves for problems 1 and 2 (corresponding to the homoclinic
solutions in the spatial dynamics formulation). These waves are approximated by
the Benjamin-Ono solitary waves (see [4], [10]).

The aim of the present paper is to prove the existence of a family of bifurcating
periodic solutions of (2). The bifurcation of periodic solutions might be studied for
ε < 0 in using the way of [6] which generalizes the Lyapunov-Devaney method for
finite dimensional reversible vector fields. However, there is an additional technical
difficulty due to the fact that the two imaginary eigenvalues are close to 0 together
with the occurence of 0 in the continuous spectrum as in [6]. Notice that the
periodic waves obtained in [7] are of the same nature as in [6]. On the contrary, the
solutions which interest us below are the bifurcating periodic solutions for ε > 0.
These ones are of different nature, and similar to the ones observed in the case of a
three-dimensional one parameter family of reversible vector fields where 0 is a fixed
point and where in addition to the 0 fixed eigenvalue of the linearizeed operator,
a pair of imaginary eigenvalues collide at 0 and become a pair of two real opposite
eigenvalues. In this three-dimensional case, for every homoclinic orbit near 0, there
is a one-parameter family of periodic orbits starting from a point at the elliptic
equilibrium and growing until the homoclinic to the hyperbolic equilibrium (see
for example the result in [5] for the corresponding situation). We show below that
the periodic solutions found in the present paper are approximated by solutions
of the periodic version of the Benjamin-Ono equation. These periodic solutions
correspond to periodic travelling waves in both water-wave problems. Actually, we
can prove the existence of such periodic solutions for the general dynamical system
having the spectrum as in Figure 3, and satisfying the generic properties presented
for the water-wave problems in sections 2.3 and 2.4. Therefore, the properties on
the resolvent and on the non linear term (see section 2.3 and 2.4) for the water-wave
problems are written in the general frame of spatial dynamics. These properties
correspond to weaker assumptions than the ones made in [3].

The idea for the proof of the existence of periodic solutions is to reduce the full
system to a non local scalar equation. This equation turns out to be a perturbation
of the Benjamin-Ono equation which reads as follows

u +
2π

T
H](u′) + ac0u

2 = c, (3)

where a and c0 are two coefficients given below (see (6) and (7)) and they are
related to the physical parameters of problem 1 and 2, aT is the period of the
solutions and c is an arbitrary constant. The operator H] is the Hilbert transform
for the 2π-periodic functions defined by the relation

H](f)(s) =
1
2π

p.v.
∫ π

−π

f(τ)
tan( 1

2 (s− τ))
dτ.
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The Hilbert transform can also be defined by the following relations H](cos) = sin,
H](sin) = − cos andH](const.) = 0. We know (see [2]) that the function vp defined
for p > 2π by

vp(s) =
v0

cos2(s/2) +
(

pv0
2π

)2 sin2(s/2)
, (4)

where v0 = 1−
√

1− (2π/p)2 is a 2π-periodic solution (unique up to translation)
of (3) when T = p, ac0 = −1 and c = 0, and we can obtain explicitly other periodic
solutions for c 6= 0.

Before presenting the results of this paper, we need to perform a scaling in (2)
which dilates the spectrum of Lε of a factor 1/ε (see section 2.2 for the explicit
scaling). The new system reads

dU

dx
= LεU +Nε(U), U(x) ∈ D ⊂ H. (5)

The next step is the study of the resolvent operator (ik−Lε)−1 on the imaginary
axis (i.e. for k real) near the origin and when k is large (see section 2.3). In
particular, the dispersion equation of both physical problems can be written as
ikε∆(ε, k) = 0, where for k real

∆(ε, k) = 1 + a|k|+ O(εk2), (6)

and where a = 1 for problem 1, and a = λ(λ− 1)−1 for problem 2. The solutions
of the dispersion equation give the eigenvalues σ = ik of the linearized operator
Lε. Some needed properties on the non linear term Nε are also given in section
2.4.

With the properties on the resolvent and on the non linear term, presented
in section 2, we obtain in section 3 the existence of a two parameter family of
periodic solutions of (5), corresponding to periodic travelling waves for the water-
wave problems. This family is constructed in two steps. First we prove the existence
of periodic solutions close to the equilibria uξ0 with u ∼ −1/(ac0) (where 2c0 = 3ρ
for problem 1 and 2c0 = −3λ/(λ−1) for problem 2) and with a period close to 2πa
(recall that ξ0 is the (symmetric) eigenvector associated with the 0 eigenvalue).
Then we obtain the existence of periodic solutions with a period close to ap for
almost all values of p > 2π.

Result of Theorem 3.2. There exist ε0 > 0, κ1 > κ0 > 0 and A0 > 0 such that
for all 0 < ε < ε0, equation (5) has a family of reversible periodic solutions UA

κ,ε,
parametrized by A (|A| < A0) and κ ∈ [κ0, κ1]. The period of these solutions is aT
where T is given by

T (ε, κ,A2) =
2π

κ(1− µ)
, µ =

1
2
(κ−1ac0)2A2 + O(ε),

where

c0 = 3ρ/2 for problem 1 and c0 = −3λ/2(λ− 1) for problem 2. (7)
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These solutions read

UA
κ,ε(x) = u0

κ,εξ0 + A Uκ,ε(x) + O(A2), (8)

where ξ0 is the (symmetric) eigenvector associated with the 0 eigenvalue and

u0
κ,ε = −κ + 1

2ac0
+ O(ε), is a constant, (9)

and Uκ,ε(x) = cos(2πx/(aT ))ξ0 + O(ε).

This theorem shows that the equilibria U = u0
κ,εξ0 are limits of periodic so-

lutions of amplitude O(A) tending towards 0. We can also prove the existence of
a second family of equilibria which read U = uξ0 with u ∼ (κ − 1)/(2ac0), hence
close to 0 when κ is close to 1. These last equilibria are the one considered in [3]
to which the homoclinic solutions are connected.

In the previous Theorem, we proved the existence of ap/κ-periodic solutions
where p > 2π is close to 2π. In next Theorem, we prove that we can extend this
result to “large periodic solutions” of period ap/κ, for almost all values of p > 2π.

Result of Theorem 3.3. There exists a sub-set P of (2π,+∞), which differs from
the interval (2π,+∞) by a discrete set without point of accumulation, for which the
following result holds : for all compact set K ⊂ P, there exist ε0 > 0, κ1 > κ0 > 0
such that equation (5) has a family of periodic solutions Vp

κ,ε, parametrized by
p ∈ K and κ ∈ (κ0, κ1). The period of these solutions is aT where T = p/κ, and
Vp

κ,ε satisfies

Vp
κ,ε(x) =

(
− κ

ac0
vp(2πx/(aT )) +

κ− 1
2ac0

)
ξ0 + O(ε),

where vp is defined in (4).

The periodic solutions constructed above correspond to periodic travelling
waves for both problems as presented in Figure 1 and Figure 2. We can compute
the expression of the interface ZI,1 for problem 1. This expression reads (using
2ac0 = 3ρ and a = 1), in the unscaled variables

ZI,1(x) ∼ ε

(
−2κ

3ρ
vp (2πκεx/p) +

κ− 1
3ρ

)
, (10)

where ε = ρ− λ(1− ρ), κ ∈ (κ0, κ1) and p ∈ K. This expression is valid for all the
values of p close to 2π and we can expand it with respect to the amplitude A (see
the result of Theorem 3.2 above)

ZI,1(x) ∼ −ε

(
κ + 1
3ρ

+ A cos(2πεx/T )
)

,

where T is close to 2π/κ.
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For problem 2, we obtain the following expressions for the interface ZI,2 and
the free surface Z (using 2ac0 = −3 and a = λ(λ− 1)−1)

ZI,2(x) ∼ −ε
λ− 1

λ

(
2κ

3
vp (2πκεx/(ap))− κ− 1

3

)
, (11)

Z(x) ∼ ε

λ

(
2κ

3
vp (2πκεx/(ap))− κ− 1

3

)
. (12)

Notice that we also obtain the expansion of these expressions when p is close to
2π as for problem 1.

Notice that the periodic solutions found here are different from the ones found
in [6] and [7]. In these two articles, the periodic solutions result from a generali-
sation of the Liapounov-Devaney theorem in presence of the resonance due to the
eigenvalue 0 which lies in the essential spectrum. This would correspond here to a
study with ε < 0, where a pair of eigenvalues sit on the imaginary axis.

The proof of these Theorems consists in the reduction of (5) to a scalar non
local equation, which is a perturbation on the Benjamin-Ono equation (3). We
first fix a real number T > 0 and we look for aT -periodic solution of (5). With the
scaling U(x) = U(s) where s = aTx/(2π) we now look for 2π-periodic solutions of
the new system

2π

aT

dU

ds
= LεU +Nε(U). (13)

We decompose a solution of (13) as follows

U = uξ0 + εY,

where u is a 2π-periodic scalar function and Y is in a complementary space of ξ0.
The reduction technics consists in proving that Y can be written as a function of
u (see Theorem 4.2)

The next step of the reduction consists in finding the equation satisfied by u
(see Theorem 4.3).

Equation for u. Let U = uξ0 + εY be a 2π-periodic reversible solution of (13).
Then u satisfies the following equation

u +
2π

T
H](u′) + ac0u

2 = c + O(ε), (14)

where c is a constant of integration, c0 is defined by (7) and H] is the Hilbert
transform for 2π-periodic functions.

The rest of the paper is devoted to the resolution of (14). We first change the
parameters in (14) as follows T = p/κ and c = (κ2 − 1)/(4ac0) with p > 2π and
κ > 0. We now consider the equation

u + κ
2π

p
H](u′) + ac0u

2 =
κ2 − 1
4ac0

+ O(ε). (15)
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The search of stationary solutions of (15) leads to the existence of two solutions:
the first one being precisely u0

κ,ε given in (9). The second solution is u = (κ −
1)/(2ac0) + O(ε). This solution is close to 0 for κ close to 1 and corresponds to
the equilibria considered in [3].

