
HAL Id: inria-00126677
https://hal.inria.fr/inria-00126677

Submitted on 25 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cybernetic Transportation Systems Design and
Development: Simulation Software cybercars

Sébastien Boissé, Rodrigo Benenson, Laurent Bouraoui, Michel Parent, Ljubo
Vlacic

To cite this version:
Sébastien Boissé, Rodrigo Benenson, Laurent Bouraoui, Michel Parent, Ljubo Vlacic. Cybernetic
Transportation Systems Design and Development: Simulation Software cybercars. 2007 IEEE Interna-
tional Conference on Robotics and Automation - ICRA’2007, Apr 2007, Roma, Italy. �inria-00126677�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50403284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00126677
https://hal.archives-ouvertes.fr

> ICRA07 – WPPNIV-P02<

1

Cybernetic Transportation Systems Design and
Development: Simulation Software

Sébastien Boissé, Rodrigo Benenson, Laurent Bouraoui, Michel Parent, Ljubo Vlacic

 Abstract— The growing number of vehicles saturates cities in
terms of congestion and pollution. A Cybernetic Transportation
System (CTS) appears to be a way to resolve those problems.
Based on a network of clean driverless vehicles (the cybercars),
CTS aims to improve safety and organization of urban transport
by providing a door-to-door complement to efficient and fast
mass transport. The simulation software presented in this paper
has a goal to facilitate the development of such a transportation
system. It simulates several cybercars in a dynamic virtual 3D
environment, and provides sensors information in real vehicles.
As it is easy to create scenarios containing various static and
moving obstacles, evaluation of control algorithms in several
situations is its main feature. The adopted architecture for the
simulation tool also enables evaluation of road traffic scenarios
constructed on various levels of interaction or cooperation among
cybercars.

Index Terms—Cybernetic Transportation System, Driverless

Vehicles, Cybercars, Simulation.

I. INTRODUCTION

he common use of personal vehicles all over the world
causes safety, congestion and pollution problems,

especially in large cities. To solve these problems, an
innovative approach, called Cybernetic Transportation System
(CTS), has been proposed [10,11]. CTS is a city transportation
system based on a fleet of unmanned electrically powered car-
like robots. These cybercars, equipped with sensors, have the
ability of autonomously transporting people in an urban
environment. The highly dynamic nature and unpredictability
of such environments makes the development of a cybernetic
transport system very complex. Therefore, the use of a
simulator appears to be a good solution to facilitate
developments of CTS driving capabilities as it allows multiple

testing of the same road traffic scenarios and easy evaluation
of the overall system’s traffic performance.

This work was supported by European Commission Information Society

Technologies under Grant 028262 and Griffith University.
Sébastien Boissé is with IMARA Team, INRIA Rocquencourt, France and

with Ecole Centrale Nantes, Nantes, France (e-mail:
Sebastien.Boisse@eleves.ec-nantes.fr).

Rodrigo Benenson, Laurent Bouraoui and Michel Parent are with IMARA
Team, INRIA Rocquencourt, France (e-mail: Rodrigo.Benenson@inria.fr,
Laurent.Bouraoui@inria.fr, Michel.Parent@inria.fr).

Ljubo Vlacic is with ICSL Laboratory, Griffith University, Brisbane,
Australia (e-mail: L.Vlacic@griffith.edu.au)

 Lots of simulation software packages have been developed
in the past and more recently, some 3D simulators were
released, again reducing the gap between simulation and
reality. Among all of those simulators, some of them deal with
wheeled robots, including various sensors like cameras, range
sensors or contact sensors. Most of these tools are built upon
Open Dynamic Engine (ODE) [4], an open source library
providing high performance for rigid body dynamics
simulation.
 In this area, two free tools, OpenSim [1] and Gazebo [6] are
able to simulate several wheeled vehicles with sensors in a 3
dimensional environment. The OpenSim provides real-time
rendering for simple shaped robots while Gazebo can mimic a
complex world thanks to simulated vehicle sensors. The
Webots [7], a commercial simulation software for mobile
robots proposed by Cyberbotics, simulates several models of
vehicles and various sensors. This prototyping application
permits testing of control algorithms on various simulated
robots.