Since the function uκ,p defined by

uκ,p = − κ

ac0
vp +

κ− 1
2ac0

is a solution of (15) when the term O(ε) is zero (see [2]), we search even solutions
u of (15) as a perturbation of uκ,p, i.e. u = uκ,p + w. The equation satisfied by w
reads

Lpw = Nε,κ,p(w), (16)

where Lp is defined by

Lpw = w +
2π

p
H](w′)− 2vpw,

where vp is defined in (4) and Nε,κ,p(w) = −κ−1ac0w
2 + O(κ−1ε). Actually, Lp is

the Benjamin-Ono operator linearized around the solution uκ,p.
We use the implicit function theorem to find solutions of (16). First we study

the case when p ' 2π. Since v2π = 1 we have L2πw = −w +H](w′), then L2π is
not invertible and its kernel in a space of even functions is spanned by the function
cos. The Lyapounov-Schmidt method leads to a solution w = A cos +O(A2 + ε) of
(16) where p ' 2π is a function of the amplitude A and of ε. These solutions give
the solutions of Theorem 3.2 thanks to the reduction theorem.

We finally study the equation (16) with p > 2π. The difficulty is to know
whether Lp is invertible. We know that it’s not invertible in a space including odd
functions since ∂svp is in the kernel for all the values of p > 2π. But the study
made for p ' 2π shows that Lp is invertible for even functions when p > 2π is
close to 2π. The family Lp, p > 2π being analytic with respect to p, we can prove
that Lp is invertible for even functions for p ∈ P where the set P differs from the
interval (2π,+∞) by a discrete set with no accumulation point.

Thanks to the implicit function theorem we can solve (16) with respect to
w. This leads to the existence of a family of solutions of (14) which read u =
uκ,p + O(ε), and then lead to the solutions Vp

K,ε of Theorem 3.3.

2 Spatial dynamic formulation

In this section we show how we can obtain a “spatial dynamics” formulation (see
[8]) to describe the water wave problems. We then linearize the vector field around
the origin (which is a stationary solution of the spatial dynamical system) and we
study its resolvent operator on the imaginary axis. We finally give some properties
on the non linear term.
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2.1 Formulation of the water-wave problems

In the moving reference frame, denoting by ξ, η the physical coordinates, the
complex potential in layer j is denoted wj(ξ + iη) and the complex velocity w′

j(ξ +
iη) = uj − ivj . For formulating both problems as a dynamical system we proceed
as in [6] and [7] and use the change of coordinates used by Levi-Civita : the new
unknowns are αj + iβj , j = 1, 2 which are analytic functions of wj = xj + iy where
xj is the velocity potential in the layer j and y is the stream function and where

w′
j(ξ + iη) = eβj−iαj .

Notice that αj is the slope of the streamline and eβj is the modulus of the velocity
in the region j. The interface is then given by y = 0 and the upper surface by y = 1.
The region of the flow is −∞ < y < 0 for fluid 2 and 0 < y < 1 for fluid 1. We
choose as the basic x coordinate the one given by the bottom layer (x2) (and we
notice that dx1/dx2 = eβ10−β20 which introduces a factor in the Cauchy-Riemann
equations of the upper layer).

With this choice of coordinates we formulate our problems as a dynamical
system (see [6])

dU

dx
= F (U), (17)

with the following unknown for problem 1

[U(x)](y) = (β20(x), α1(x, y), β1(x, y), α2(x, y), β2(x, y))t,

where β20 is the trace of β2 at y = 0. The right hand side of (17) reads

F (U) =



−λ(1− ρ)e3β20 sinα10 − ρ∂α1
∂y |y=0

e3(β10−β20),

∂β1
∂y eβ10−β20

−∂α1
∂y eβ10−β20

}
y ∈ (0, 1),

∂β2
∂y

−∂α2
∂y

}
y ∈ (−∞, 0).

(18)

Equation (17) is understood in H where

H = R×
{
C0(0, 1)

}2 ×
{
C0
1(R−)

}2
,

and U(x) lies in D where

D = R×
{
C1(0, 1)

}2 ×
{
C1
1(R−)

}2

∩{α1(0) = α2(0), α1(1) = 0, β20 = β2(0)} ,

where we define the following Banach spaces

C0
1(R−) =

{
f ∈ C0(R−); sup

y∈R−
|f(y)|(1 + |y|) < ∞

}
,

C1
1(R−) =

{
f ∈ C0

1(R−); f ′ ∈ C0
1(R−)

}
.
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The norm in H for V = (a, f1, g1, f2, g2)t ∈ H is defined by

‖V ‖H = |a|+ ‖f1‖∞ + ‖g1‖∞ + ‖f2‖1,∞ + ‖g2‖1,∞,

with
‖f‖1,∞ = sup

y∈R−
|f(y)|(1 + |y|),

and we obtain the norm in D by adding the norms of f ′i and g′i.
For problem 2, the unknown is defined by

[U(x)](y) = (β20(x), Z(x), α11(x), α1(x, y), β1(x, y), α2(x, y), β2(x, y))t,

where 1 + 1
2λ (1 − e−2λZ(x) is the expression of the free surface, and for example,

α11 means the trace of α1 in y = 1, and the same convention holds for β20. The
right hand side of (17) is given by

F (U) =



−λ(1− ρ)e−3β20 sinα20 − ρ∂α1
∂y |y=0

e3(β10−β20),

e2λZ−β11+β10−β20 sinα11,
eβ11

2b (1− e−2(λZ+β11))eβ10−β20 ,
∂β1
∂y eβ10−β20

−∂α1
∂y eβ10−β20

}
y ∈ (0, 1),

∂β2
∂y

−∂α2
∂y

}
y ∈ (−∞, 0).

(19)

The spaces H and D are defined as for problem 1, except that R is replaced by R3

and that the boundary condition involving α1(y = 1) in D is now α11 = α1(y = 1).
The Galilean invariance of the physical problems induces a reflection symmetry

(through the y axis) of both systems in the moving frame. This reflection leads to
the reversibility of system (17), i.e. to the existence of a linear symmetry S which
anticommutes with the vector field F . This reversibility symmetry is then defined
by

SU = (β20,−α1, β1,−α2, β2)t, for problem 1,

SU = (β20, Z,−α11,−α1, β1,−α2, β2)t, for problem 2.

The dispersion equation reads (for Re k > 0) for problem 1

∆1(k) = ρk cosh(k)− sinh(k)[k − λ(1− ρ)] = 0, (20)

while for the second problem, this equation reads for Re k > 0

∆2(k) = k cosh(k)(ρbk2 + λ− k)
− sinh(k)

{
(λ + bk2)[λ(1− ρ)− k] + ρk2

}
= 0. (21)
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Because of reversibility, both expressions should be completed by the symmetric
relationship for Re k < 0. This means that in ∆1 and ∆2, k should be replaced
by (sgn(k)Re(k)). The complex roots of ∆j(k) = 0 give all complex eigenvalues
ik of the linearized operator DUF (0) belonging to the upper part of the complex
plane. These isolated eigenvalues have a finite multiplicity, and are completed by
the symmetric eigenvalues in the lower half plane. They are located in a sectorial
region of the complex plane, centered on the real axis, which leads to the finiteness
of the number of such eigenvalues in the neighborhood of the imaginary axis (see
for example [6]). In addition to this discrete set, the spectrum of the linearized
operator contains an essential spectrum formed by the entire real axis. This is
shown, for example in [6], and this results from the form of the Cauchy-Riemann
operator in the infinite layer (−∞ < y < 0). Let us give more precisions on the
eigenvalues lying on the imaginary axis.

For problem 1, we introduce the parameter ε = ρ− λ(1− ρ). The study of the
equation (20) shows that the linear operator Lε = DUF (0) has the spectrum of
Figure 3 . For problem 2, the parameter ε is 1−λ(1−ρ). The study of the equation
∆2(k) = 0 for k real and for b large leads to the following conclusion: for ε > 0
small enough, b large enough and 1 − ρ = (α/b)1/3 with 0 < α < 4, then 0 is the
only real solution of the dispersion equation (21). This means that for ε < 0 there
is a pair of eigenvalues on the imaginary axis in addition to the 0 eigenvalue, and
for ε > 0 this pair disappears (see [3] for the study of the equation ∆1(k) = 0).
Notice that the case treated in [7] is such that b = 0, which implies the occurrence
of another pair of simple imaginary eigenvalues (given by k = ±λ) for all values
of ε.

Looking at (18) and (19), we notice the existence of a one parameter family of
solutions

U(x) = uξ0, u ∈ R,

of the nonlinear system (17). The eigenvector ξ0 belonging to a zero eigenvalue of
the linearized operator (about 0) Lε reads

ξ0 = (0, 0, 1, 0, 0)t, for problem 1,

ξ0 = (0, λ−1, 0, 0,−1, 0, 0)t, for problem 2.

This family of equilibria corresponds physically to a sliding with a non zero small
and uniform velocity of the upper layer over the bottom one.

2.2 Rescaling

Let us introduce the basic rescaling of our systems for ε > 0, hence hiding the
pair of imaginary eigenvalues occurring for ε < 0 (the details are only given for
problem 2, since the formulation for problem 1 is very similar). We set

εx = x; εy = y, y ∈ (−∞, 0); y = y, y ∈ (0, 1)
U = εU,
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and equation (17) now reads

dU

dx
= LεU +Nε(U), (22)

where for problem 2, U = (β20, Z, α11, α1, β1, α2, β2)t, and

LεU =



ε−1
{
−(1− ε)α10 − ρ∂α1

∂y |y=0

}
ε−1α11

ε−11/b(β11 + λZ)
ε−1 ∂β1

∂y

−ε−1 ∂α1
∂y

∂β2
∂y

−∂α2
∂y


,

and

Nε(U) = ε−2



−(1− ε)[e−3εβ20 sin(εα10)− εα10]− ερ∂α1
∂y |y=0

[e3ε(β10−β20) − 1]

e2ελZ−εβ11+εβ10−εβ20 sin(εα11)− εα11

eεβ11/2b(1− e−2ε(λZ+β11))eεβ10−εβ20 − ε/b(β11 + λZ)
ε∂β1

∂y

{
eε(β10−β20) − 1

}
−ε∂α1

∂y

{
eε(β10−β20) − 1

}
0
0


.

We observe that (in both problems) the two last components of Nε(U) are zero
and that the differentiability in y of the components α2, β2 of U is not necessary
to define Nε(U). Therefore, the following property holds

Nε : D̂ → H̃,

where

D̂ = R3 ×
{
C1(0, 1)

}2 ×
{
C0
1(R−)

}2

∩{α1(0) = α2(0), α11 = α1(1), β20 = β2(0)} ,

i.e. the functions α2 and β2 of the vector U are only continuous when U ∈ D̂ and

H̃ = R3 ×
{
C0(0, 1)

}2 ×
{
Cexp

ε (R−)
}2

,

where Cexp
ε (R−) = {f ∈ C0(R−), ‖f‖exp

ε < ∞} with the norm for a given d > 0

‖f‖exp
ε = sup

y∈R−
|f(y)|e−dy/2ε,

13



with similar definitions for problem 1. Actually, H̃ could be chosen such that the
two last components are 0, but we choose a space for which these components
have an exponential decay rate (H̃ is then dense in H). Notice that Lε considered
in L(H̃) is Fredholm on the real axis. It can be shown that the only eigenvalue is
0, and for any λ real, λ− Lε has a closed range, of codimension 1 if λ 6= 0 and 2
if λ = 0. Actually, H̃ is chosen such that the map k 7→ (ik − Lε)−1 is regular in
L(H̃, D̂) for k real close to 0 (see section 2.3).

Notice also the existence in both problems of a first integral (hence independent
of x), which reads for problem 2

h = (1− ε)
{
− 1

2λ
e−2λεZ −

∫ 1

0

(e−εβ1 cos(εα1)− 1)dy

}
+

1
2
e2εβ20 − ρ

2
e2εβ10 . (23)

This combination of the two Bernoulli first integrals at the free surface and at the
interface is well defined in H. The existence of such an integral is not necessary in
the study which follows.

2.3 Resolvent operator of Lε

This section is devoted to the study of the resolvent operator (ik−Lε)−1 for ε > 0
small enough. The explicit formulae can be found for example in [3] and [6]. Here
we give the estimates on this resolvent on the imaginary axis (i.e. for k real) near
the origin and for |k| large.

For both problems, the resolvent can be written as follows for ε|k| small enough.

Lemma 2.1 (resolvent operator for small ε|k|) There exists δ > 0 such that
for k ∈ R\{0}, ε|k| < δ and V ∈ H , the resolvent operator is decomposed as
follows

(ik − Lε)−1V =
ξ∗ε,k(V )
ikε∆

ξ0 +
η∗ε,k(V )

∆
θk + εSε,k(V ), (24)

with the properties described below in four parts.

The proof of this Lemma and of the properties below lies on the study of the
equation (ik − Lε)U = V for a given vector V ∈ H. The explicit formulae can be
found in [3] and [6] and the properties below result easily from these formulae.

Notice that the form (24) of the resolvent is the same as in Hypothesis H1
in [3], where this decomposition is used as a general assumption to describe the
spectrum of Figure 3. Actually, the form (24) (or an adaptation of this form,
depending in particular on the multiplicity of the 0 eigenvalue) turns out to be a
general formulation of the resolvent of the linear operator involved in many water-
wave problems, when the bottom layer of fluid is infinitely deep. Therefore, in the
rest of the paper, we describe the dynamical system (22) in the most general frame,
since we can prove the existence of periodic solutions for other systems having the
properties described below for the water waves problems.

14



Let us now give in four parts the main properties of each term introduced in
(24). These properties result from the explicit formulae of the resolvent.

The dispersion equation. For k ∈ R\{0}, and near 0, the dispersion equation
reads

ikε∆(ε, k) = 0,

where the map ∆(ε, k) is even with respect to k and satisfies

∆(ε, k) = 1 + a|k|+ O(εk2),

where a = 1 for problem 1, and a = λ−1(λ− 1) for problem 2.

The root k = 0 in the dispersion equation is related to the simple eigenvalue
in 0 of Lε. We also observe that ∆ is not analytic, this is a sign of the fact that
0 lies in the essential spectrum. The evenness comes from the reversibility of the
system. For problem 2, the dispersion equation (before scaling) is ∆2(k) = 0 (see
(21)), ∆ is obtained by the relation ∆(ε, k) = ∆2(εk)/(ε2kλ).

On the splitting of the space and the projection associated with the
kernel of Lε.

There exists p∗0 ∈ H∗ such that p∗0(SV ) = p∗0(V ), p∗0(ξ0) = 1 .
There exists δ > 0 such that for k ∈ R\{0}, ε|k| ≤ δ and V ∈ H, we have

p∗0(ik − Lε)−1V =
ξ∗ε,k(V )

ik∆(ε, k)
,

where, for k 6= 0, ξ∗ε,k ∈ H∗, ξ∗ε,k(SV ) = ξ∗ε,−k(V ) and we can define the form ζ∗ε,k

with

ξ∗ε,k = ξ∗ε + ζ∗ε,k, ξ∗ε ∈ H∗,

|ζ∗ε,k(V )/k| ≤ cε, for V ∈ H̃.

For problem 1, we choose p∗0(V ) = β11 = β1(y = 1), and for a vector V =
(a, f1, g1, f2, g2)t ∈ H

ξ∗ε (V ) = −a + ρg10 − (ρ− ε)
∫ 1

0

g1(τ)dτ.

For problem 2, we choose p∗0(V ) = −β11 = −β1(y = 1) and for a vector V =
(a1, a2, a3, f1, g1, f2, g2)t ∈ H

ξ∗ε (V ) = a1 − ρg10 + (1− ε)a2 + (1− ε)
∫ 1

0

g1(τ)dτ.

The symmetry property of the linear form ξ∗ε,k is an easy consequence of the
reversibility of (22) and it implies the invariance of ξ∗ε under S (i.e. ξ∗ε (SV ) =
ξ∗ε (V )). We can also prove in both problems that ξ∗ε (ξ0) = ε. Therefore, the usual
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projection on the kernel of the linear operator Lε is V 7→ ε−1ξ∗ε (V ), which is
singular when ε → 0+, that’s why we prefer to use the projection p∗0 which is
independent of ε.

Notice that the estimate on ζ∗ε,k is not valid in H but in the smaller space H̃.
Indeed, the main (non differentiable) term of ζ∗ε,k can be written as ε|k|χ∗ε where

χ∗ε(V ) =
∫ 1

0

g1(τ)dτ + ε−1

∫ 0

−∞
g2(τ)dτ, for problem 1,

χ∗ε(V ) =−a2 −
∫ 1

0

g1(τ)dτ + ε−1

∫ 0

−∞
g2(τ)dτ, for problem 2.

We observe that this form cannot be defined in H because of an insufficient decay
rate of the component g2 in the lower layer of fluid, whereas it is well-defined in
H̃ (with a uniform bound).

Singularity related to the essential spectrum in 0. The singular part of
(ik − Lε)−1V in ker p∗0 reads

η∗ε,k(V )
∆(ε, k)

θk,

where kθk is bounded in D, (kθk)k=0 = 0, Sθk = −θ−k, p∗0(θk) = 0 and

ξ∗ε (θk) = isgn(k). (25)

For k 6= 0, η∗ε,k ∈ H∗, η∗ε,k(SV ) = η∗ε,−k(V ) and

η∗ε,k = η∗ε + β∗ε,k, η∗ε ∈ H̃∗, β∗ε,0 = 0,

|β∗ε,k(V )/k| ≤ cε, V ∈ H̃.

We obtain the following vector θk

θk = (−isgn(k), y − 1, 0,−e|k|y,−isgn(k)e|k|y)t, for problem 1,

θk = (isgn(k), 0,−(λ− 1)−1, 1− λ(λ− 1)−1y, 0, e|k|y, isgn(k)e|k|y)t, for problem 2,

from which we directly obtain the relation (25). Since the norm of the function
y 7→ e|k|y in C0

1(R−) is 1/|k| for |k| small, then kθk is bounded in D.
The linear form η∗ε is defined by

η∗ε (V ) = a− ρg10 + ρ

∫ 1

0

g1(τ)dτ +
∫ 0

−∞
g2(τ)dτ, for problem 1,

η∗ε (V ) = λ−1(1− λ)(a1 − ρg10)− ρa2 − ρ

∫ 1

0

g1(τ)dτ +
∫ 0

−∞
g2(τ)dτ, for problem 2.

We observe that for the same reasons as for χ∗ε, the linear form η∗ε cannot be
defined in H. Looking at the definitions of ξ∗ε , η∗ε and χ∗ε, we observe that the
following relationship holds

aξ∗ε = εχ∗ε − η∗ε . (26)
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It has been seen in [3] that this relation is equivalent to (25).

Regular part of the resolvent near 0 for k ∈ R\{0}. The regular part of
(ik − Lε)−1V reads

εSε,k(V ),

where Sε,k ∈ L(H, D) for k 6= 0 and Sε,k is uniformly bounded with for ε|k| < δ in
L(H̃, D̂).

Remark on the range of Lε. Looking at (24), we observe that there is a limit
when k tends to 0 if V ∈ H̃ and ξ∗ε (V ) = η∗ε (V ) = χ∗ε(V ) = 0. These are sufficient
conditions on V to be in the range of Lε. It results that the range of Lε has
codimension 2 since the relation (26) holds and since H̃ is dense in H.