In another area, USARSim [8] has been developed to be the
basis for the RoboCup Urban Search And Rescue (USAR)
simulation competition. This simulator, based on the Unreal
Tournament Game Engine, has the particularity to simulate a
camera with accuracy thanks to its high-quality rendering.

Finally, CycabTk [2] has been developed at INRIALPES
(France) to simulate a cybercar with its sensors (camera, SICK
laser, …), using the same interface as real vehicles. This
simulator runs under linux and uses mgEngine as 3D engine
[5].
 While some simulation tools tend to be as generic as
possible in order to simulate several robots and sensors, we
have chosen to develop a simulation tool that can accurately
mirror the vehicle we are using at INRIA (Lara Research unit,
France) and Griffith University (Intelligent Control System
Laboratory, Brisbane, Australia), in a 3D virtual environment.
In addition, to appropriately simulate CyCabs (name of the
cybercars developed by Robosoft) dynamics and sensors, this
tool is designed to face CTS issues by providing an
opportunity to test the behavior of a fleet of vehicles in the
same simulated environment. The latter is composed of a
world model (map containing roads, buildings and other static
obstacles), moving obstacles and cybercars. The 3D models of
both maps and moving obstacles are fully customizable as

T

> ICRA07 – WPPNIV-P02<

2

they are created with 3D modelers. In this way, we will be
able to deal with interactions between vehicles involved in
many different traffic situations.

In section II, we present the architecture of the framework,
and then give details about the simulation in sections III and
IV. In section V we present the different traffic situations
considered.

Figure 1: Framework architecture

The first results obtained with this simulator are highlighted in
section VI and finally, limitations and future works are
discussed in section VII and section VIII.

II. FRAMEWORK ARCHITECTURE

Due to the high dynamicity of urban environments, the

cybercar control software program needs to obtain data from
sensors and to analyze them at a high frequency, which is
computationally expensive. This often requires the whole
CPU of a powerful computer to work properly. Moreover,
each cybercar is controlled by its own computer; therefore, we
adopted the same architecture when designing the simulation
tool. The simulator acts as a server and each control software
program (clients), which can be run on distinct computer, is
connected to a simulated vehicle inside the simulator through
a TCP/IP socket (Figure 1). Basically, the simulator sends the
simulated sensors’ data to each control software program and
receives in return commands from them to make the vehicle
move inside the virtual environment (Figure 2).

The design of this framework allows the different remote
control software programs to communicate between each
other through the network without transmitting by the
simulator, using either Ethernet or Wifi links. In this way, the
control software program, used to exchange data between
cybercars, can also be tested with this simulator.

Remote control software programs can be easily connected
to the simulator thanks to Zero Configuration Networking

(ZeroConf) standards [9], permitting automatic detection of
the server’s address (IP + PORT) over the network (Figure 3).

The simulator, running under windows, uses a cross-
platform interface allowing control software program
developed under windows or linux to connect to it. The
interfaces to access sensors’ information and to send
commands are the same as in real vehicles, so the same
application can be run on both real and simulated CyCabs.

Figure 2: Simulation

Figure 3: Zero Configuration Networking

III. DYNAMIC ENVIRONMENT SIMULATION

A. Simulation loop

To simulate the dynamics of the environment, we use a

physics engine able to compute interactions between all
objects introduced into the virtual world. Open Dynamic
Engine (ODE), a free library for simulating rigid body
dynamics allows us to introduce vehicles easily in a 3D
environment.

Each simulator requires an interface to show the results of
its computations. Rendering of 3D objects appears to be the
best solution since we wish to see the results of the
simulations in real-time, and in a format than can be easily
interpreted by people with non-scientific backgrounds.
Further, it makes it easy to save the results in a video file to
display our results during exhibitions.

However, rendering is just a way to see the results and must
not affect the simulation itself. To render 3D textured objects
is not an easy task; it sometimes requires significant CPU time
and some care must be taken to minimize the impact on other
tasks.

To fulfill these requirements, the simulator has been built
using the 3impact Engine [3], which is a low cost library

> ICRA07 – WPPNIV-P02<

3

integrating an ODE-based physics engine and a rendering
engine. We made this choice because the rendering engine
operates without affecting the physics engine. The frequency
of the physics engine can be set (75Hz is used as it provides
sufficient accuracy for computations), and will remain
constant during the simulation. The simulation main loop,
computing all the motions and checking for collisions, will
always be executed at the same frequency and the rendering
will be done only if time is available so the frame rate will
decrease if the computer is not fast enough.