We finally give here a property on the resolvent on the imaginary axis for
ε|k| > δ/2. Notice that only the continuity of the resolvent is needed here, whereas
we needed the differentiability of G(ε, k) in [3]. These estimates are obtained as in
[6].

Lemma 2.2 (resolvent operator for large ε|k|) Let V ∈ H, then for k real,

(ik − Lε)−1V = G(ε, k)(V ), (27)

where k 7→ G(ε, k) is continuous in L(H, D) for ε|k| > δ/2 with the following
estimates in L(H) and in L(H̃, D̂)

‖G(ε, k)‖L(H) ≤ c/|k|, ‖G(ε, k)‖L(eH,bD) ≤ cε. (28)

2.4 Properties of the non linear term Nε

Let us now give the properties of the non linear term. The first Lemma describes
the regularity of Nε. This Lemma is an easy consequence of the expression of Nε.

Lemma 2.3 (properties of the non linear operator Nε) For k ≥ 3, the non
linear map Nε satisfies

Nε ∈ Ck(D̂, H̃), DUNε(0) = 0,

Dm
U Nε(0) = O(εm−2), m = 2, 3.

Moreover, Nε(νξ0) = 0 for all ν ∈ R in a neighborhood of 0.

Notice that the property Nε(νξ0) = 0 is equivalent to the existence of the one
parameter family of stationary solutions U(x) = νξ0 for ν in a neighborhood of 0.
It has been seen in [3] that this property is related to the 0 eigenvalue and to the
structure of the resolvent near the origin.

As in [3], we now introduce Rε(u, Y ) = ε−1Nε(uξ0 +εY ). This operator is used
because we decompose a solution of (22) as U = uξ0 + εY , p∗0(Y ) = 0. Thanks to
Lemma 2.3, the operator Rε has the following properties.
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Proposition 2.4 (properties of Rε) The operator Rε : R × D̂ → H̃ is Ck and
satisfies

Rε(u, Y ) = uDεY + R̃ε(u, Y ),

where Dε ∈ L(D̂, H̃), and

‖R̃ε(u, Y )‖eH ≤ cε‖Y ‖bD(|u|+ ‖Y ‖bD),

for |u|+ ‖Y ‖bD ≤ M .

For problem 2, a straightforward computation leads to the following operator Dε

DεY =
(

3ρ
∂α1

∂y
|y=0, 2α11,−

2λ

b
Z,−∂β1

∂y
,
∂α1

∂y
, 0, 0

)t

.

Next proposition gives the link between ξ∗ε , θk and the operator Dε introduced
above. This proposition results from a straightforward computation.

Proposition 2.5 For both problems, the following property holds

ξ∗ε (Dεθk) = 2c0 + εγε(k), c0 6= 0, k 7→ γε(k) ∈ C0(R, R),

with 2c0 = 3ρ for problem 1, and 2c0 = −3λ/(λ− 1) for problem 2.

Notice that in both problems, the function γε is constant. This is linked with
the existence of the Bernoulli first integral (see (23)). Actually, the proof of the
existence of periodic solutions of (22) only requires the continuity of the function
γε. That’s why we prefer to give the most general property in Proposition 2.5, since
the study of this article can be generalized to other reversible systems having the
spectrum as in Figure 3 .

3 Existence of periodic solutions

3.1 Working system and notations

In this section we come back to the system (22). We fix a real number T > 0, and
we look for periodic solutions of (22) of period aT (where a is introduced in the
definition of the function ∆). Since we want to work with 2π-periodic functions,
we perform the following change of variable

U(x) = U(s), s =
2π

aT
x,

so that equation (22) now reads

2π

aT

dU

ds
= LεU +Nε(U), (29)
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As in [3] for the search of homoclinic solutions, we decompose a 2π-periodic solution
U of (29) as follows

U = uξ0 + εY, p∗0(Y ) = 0, (30)

where p∗0 is defined in section 2.3, and is such that p∗0(ξ0) = 1. Thanks to the
definition of Rε (i.e. Rε(u, Y ) = ε−1Nε(uξ0 + εY )), we can write the system for u
and Y

2π

aT

du

ds
= p∗0(LεεY ) + p∗0(εRε(u, Y )), (31)

2π

aT

dY

ds
= π(LεY ) + π(Rε(u, Y )), (32)

where π is defined by π(V ) = V − p∗0(V )ξ0 for V ∈ H.
We look for reversible solutions U of (29), i.e. SU(s) = U(−s). This implies

the following for u and Y

u is even, and SY (s) = Y (−s).

To prove the existence of periodic solutions of (29), we first prove that the system
(31)-(32) can be reduced, for reversible solutions, to a scalar equation for u. Indeed,
if (u, Y ) is a reversible solution of (31)-(32), then Y is a function of u for ε > 0
small enough (see Theorem 4.2). The equation satisfied by u is given in Theorem
4.3. This equation is a perturbation of the Benjamin-Ono equation, for which there
is a family of periodic solutions (see Theorems 4.4 and 4.7). Therefore, a family
of periodic reversible solutions of (29) can be constructed (see Theorems 3.2 and
3.3).

Notations

Before going to the theorems proving the existence of periodic solutions of (22),
let us give some definitions.

Let E be a Banach space and n ∈ N, we denote by Hn
] (E) the space of 2π-

periodic functions u, taking values in E and such that
∑

k∈Z(1+ |k|2n)‖uk‖2E < ∞,
with the usual norm, and where uk is the kth Fourier coefficient of u. The space
of even functions of Hn

] (E) is denoted by Hn
],e(E).

The Hilbert transform for 2π-periodic functions H] is defined by the following
relations

H](cos) = sin, H](sin) = − cos,

and H](const.) = 0. The Fourier coefficients of H](f) are given by the following
relation

{H](f)}k = −isgn(k)fk, k ∈ Z\{0}.

We now introduce the operators and the vectors linked with the vector θk. Indeed,
as in [3], the construction of the periodic solutions depends on the vector θk.
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Therefore, we define the operator u 7→ T](u) for a function u ∈ H1
] (R) by

{T](u)}k = −i
2π

T
ϕ0(2πεk/aT )kukθ 2π

aT k, k ∈ Z\{0},

which is completed by {T](u)}0 = 0 (in using {kθk}k=0 = 0). In this formula, we
introduced a splitting of the unity ϕ0 + ϕ1 = 1

ϕ0(εk) =
{

1, ε|k| < δ/2
0, ε|k| > δ

, ϕ1(εk) =
{

0, ε|k| < δ/2
1, ε|k| > δ

.

Notice that, thanks to the property ξ∗ε (Dεθk) = isgn(k), we obtain

ξ∗ε (T](u)) =
2π

T
H]

(
du0

ds

)
,

where {u0}k = ϕ0(2πεk/aT )uk. Since kθk is bounded in D in the neighborhood of
k = 0 the following property holds

Proposition 3.1 The operator T] is bounded from Hn
] (R) into Hn−1

] (D), for n ≥
1

T] ∈ L(Hn
] (R),Hn−1

] (D)),

and for an even function u, ST](u)(s) = T](u)(−s).

The symmetry property of this proposition results from the symmetry of θk :
Sθk = −θ−k.

Remark. The definition of T] shows that if u is a constant function, then T](u) = 0.

Water-wave problems. In the second water-wave problem, we compute explic-
itly the vector T](u) (the result being similar for problem 1). We obtain T](u) =
(β20, 0, α11, α1, 0, α2, β2)t where

α1(y) =−2π

T

(
1− λ

λ− 1
y

)
u′0,

α2(y) =− 1
T

∫ π

−π

u′0(s− τ)(1− e
4π
aT y)

1− 2e
2π
aT y cos(τ) + e

4π
aT y

dτ,

β2(y) =
1
T

∫ π

−π

2u′0(s− τ) sin(τ)e
2π
aT y

1− 2e
2π
aT y cos(τ) + e

4π
aT y

dτ,

we check in particular that

β20 =
2π

T
H](u′0).
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3.2 Main Theorems

The following theorem shows the existence of a family of periodic solutions of
(29). These solutions are close to stationary solutions belonging to the family of
equilibria uξ0, u ∈ R.

Theorem 3.2 There exists ε0 > 0, κ1 > κ0 > 0 and A0 > 0 such that for
all 0 < ε < ε0, the equation (29) has a family of reversible periodic solutions
UA

κ,ε ∈ H2
] (R)ξ0⊕{H1

] (D̂)∩ker p∗0}, parametrized by A (|A| < A0) and κ ∈ [κ0, κ1].
The parameter T is given by

T (ε, κ,A2) =
2π

κ(1− µ)
, µ(ε, κ,A2) =

1
2
(κ−1ac0)2A2 + O(ε).

These solutions read

UA
κ,ε(s) = u0

κ,εξ0 + A Uκ,ε(s) + Ũ
A

κ,ε(s),

with
u0

κ,ε = −κ + 1
2ac0

+ O(ε) is a constant,

and Uκ,ε(s) = cos(s)ξ0 + O(ε), Ũ
A

κ,ε = O(A2).

Remark. This theorem shows that the stationary solutions u0
κ,εξ0, belonging

to the family of equilibria U = uξ0, u ∈ R are limits of periodic solutions of
amplitude O(A) tending towards 0. Actually, we can prove that the linearized
operator around these stationary solutions u0

κ,εξ0, i.e. Lε +DUNε(u0
κ,εξ0), has two

imaginary eigenvalues ±iσκ,ε = ±i2π/(aT (ε, κ, 0)) = ±iκ/a+O(ε). Therefore, the
equilibria uξ0 are elliptic for u large enough.

We note that for ε > 0 small enough and κ close to 1, there is also a family of
equilibria of the form uξ0, with u ' (κ − 1)/(2ac0), hence close to 0 (see section
4.2 and the resolution of (71)). These equilibria are exactly the ones of [3] to which
the family of homoclinic solutions with a polynomial decay rate are connected.

The solutions are searched in H2
] (R)ξ0⊕{H1

] (D̂)∩ker p∗0}. This space has been
chosen in order to work in an algebra : if u ∈ H2

] (R) and if Y ∈ H1
] (D̂) then the

term Rε(u, Y ) of proposition 2.4 is in H1
] (H̃). We need more regularity for the

function u, since Y is computed with T](u), which is in H1
] (D) for u ∈ H2

] (R).

The preceding theorem shows the existence of periodic solutions close to the
equilibria u0

κ,εξ0. In next theorem, we prove that there are also “large periodic
solutions”.

Theorem 3.3 There exists a sub-set P of (2π,+∞), which differs from the inter-
val (2π,+∞) by a discrete set with no accumulation point, for which the following
result holds : for all compact set K ⊂ P, there exist ε0 > 0, κ1 > κ0 > 0 such that
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the equation (29) has a family of periodic solutions Vp
κ,ε ∈ H2

] (R)ξ0 ⊕ {H1
] (D̂) ∩

ker p∗0}, parametrized by p ∈ K and κ ∈ (κ0, κ1). The parameter T is given by
T = p/κ, and Vp

κ,ε satisfies

Vp
κ,ε(s) = vp

κ,εξ0 + Ṽ
p

κ,ε(s),

with vp
κ,ε(s) = uκ,p(s) + O(ε), where

uκ,p = − κ

ac0
vp +

κ− 1
2ac0

, (33)

and where vp is defined in (4). Finally, Ṽ
p

κ,ε = O(ε).

We recover the solutions of Theorem 3.2 when p tends toward 2π in Vp
κ,ε. Notice

that, in this Theorem, we cannot reach the homoclinic solutions found in [3] (which
correspond to solitary waves) since we cannot reach the value p = +∞.

Remark. The results of Theorems 3.2 and 3.3 are given in the general spatial
dynamics framework, since the study presented here can be applied to other re-
versible systems having the spectrum as in Figure 3 and having the properties
presented in sections 2.3 and 2.4. In next paragraph, we write these results for
both water-wave problems.

Periodic waves. The periodic solutions of Theorem 3.2 and 3.3 correspond to
periodic waves for both problems. In problem 1, we can compute the expression
of the interface ZI,1 (using 2ac0 = 3ρ)

ZI,1(x) ∼ −ε

(
κ + 1
3ρ

+ A cos
(

2π

T
εx

))
, (34)

where T is close to 2π/κ.
For problem 2, we obtain the following expression of the free surface Z (using

ac0 = −3/2)

Z(x) ∼ ε

λ

(
κ + 1

3
+ A cos

(
2π

aT
εx

))
, (35)

and the expression of the interface ZI,2

ZI,2(x) ∼ −ε
λ− 1

λ

(
κ + 1

3
+ A cos

(
2π

aT
εx

))
. (36)

This result shows the existence of periodic travelling waves superposed to the
uniform translation of the upper layer of fluid. Notice in problem 2 the opposition
of phases between the oscillations of the free surface and the ones of the interface.

As for the previous Theorem, the periodic solutions Vp
κ,ε of (22) lead to periodic

waves for problem 1 and 2, of period (in the unscaled variables) ap/(κε) (see (10)
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for the expression of the interface for problem 1, and (11)-(12) for the expression of
the interface and free surface for problem 2). Notice that we recover the expressions
(34), (35) and (36) (i.e. when the amplitude A of the periodic waves is small) by
taking p close to 2π in (10), (11) and (12).

The rest of this paper is devoted to the proof of the Theorems 3.2 and 3.3.
In section 4.1 the system (31)-(32) is reduced to an equation for u, which is a
perturbation of the Benjamin-Ono equation. Then, in section 4.2, we prove that
this equation has a family of periodic solutions, from which we obtain the families
of solutions given in Theorems 3.2 and 3.3.

4 Proofs of Theorems 3.2 and 3.3

4.1 Reduction to the Benjamin-Ono equation

The aim of this section is to reduce the system (31)-(32) to a non-local scalar
equation for the function u. To obtain this equation, we first solve in section 4.1.1
the linear non-homogeneous system obtained from (31)-(32). Then, in section 4.1.2
we prove that the function Y is determined by u for ε > 0 close to 0 and that u is
a solution of a non-local scalar equation, which is a perturbation of the Benjamin-
Ono equation.

Notice that this strategy of reduction is similar to the one performed in [3],
except that we now work with periodic functions instead of functions which decay
towards 0. This implies in particular the presence of the constant c appearing in
the Benjamin-Ono equation (64) of Theorem 4.3.

4.1.1 Linear lemma

We study the non-homogeneous linear system obtained from (31)-(32) where we
replaced Rε(u, Y ) by a given anti-reversible function R ∈ H1

] (H̃) (i.e. R satisfies
SR(s) = −R(−s)). This system reads

2π

aT

du

ds
= p∗0(LεεY ) + p∗0(εR), (37)

2π

aT

dY

ds
= π(LεY ) + π(R). (38)

The following lemma gives the solution u and Y of (37)-(38) as functions of R.

Lemma 4.1 Let R ∈ H1
] (H̃) be an anti-reversible function. Let (u, Y ) ∈ H2

] (R)×
H1

] (D̂) be a solution of (37)-(38), then

Y = T](u) + T],ε(R), (39)
2π

aT

d

ds

{
u +

2π

T
H](u′) + C],ε(R)

}
= ξ∗ε (R), (40)
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with

‖T],ε(R)‖H1
] (bD) ≤ cε‖R‖H1

] (eH), (41)

‖C],ε(R)‖H1
] (R) ≤ cε‖R‖H1

] (eH). (42)

Moreover, ST],ε(R)(s) = T],ε(R)(−s) and C],ε(R) is even.

Notice that the formulation (39)-(40) is a weaker formulation of (37)-(38) since
LεY is not in H for Y ∈ D̂. Actually, this formulation is weak in the sense that
we solve the linear system for its Fourier coefficients, and it can be understood in
the distribution sense. In our water-wave problems, we recover regular functions
thanks to properties of the Cauchy-Riemann equations in the half plane.

The idea of the proof is to write Fourier coefficients of the system (37)-(38)
in order to use the properties of the resolvent. The equation (39) is obtained in
observing that the coefficients of Y and of u are linked thanks to the operator
T]. The difficulty is then to prove that the remaining term, i.e. T],ε(R) is small.
Finally, we use ξ∗ε (T](u)) = (2π/T )H(∂xu0) to prove (40).

Proof of Lemma 4.1. Let us write the Fourier coefficients of the system (37)-(38).
We then obtain the following equation for k ∈ Z

(ik̃ − Lε)(ukξ0 + εYk) = εRk, (43)

where uk, Yk and Rk are the k-th Fourier coefficients of u, Y and R, and k̃ =
2πk/(aT ). Let us define uk,0 = ukϕ0(εk̃) and uk,1 = ukϕ1(εk̃) and similarly Yk,0

et Yk,1.

First step : ε|k̃| < δ. We first consider the following equation

(ik̃ − Lε)(uk,0ξ0 + εYk,0) = ϕ0(εk̃)εRk.

The property of the resolvent for ε|k| small, allows us to solve this equation and
to express uk,0 and Yk,0 in function of Rk

uk,0 =
ϕ0ξ

∗
ε (Rk)

ik̃∆
+ {S(0)

],u(R)}k, (44)

Yk,0 =−a
ξ∗ε (Rk)

∆
ϕ0θk̃ + {S(0)

],Y (R)}k, (45)

where we defined for k 6= 0

{S(0)
],u(R)}k = ϕ0

ζ∗
ε,k̃

(Rk)

ik̃∆
, (46)

and

{S(0)
],Y (R)}k = ϕ0

εχ∗ε(Rk)
∆

θk̃ + ϕ0

β∗
ε,k̃

(Rk)

∆
θk̃ + ϕ0εSε,k̃(Rk). (47)
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Notice that the function k 7→ {S(0)
],u(R)}k is even. Indeed, ζ∗ε,k(SV ) = ζε,−k(V ) and

the functions k 7→ ∆ and k 7→ ϕ0 are even. Moreover, SRk = −R−k since R is
anti-symmetric. This explains the evenness of k 7→ {S(0)

],u(R)}k. Because of similar
symmetry relations for η∗ε,k and Sε,k and thanks to the relation Sθk = −θ−k, we

obtain S{S(0)
],Y (R)}k = {S(0)

],Y (R)}−k.
Note also that the relations (44) and (45) are well-defined for k = 0. Indeed,

since R0 ∈ H̃ and satisfies SR0 = −R0, then ξ∗ε (R0) = η∗ε (R0) = 0. It results that
R0 is in the range of Lε, and this allows to define Y0,0 and u0,0.

Estimates on S
(0)
],u(R) and S

(0)
],Y (R). We now estimate S

(0)
],u(R) and S

(0)
],Y (R).

Using the following estimate

1 + k2

∆(ε, k̃)2
≤ c

1 + k2

(1 + a|k̃|)2
≤ cmax

(
1,

T 2

(2π)2

)
, (48)

and the fact that the function k 7→ ζ∗ε,k/k is uniformly bounded by ε in H̃∗ for
ε|k| < δ, we obtain

(1 + k2)|{S(0)
],u(R)}k|2 ≤ cε2‖Rk‖2eH.

We deduce that S
(0)
],u(R) ∈ H2

] (R) with

‖S(0)
],u(R)‖H2

] (R) ≤ cε‖R‖H1
] (eH). (49)

We use the same technics to estimate S
(0)
],Y (R). The first term of S

(0)
],Y (R), denoted

by S
(0)
],Y,1(R), can be written as

{
S

(0)
],Y,1(R)

}
k

= ϕ0
εχ∗ε(Rk)

∆
θek = ikεϕ0

{
A(R)

}
k

∆
θek,

where
A(R) =

∫ x

0

χ∗ε(R)ds.