B. Models

 The 3impact Engine does not require any specific 3D

model editor; any modeler able to export to DirectX format
can be used (for example 3D Studio Max [15], LightWave 3D
[16], MilkShape 3D [17], AC3D [18]). Therefore there are no
limitations on the physical structure of the models loaded into
the simulator.

1) Vehicle models

The simulated vehicle (CyCab) is defined by three 3D
models:

a) The first model, made only with triangles, defines the

shape of the vehicle. It also contains texture-mapping
information. Created from the CAD model, it is only used for
rendering so the number of triangles has been reduced (around
7000) to avoid losing too much time when rendering it (Figure
4a).

 b) The second model, made only with sphere primitives is
the collision model. All collision tests between the vehicle and
something else will be performed using this sphere-based
model. Therefore, this model must match closely the first
model. This model is built up with 41 spheres (Figure 4b).

c) The third model, a simple box bounding the car, defines
the mass distribution of the vehicle.

The combination of the last two models defines the model
used by the physics engine.

Once the models of the vehicle have been introduced into
the virtual world, four independent wheels are joined to this
vehicle with strength and damping suspension parameters.
Friction parameters between the wheels and the ground are
also defined, allowing us to simulate realistic performance of
the vehicles [3].

2) Moving obstacle models

For moving obstacles, we use the 3 models described above
to define a vehicle. Collision checks are performed using the
sphere-based model, so the accuracy of the simulation is
dependant on how this model is close to the mesh model
(number and size of spheres).

3) World model

 World models are 3D maps representing a real area and are
only composed of static obstacles (roads, buildings, parked
cars…). These triangle-based models, containing information
about textures, are used to compute collision checking.
However, in order to avoid time-expensive collision tests,
world models should only contain basic shapes made with few
triangles. Because collision checks between rays and triangles
are slower than collision checks between rays and spheres,
more detailed static models should be introduced as moving
obstacles with null speed in order to use a sphere-based model
for collision tests.

4) The whole virtual environment

The various objects (vehicles, world model, moving

obstacles) are introduced separately into the simulator. To
process the simulation of the global environment, interactions
between those objects have to be defined. These interactions
can be defined with collision couples specifying friction
parameters between two different objects. Creating collision
couples between all objects is not necessary and would
necessitate a lot of time; so only couples between vehicles and
the map are added (only CyCabs need accurate simulation).
There are five couples per vehicle (one for the vehicle body,
and one for each wheel).

C. Rendering

A camera is introduced into the virtual environment to get a
view of the simulation; the position of the camera can be
modified in runtime with the keyboard. We can focus on each
of the different simulated vehicles from various directions and
also are able to get a global view of the scene.

The DirectX-based rendering engine renders the different
object seen by the camera in the 3D environment.

(b) Collision model (a) Rendering model

Figure 4: CyCab models

> ICRA07 – WPPNIV-P02<

4

IV. SIMULATION OF SENSORS AND ACTUATORS

A. Sensors

To get a good simulation, models of the sensors we are

using have to be as accurate as possible. Moreover, we need to
use the same interface to access the virtual sensors’ data and
the real sensors; we can then use the same application to drive
the real vehicle and the simulated vehicle.

The time available to analyze sensors’ data and compute
commands is dependent on the frequency with which sensors
send data, because for each step in the calculation, we want to
take new data into consideration. Therefore, it is essential that
the simulator provides data at the same frequency as in reality.

As a starting point, three sensors have been implemented:
Laser, GPS and compass.

1) Laser sensor

The laser we are simulating (IBEO) scans the world in 181
directions, each separated by one degree. The laser sensor
returns a vector of distances to obstacles, each element
corresponding to a given direction and we check whether
there is any intersection between the rays and obstacles. The
laser’s range has been set to mirror the real laser.

The different types of obstacles are treated separately to
improve calculation speed. In the first step, moving obstacles
and simulated vehicles are considered as single bounding
spheres; if a collision is detected between a ray and one of
these spheres, the accurate sphere collision model of the
corresponding object is used to determine the accurate
distance to the obstacle. For each direction, if more than one
obstacle is detected, the shortest distance is returned.

By default, the scanning frequency of the laser is 8 Hz but
this value can be adjusted.