The linear form χ∗ε is invariant under S and R is anti-reversible. Therefore, the
function χ∗ε(R) is odd. This proves that the function A(R) is in H2

] (R) with
‖A(R)‖H2

] (R) ≤ c‖R‖H1
] (eH). We deduce the following estimate thanks to Propo-

sition 3.1
‖S(0)

],Y,1(R)‖H1
] (bD) ≤ cε‖R‖H1

] (eH). (50)

The estimate on the second term of (47), denoted S
(0)
],Y,2(R), is obtained as for the

first term. We have indeed{
S

(0)
],Y,2(R)

}
k

= ϕ0

β∗
ε,k̃

(Rk)

∆
θk̃ = ik̃ϕ0{B(R)}kθk̃,
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where

{B(R)}k = ϕ0

β∗
ε,k̃

(Rk)

ik̃∆
.

Since β∗ε,k/k is uniformly bounded by ε in H̃ for ε|k| < δ and thanks to (48),
B(R) ∈ H2

] (R) with ‖B(R)‖H2
] (R) ≤ cε‖R‖H1

] (eH). It results from Proposition 3.1

that S
(0)
],Y,2(R) ∈ H1(D̂) with

‖S(0)
],Y,2(R)‖H1

] (bD) ≤ cε‖R‖H1
] (H). (51)

The last term of (47) can be estimated as follows

‖εϕ0Sε,k̃(Rk)‖bD ≤ cε‖Rk‖H, (52)

since the function k 7→ Sε,k̃ is uniformly bounded in L(H̃, D̂) for ε|k̃| < δ. We

deduce from (50), (51) and (52) the following result : S
(0)
],Y (R) ∈ H1

] (D̂) with

‖S(0)
],Y (R)‖H1

] (bD) ≤ cε‖R‖H1
] (eH). (53)

Relation between uk,0 and Yk,0. From (44)-(45), we obtain the following
relation between Yk,0 and uk,0

Yk,0 = −i
2π

T
kuk,0θk̃ + {T 0

],ε(R)}k, (54)

with
{T 0

],ε(R)}k = S
(0)
],Y (Rk) + i

2π

T
kS

(0)
],u(Rk)θk̃. (55)

An estimate on T 0
],ε(R) in H1

] (D̂) is obtained in gathering (49), (53) and in using
Proposition 3.1

‖T 0
],ε(R)‖H1

] (bD) ≤ cε‖R‖H1
] (eH). (56)

Moreover, thanks to the symmetry relation of S
(0)
],Y (R) and thanks to evenness

k 7→ {S(0)
],u(R)}k, we remark that the expression T 0

],ε(R) is anti-reversible

ST 0
],ε(R)(x) = T 0

],ε(R)(−x). (57)

Second step : ε|k̃| > δ . We now study the equation for uk,1 and Yk,1, i.e.

(ik̃ − Lε)(uk,1ξ0 + εYk,1) = ϕ1(εk̃)εRk.

Thanks to Lemma 2.2, uk,1 and Yk,1 are given by the following relations

uk,1 = εϕ1(εk̃)p∗0(G(ε, k̃)(Rk)), Yk,1 = ϕ1(εk̃)π(G(ε, k̃)(Rk)).
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Since p∗0(SV ) = p∗0(V ), Sπ = πS and SG(ε, k)(V ) = −G(ε,−k)(SV ) for all V in
H, the following symmetry relations hold

uk,1 = u−k,1, SYk,1 = Y−k,1. (58)

To estimate Yk,1, we use ‖G(ε, k)‖L(eH,bD) ≤ cε which shows that Y1 ∈ H1
] (D̂) with

‖Y1‖H1
] (bD) ≤ cε‖R‖H1

] (eH). (59)

To estimate u1, we use ‖G(ε, k)‖L(H) ≤ c/|k|, then

(1 + k2)|uk,1|2 ≤ cε2 1 + k2

|k̃|2
‖Rk‖2eH.

It results that u1 ∈ H2
] (R) with

‖u1‖H2
] (R) ≤ cε‖R‖H1

] (eH). (60)

Equation for Y . Adding Yk,1 on both sides of (54), we obtain

Yk = −ϕ0i
2π

T
kukθk̃ + {T],ε(R)}k , (61)

where we defined the operator T],ε(R) by

{T],ε(R)}k = {T 0
],ε(R)}k + Yk,1.

The equation (61) corresponds to the equation (39) of Lemma 4.1. The estimate
(41) is obtained in gathering (56), (59) and (60) together with Proposition 3.1.
Finally, the symmetry relation of Lemma 4.1 results from (57) and (58).

Notice that, applying ξ∗ε on equation (61), we obtain

ξ∗ε (Y ) =
2π

T
H](u′0) + ξ∗ε (T],ε(R)). (62)

Equation for u. To end the proof of Lemma 4.1, it remains to find the equation
giving u in function of R. We apply the linear form ξ∗ε on the system (37)-(38),
then using ξ∗ε (LεU) = 0 we obtain

ξ∗ε

(
2π

aT

d

ds
{uξ0 + εY }

)
= εξ∗ε (R).

Finally, with the relation (62) and ξ∗ε (ξ0) = ε we obtain the equation (40) with
C],ε(R) = ξ∗ε (T],ε(R))− 2π/TH](u′1). This concludes the proof of Lemma 4.1. �
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4.1.2 Reduction

In the previous section, we have solved the linear system. We now replace the
function R in Lemma 4.1 by the non linear term Rε(u, Y ). We observe that if
u ∈ H2

] (R) is even and if Y ∈ H1
] (D̂) is reversible then Rε(u, Y ) ∈ H1

] (H̃) is
anti-reversible and satisfies the assumptions of Lemma 4.1. The equation (39), in
which R is replaced by Rε(u, Y ), shows that the function Y ∈ H1

] (D̂) is a solution
of

Y = T](u) + T],ε(Rε(u, Y )). (63)

This equation can be solved with respect to Y thanks to the implicit function
theorem.

Theorem 4.2 For all M > 0, there exists ε0 > 0 such that for 0 < ε < ε0 and
for all function u ∈ H2

],e(R) (i.e. u ∈ H2
] (R) is even) such that ‖u‖H2

] (R) ≤ M , a

reversible solution (u, Y ) ∈ H2
] (R)×H1

] (D̂) of (31)-(32) must satisfy

Y = Y],ε(u),
= T](u) + O(ε),

where the function Y],ε is smooth H2
],e(R) 7→ H1

] (D̂).

Proof of Theorem 4.2. We solve equation (63) with the implicit function theorem.
Here u is fixed and is such that ‖u‖H2

] (R) ≤ M , and we use the estimate (41).
Actually, we need to adapt this theorem since T],ε(Rε(u, Y )) is defined only for
ε > 0. Thus, we replace T],ε(Rε(u, Y )) by

T],ε(Rε(u, Y ))− (1− µε−1)T],ε(Rε(u, T](u))).

For µ = 0 we have the solution Y = T](u), and equation (63) corresponds to µ = ε.
Applying the implicit function theorem for µ close to 0 and Y near T](u), we obtain
the required result in making µ = ε, which lies in the domain of existence of the
solution. �

Remark. In the case when u is constant, then Y],ε(u) = 0. Indeed, we know that
T](u) = 0 and the uniqueness of the solution of (63) leads to Y = 0.

Theorem 4.2 reduces the system (31)-(32) to one equation for the scalar func-
tion u. This equation is obtained by replacing R by Rε(u,Y],ε(u)) in (40). Finally,
the proposition 2.5 allows us to rewrite this equation as a perturbation of the
Benjamin-Ono equation. Indeed, we prove that the main term of ξ∗ε (Rε(u,Y],ε(u)))
is a local quadratic term. We finally prove that the right hand side of (40) is at
main order a local term, which is −c0(2π/T )∂x(u2). This leads to the following
result
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Theorem 4.3 Let (u, Y ) ∈ H2
] (R)×H1

] (D̂) be a reversible solution of (31)-(32).
Then for all 0 < ε < ε0, the function u satisfies

u +
2π

T
H](u′) + ac0u

2 = c + B],ε(u), (64)

where B],ε : H2
],e(R) 7→ H1

],e(R) is smooth and O(ε) and c is a constant of integra-
tion.

Proof of Theorem 4.3. We use the following notation in the rest of the paper :
Rε(u) = Rε(u,Y],ε(u)). If u ∈ H2

],e(R) then Rε(u) satisfies the assumptions of
Lemma 4.1. Therefore, we can replace R by Rε(u) in equation (40)

2π

aT

d

ds

{
u +

2π

T
H](u′) + C],ε(Rε(u))

}
= ξ∗ε (Rε(u)), (65)

Thanks to Proposition 2.5 we first prove that the main term of ξ∗ε (Rε(u)) is a
local quadratic term : −c02π/T (u2)′. The term ξ∗ε (Rε(u)) appearing in (65) can
be computed in using the expansion of Rε given in Proposition 2.4

ξ∗ε (Rε(u)) = uξ∗ε (DεY],ε(u)) + ξ∗ε (R̃ε(u,Y],ε(u))), (66)

We now use the relation (61), which gives the Fourier coefficients of Y],ε(u) in
function of uk and the Fourier coefficients of Rε(u). This allows to compute the
term ξ∗ε (DεY],ε(u)).{

ξ∗ε (DεY],ε(u))
}

k
=−i

2π

T
kuk,0ξ

∗
ε (Dεθk̃) + ξ∗ε (Dε

{
T],ε(Rε(u))

}
k
)

=−i
2π

T
kukϕ0(2c0 + εγε(k̃)) + ξ∗ε (Dε

{
T],ε(Rε(u))

}
k
)

=−2c0
2π

T
{u′}k + 2c0ϕ1ikuk − i

2π

T
kukϕ0εγε(k̃)

+ξ∗ε (Dε

{
T],ε(Rε(u))

}
k
) (67)

notice that ξ∗ε (Dεθk) = 2c0 + εγε(k) has been used. We deduce from (67) that

ξ∗ε (DεY],ε(u)) = −2c0
2π

T

du

ds
+ J0

],ε(u), (68)

where{
J0

],ε(u)
}

k
= 2c0ϕ1ikuk − i

2π

T
kukϕ0εγε(k̃) + ξ∗ε (Dε

{
T],ε(Rε(u))

}
k
). (69)

We know that the function γε is even, that T],ε(Rε(u)) is reversible and that the
operator Dε anti-commutes with S. It results that J0

],ε(u) is odd when u is even. We
know that u1 ∈ H2

] (R) with the estimate (60). Since the function γε is bounded,
we deduce the following estimate on J0

],ε(u) (we also use (41))

‖J0
],ε(u)‖H1

] (R) ≤ cε‖Rε(u)‖H1
] (eH).
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Replacing (68) in (66) then in (65), the equation (65) becomes

2π

aT

d

ds

{
u +

2π

T
H](u′) + C],ε(Rε(u))

}
= −c0

2π

T

du2

ds
+ uJ0

],ε(u) + ξ∗ε (R̃ε)

which can be written as follows
d

ds

{
u +

2π

T
H](u′) + ac0u

2
}

= B],ε(u), (70)

where

B],ε(u) = − d

ds

{
C],ε(Rε(u))

}
+

aT

2π

(
uJ0

],ε(u) + ξ∗ε (R̃ε(u,Y],ε(u)))
)

.

Since T],ε(Rε(u)) is reversible and since R̃ε(u,Y],ε(u)) is anti-reversible, the func-
tion B],ε(u) is odd. After an integration in (70), we obtain (64), the periodic
function B],ε(u) being the primitive of B],ε(u), with zero mean value. �

4.2 Resolution of the perturbed Benjamin-Ono equation

In the previous section, the system (31)-(32) is reduced to equation (64) for the
scalar function u, where T and c are parameters. The limit equation, i.e. the
equation obtained when B],ε(u) ≡ 0, can be solved in the case when 1 + 4ac0c > 0
(see [2]). More precisely, the family of functions uκ,p parametrized by κ > 0 and
p > 2π, defined in (33), is a solution of the limit equation when T = p/κ and
c = (κ2− 1)/4ac0. Therefore, we look for solutions of (64) where we introduce the
new parameters T = p/κ and c = (κ2 − 1)/4ac0, with p > 2π and κ > 0, i.e. we
are now interested in the equation

u + κ
2π

p
H](u′) + ac0u

2 =
κ2 − 1
4ac0

+ B],ε(u). (71)

The rest of section 4.2 is devoted to the construction of solutions of (71). In section
4.2.1, we find solutions of (71) with p close to 2π. In section 4.2.2, we find solutions
of (71) for almost all the values of p > 2π. We also show how these solutions lead
to the periodic solutions of Theorems 3.2 and 3.3.

Notice that the resolution of the perturbed Benjamin-Ono equation for func-
tions u tending towards 0 at infinity is easily performed in [3] thanks to a result of
[1] on the invertibility of the linearized Benjamin-Ono operator. In next sections,
we study this resolution in the periodic case. In particular, we need to study the
invertibility of the linearized Benjamin-Ono operator around a given solution (see
the definition of Lp in (89)).

4.2.1 Solutions of (71) with p close to 2π

The critical value of p in uκ,p is 2π. For that particular value, we obtain the
constant function uκ,2π (denoted by uκ in the following)

uκ(s) = −κ + 1
2ac0

. (72)
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Therefore, we look for solutions u of (71) close to uκ, such that p is close to
2π. The following theorem proves the existence of a family of solutions uA

κ,ε =
uκ + A cos +O(ε + A2) parametrized by A, close to 0, and κ, which lies in an
interval [κ0, κ1] with κ0 > 0. The values of κ are limited since we must avoid the
critical value κ = 0 and because uκ must be bounded.

Theorem 4.4 There exists ε0 > 0, κ1 > κ0 > 0 and A0 > 0 such that for all
0 < ε < ε0 equation (71) has a family of periodic solutions uA

κ,ε parametrized by A
(|A| < A0) and κ ∈ [κ0, κ1], and satisfying

uA
κ,ε(x) = u0

κ,ε + A cos(x) + ũA
κ,ε(x), (73)

where u0
κ,ε = uκ + O(ε) is a constant, and the function ũA

κ,ε ∈ H2
],e(R) is of order

O(εA + A2). The parameter p = p(ε, κ,A2) is given by

p =
2π

1− µ
, µ =

1
2
(κ−1ac0)2A2 + O(ε).

Remark. The constant uκ is a solution of (71) when B],ε(u) = 0. This equation
admits another constant solution ũκ given by

ũκ =
−1 + κ

2ac0
.

We can prove (same proof as the proof of Theorem 4.4) that equation (71) admits a
family of solutions ũ0

κ,ε = ũκ +O(ε), parametrized by κ ∈ (κ0, κ1). This proves the
existence of a family of stationary solutions of (22) which read U(x) = ũ0

κ,εξ0 and
which correspond, for κ ∼ 1 (i.e. ũκ close to 0), to the “hyperbolic” equilibria of
system (22) which we encounter in [3] (these equilibria are not properly hyperbolic,
because there is no real positive or negative eigenvalues). The Theorem 4.4 shows
that the equilibria uκ are “elliptic”.

Before proving Theorem 4.4, let us give the end of proof of Theorem 3.2.

End of proof of Theorem 3.2. The periodic solutions of Theorems 3.2 are obtained
from the solutions uA

κ,ε of (71) and thanks to Theorem 4.2 which allows to construct
the solutions of (29). Indeed, if u is a solution of (71) then U = uξ0 + εY],ε(u) is
a solution of (29). Therefore, we obtain a family of 2π-periodic solutions of (29)
: UA

κ,ε = uA
κ,εξ0 + εY],ε(uA

κ,ε), by using the Theorem 4.2 with u = uA
κ,ε. Hence

Theorem 3.2 is proved.

Proof of Theorem 4.4. We look for even solutions of (71) close to uκ. Therefore,
we introduce the function w ∈ H2

],e(R), perturbation of the constant function uκ,
and the parameter µ by

u = uκ + w,
2π

p
= 1− µ. (74)
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The equation satisfied by w is obtained in replacing (74) in (71) and can be written
as

Lw = Nε,κ,µ(w). (75)

where operators L ∈ L(H2
],e(R),H1

],e(R)) and Nε,κ,µ : H2
],e(R) 7→ H1

],e(R) are
defined by

Lw =−w +H](w′),
Nε,κ,µ(w) = κ−1B],ε(uκ + w)− κ−1ac0w

2 + µH](w′). (76)

For ‖w‖H2
] (R) ≤ δ, the following estimate on Nε,κ,µ(w) holds, for κ ∈ [κ0, κ1]

‖Nε,κ,µ(w)‖H1
] (R) ≤ c

(
ε + ‖w‖2H2

] (R) + |µ|
)

.

Since (Lw)k = (−1+ |k|)wk, the kernel of L in H2
],e(R) is spanned by the function

cos. Hence, we introduce the projection P (f) = P0(f) cos on the kernel of L, where
for a real valued function f

P0(f) =
1
π

∫ π

−π

f(τ) cos(τ)dτ,

and the projection on the orthogonal of the kernel : Q = I−P . We can now define a
pseudo-inverse L̃−1 ∈ L(H1

],e(R),H2
],e(R)) of L. If N ∈ H1

],e(R) satisfies P (N) = 0
then

L̃−1(N)(s) =
∑

k∈Z\{−1,1}

1
−1 + |k|

Nkeiks.

Stationary solutions of (75). We first look for stationary solutions w of
(75) close to 0. The equation for w (independent of µ) reads

−w = κ−1B],ε(uκ + w)− κ−1ac0w
2. (77)

We solve this equation thanks to the implicit function theorem : for ε positive
close to 0, there exists a constant WK,ε solution of (77) which satisfies

Wκ,ε = −κ−1B],ε(uκ) + O(ε2).

It results that (71) admits a family stationary solutions u0
κ,ε = uκ +Wκ,ε, where

uκ is defined by (72) and p is arbitrary.

Non constant solutions of (75). To find the non constant even solutions
w of (75), we use the Liapunov-Schmidt method. We decompose w as follows

w(s) = v(s) + A cos(s), P (v) = 0, v even.
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The equation (75) is then equivalent to the system

v = L̃−1QNε,κ,µ(v(s) + A cos(s)), (78)

0 =
∫ π

−π

Nε,κ,µ(v(τ) + A cos(τ)) cos(τ)dτ. (79)

The equation (78) can be solved with respect to v thanks to the implicit function
theorem, for ε and µ close to 0, there exists a function v = Vε,κ(µ, A) solution of
(78). When A = 0, then the function Vε,κ(µ, 0) is constant and corresponds to the
constant Wκ,ε obtained in the previous paragraph. It results from the uniqueness
of Vε,κ(µ,A), from the invariance of (78) under the change of variables s → s + π,
A → −A and from the invariance s → −s, the following properties

Vε,κ(µ,A)(s + π) = Vε,κ(µ,−A)(s), (80)
Vε,κ(µ,A)(−s) = Vε,κ(µ,A)(s). (81)

We compute the main terms of Vε,κ(µ, A) thanks to (78) and thanks to the defi-
nition of Nε,κ,µ in (76)

Vε,κ(µ,A) = L̃−1QNε,κ,µ(A cos +Vε,κ(µ,A)),

= L̃−1Q
{
µAH(cos′) + κ−1B],ε(uκ)− κ−1ac0A

2 cos2
}

+κ−1L̃−1Q {DuB],ε(uκ).A cos}+ h.o.t.,

Observe that H(cos′) = cos and Q(cos) = 0. Now using L̃−1(const) = −const,
Q(const) = const and L̃−1Q(cos2) = − sin2, we obtain

Vε,κ(µ,A) =−κ−1B],ε(uκ) + κ−1ac0A
2 sin2 +h.o.t. = O(ε) + O(A2). (82)

Let now replace v by Vε,κ(µ,A) in equation (79), which now reads

0 =
1
π

∫ π

−π

Nε,κ,µ(Vε,κ(µ,A)(τ) + A cos(τ)) cos(τ)dτ, (83)

and can be written as
hε,κ(µ, A) = 0.

We know that hε,κ(µ, 0) = 0 since A = 0 corresponds to the family of stationary
solutions. The property (80) shows that hε,κ is odd with respect to A. Hence, we
can write

hε,κ(µ,A) = Agε,κ(µ,A2).

In order to write the main terms of gε,κ(µ,A2), we must compute the beginning
of the expansion of Nε,κ,µ(A cos(τ) + Vε,κ(µ,A)(τ))

Nε,κ,µ(A cos(τ) + Vε,κ(τ)) = µA cos(τ) + µH](V ′ε,κ)− κ−1ac0(A cos(τ) + Vε,κ)2

+κ−1B],ε(uκ + A cos +Vε,κ),
= µA cos(τ)− κ−1ac0A

2 cos2(τ)− 2κ−1ac0A cos(τ)Vε,κ

+κ−1B],ε(uκ) + h.o.t. (84)
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We use this expansion to express the main terms of hε,κ, in replacing (84) in (83)

hε,κ(µ, A) = µA− 2κ−1ac0A
1
π

∫ π

−π

Vε,κ(µ, A)(τ) cos2(τ)dτ + h.o.t. (85)

From (82) we can compute the main terms of the following integral

1
π

∫ π

−π

Vε,κ(τ) cos2(τ)dτ =−κ−1B],ε(uκ) + κ−1ac0A
2 1
π

∫ π

−π

sin2(τ) cos2(τ)dτ + h.o.t.

=−κ−1B],ε(uκ) +
1
4
κ−1ac0A

2 + h.o.t. (86)

Replacing (86) in (85), we obtain

gε,κ(µ,A2) = µ− 1
2
(κ−1ac0)2A2 + 2κ−2ac0B],ε(uκ) + h.o.t.

Therefore, we can solve gε,κ(µ,A2) = 0 with respect to µ and we obtain

µ(ε, κ,A2) =
1
2
(κ−1ac0)2A2 + O(ε). (87)

In conclusion, the family uA
κ,ε(s) = u0

κ,ε+A cos(s)+ũA
κ,ε(s) where ũA

κ,ε = Vε,κ(µ,A)−
Vε,κ(0, 0) is a solution of (71) with 2π/p = 1− µ and µ is given by (87). This con-
cludes the proof of the theorem 4.4. �

4.2.2 Resolution of (71) with p > 2π

In this section, we solve equation (71) for an open set a values of p. We look for
even solutions u approximated by uκ,p. Therefore, we set

u = uκ,p + w, w ∈ H2
],e(R).

The function w is a solution of the following equation

Lpw = κ−1B],ε(uκ,p + w)− κ−1ac0w
2, (88)

where we denote by Lp the operator H2
] (R) 7→ H1

] (R) defined by

Lpw = w +
2π

p
H](w′)− 2vpw, (89)

where vp is defined in (4). We intend to solve equation (88) in w with the implicit
function theorem. Therefore, we need to study the invertibility of Lp. In the pre-
vious section, we have seen that Lp is not invertible for p = 2π, and that its kernel
in H2

] (R) is spanned by the functions cosine and sine. We prove here that for p

close to 2π and p > 2π then Lp ∈ L(H2
],e(R),H1

],e(R)) is invertible (whereas the
kernel of Lp in a space including odd functions is non void, ∂svp being always in
the kernel).
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Lemma 4.5 There exists τ0 > 0 such that for all 0 < τ < τ0, if

p = 2π

(
1− 1

2
τ2

)−1

,

then the operator Lp ∈ L(H2
],e(R),H1

],e(R)) is invertible.

Proof of Lemma 4.5. To prove this lemma we solve the equation

Lpw = f, f ∈ H1
],e(R). (90)

We define the real number τ ≥ 0 by

2π

p
= 1− 1

2
τ2,

so that v0 = 1 + τ + O(τ3) and we obtain the following expansion of vp

vp = 1 + τ cos +O(τ2).

The operator Lp can also be expanded as follows

Lpw = Lw + τL(1)
τ w + τ2L(2)

τ w, (91)

where L is defined by Lw = −w + H](w′) and L
(1)
τ and L

(2)
τ are given by the

following relations

L(1)
τ w =−2w cos,

L(2)
τ w =−1

2
H](w′)− 2w(cos2−1) + O(τ)w.

Since the kernel of L in H2
],e(R) is spanned by the function cosine, we decompose

w as follows

w = w0 cos +v, v ∈ H2
],p(R), P0(v) = 0, w0 ∈ R.

Replacing w in (90) and using the expansion of Lp given in (91), we obtain

L(v)− 2τw0 cos2−2τv cos +τ2L(2)
τ (w0 cos +v) = f. (92)

To solve this equation, we use the Liapounov-Schmidt method. We project (92)
on the range of L by using the operator Q(v) = v−P0(v) cos and on the kernel of
L by using P0. We also need the following relations P0(cos) = 1, P0(cos2) = 0. It
results that the equation (92) is equivalent to the following system

L(v)− 2τw0 cos2−2τQ(v cos) + τ2QL(2)
τ (w0 cos +v) = Q(f), (93)

−2τP0(v cos) + τ2P0L
(2)
τ (w0 cos +v) = P0(f), (94)
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Using the pseudo-inverse L̃−1 of L, equation (93) can be written as

Lτ (v) = L̃−1
{

Q(f) + 2τw0 cos2−τ2w0QL(2)
τ (cos)

}
, (95)

where Lτ ∈ L(H2
],e(R)) is defined by

Lτ (v) = L̃−1QLp(v) = v − 2τL̃−1Q(v cos) + τ2L̃−1QL(2)
τ (v),

= (I + O(τ))v.

In particular, for 0 ≤ τ < τ0, Lτ is invertible and its inverse reads

L−1
τ v = v + 2τL̃−1Q(v cos) + O(τ2)v.

Using L̃−1(cos2) = − sin2, the equation (95) becomes

Lτ (v) = L̃−1 {Q(f)} − 2τw0 sin2−τ2w0L̃
−1

{
QL(2)

τ (cos)
}

. (96)

Now using L−1
τ (sin2) = sin2 +O(τ), we deduce that, for 0 ≤ τ < τ0, v = vτ (w0, f)

is given by

vτ (w0, f) = L−1
τ L̃−1 {Q(f)} − 2τw0L−1

τ (sin2)− τ2w0L−1
τ L̃−1

{
QL(2)

τ (cos)
}

,

= L−1
τ L̃−1 {Q(f)} − 2τw0 sin2 +O(τ2)w0. (97)

We now replace v by vτ (w0, f) given by (97) in (94)

−2τP0(vτ (w0, f) cos) + τ2P0L
(2)
τ (w0 cos +vτ (w0, f)) = P0(f). (98)

We compute P0(vτ (w0, f) cos) by using the relation (97)

P0(vτ (w0, f) cos) = P0(L−1
τ L̃−1 {Q(f)} cos)− 1

2
τw0 + O(τ2)w0, (99)

since P0(sin2 cos) = 1/4. Now, using (99) in (98), we find

τ2w0 + O(τ3)w0 = P0(f) + O(τ)f. (100)

For 0 < τ < τ0, we can solve (100) and we obtain w0 in function of f , then
vτ (w0, f) and finally w ∈ H2

],e(R) solution of (90). �

Remark. The operator Lp is not invertible in L(H2
] (R),H1

] (R)) since the odd
function ∂svp is in the kernel of Lp for the values of p ≥ 2π.

The following lemma proves that Lp is invertible for a given open set of values
of p.

Lemma 4.6 There exists a set P ⊂ (2π,+∞) which differs from the interval
(2π,+∞) by a discrete set without point of accumulation, such that for all p ∈ P,
the operator Lp ∈ L(H2

],e(R),H1
],e(R)) is invertible.
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Proof of Lemma 4.6. We define the operator Tp ∈ L(H2
],e(R)) by the relation

Tp(w) = 2
(

1 +
2π

p
H](∂x)

)−1

(vpw), w ∈ H2
],e(R). (101)

The family Tp (Re p > 2π) is an analytic family of compact operators and satisfies

1− Tp =
(

1 +
2π

p
H](∂x)

)−1

Lp. (102)

Thanks to Lemma 4.5, we know that 1 − Tp is invertible for p > 2π close to
2π, then the function p 7→ (1 − Tp)−1 is meromorphic in the neighborhood of
(2π,+∞) (see Theorem 1 in [9]). It results that there is a discrete set without
point of accumulation of values of p > 2π for which 1− Tp is not invertible. �

We now solve (88) with respect to w thanks to the implicit function theorem
and obtain the following result:

Theorem 4.7 Let p ∈ P, then there exist ε0 > 0 (which depends on p), κ1 >
κ0 > 0, such that for all 0 < ε < ε0 and κ ∈ (κ0, κ1), equation (71) admits an
even solution vp

κ,ε ∈ H2
],e(R) which satisfies

vp
κ,ε(s) = uκ,p(s) + O(ε). (103)

Let us now give the end of proof of Theorem 3.3.

End of proof of Theorem 3.3. The periodic solutions of Theorems 3.3 are obtained
from the solutions vp

κ,ε of (71) and thanks to Theorem 4.2.
Theorem 4.7 proves the existence of a family of solutions vp

κ,ε of (64) with p ∈ P
(i.e. for almost all the values of p ∈ (2π,+∞)) and c = (κ2 − 1)/(2ac0). Thanks
to Theorem 4.2, we obtain the family of periodic solutions Vp

κ,ε of Theorem 3.3

Vp
κ,ε = vp

κ,εξ0 + εY],ε(vp
κ,ε).

Notice that in this theorem, the values of p lies in a compact set K ⊂ P in order
to have an ε0 which does not depend on p. Hence Theorem 3.3 is proved.
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