2) GPS sensor

To simulate the GPS sensors, we approximate the small
area of the globe where we are located by a map with a 2D
system of coordinates. By default, the reference point of this
system is the geometric centre of the virtual world model, but
we can translate and rotate this coordinate system to match a
virtual map with a real environment.

GPS simulated sensors return (X, Y) coordinates relative to
this coordinate system. The default frequency of this sensor is
1 Hz but is also adjustable.

3) Compass sensor

Compass sensors give the orientation of the vehicle, relative

to north as defined in the 3D model of the world by the
simulator.

4) Noise

To make our modeling more realistic, some noise (with
customizable Gaussian distribution) can be added to the
sensors’ data sent to the client.

B. Actuators

On the real CyCab, each wheel is controlled independently

by an electric motor. It is the role of the control software
program to determine feasible commands before sending them
to the actuators as the CyCab has limits on acceleration and
wheel angle. In the simulator, the command (speed in m/s and
steering angle in radians) will also be applied to each wheel
while keeping in mind the physical constraints of the real
CyCab. If a non-feasible command is sent, the highest
possible command will be applied.

Each command sent by the client to the simulator is
temporarily stored and applied to the intended CyCab until
new commands are received by the simulator.

Figure 5: Virtual environment simulation

V. SIMULATION OF TRAFFIC SCENARIOS

One of the most important features of this software is that it
can easily model various traffic scenarios. For instance, in
addition to the static environment, it is possible to add moving
obstacles like a pedestrian crossing the road or walking on the
side of the road.

The trajectory of moving obstacles can be customized with
a list of waypoint to reach the map coordinates system and the
speed. These obstacles are moved in runtime by the simulator
and do not require any external software to pilot them. A
simple control system inside the simulator dictates the
orientation of the moving obstacle towards its next waypoint.
The simulator applies the specified speed and directs the
object to its next valid waypoint.

A small library of maps has been modeled, ranging from
very simple cases to more complex maps containing buildings

> ICRA07 – WPPNIV-P02<

5

and other static obstacles. They typically represent various
traffic conditions that may be encountered in reality like
different types of roads (straight or curved) or intersections
(“T”, “x”). With all of these models, many scenarios can be
set by customizing:

1) The number of simulated vehicles
2) Their initial location
3) The number of moving obstacles
4) The type of moving obstacles
5) The predefined motion of these obstacles

Each scenario is defined in a formatted file where all the

parameters described above are stored. Figure 5 schematizes
the simulation of the virtual environment and Figure 6 shows
the view of a scenario involving several simulated vehicles
and pedestrians in a city-like crossing situation.

During the simulation, virtual vehicles are driven by remote
applications and execute maneuvers defined by control
algorithms, taking into consideration the different obstacles
detected by the sensors in the virtual world. The camera
introduced inside the simulator allows us to analyze the
cybercars behavior.

Figure 6: scenario example

The real and simulated CyCabs are not completely isolated

from one another and can interact with each other. The level
of this interaction depends on the capabilities of the control
software program to exchange data. This interaction is
possible because the simulation runs in real-time (provides
sensors information at the same frequency as real CyCabs),
processes data in the same way as the real CyCabs and the
world model can be created to mirror the area around the real
CyCabs, including GPS location and orientation of the
CyCabs. In this way, simulations involving virtual and real
vehicles can be run before attempting the same scenario with
only real vehicle.

VI. RESULTS

The simulator is relatively new but has already proved its
capability to test new control algorithms by simulating
CyCabs’ driving performance.

The simulator was originally developed to simulate the
interaction of cybercars at crossings. The goal was to evaluate
whether an exchange of data between two vehicles at a
crossing would improve their ability to avoid each other by
anticipating the behavior of the other.

Based on a control software program [12] able to drive the
car to its final destination while avoiding static and moving
obstacles [13], the new control software program now
contains communication capabilities to broadcast data through
a UDP socket over a wireless network. This communication
module allows sending information about various obstacles
that have been perceived by the sensors and planned trajectory
of the vehicle. This module also receives the broadcasted UDP
packets and adds them to the world model previously created
with its own perceived obstacles (Figure 7).

The vehicle’s world model now contains the obstacles
perceived by the sensors, the obstacles perceived by the other
cybercars and their last computed trajectories represented as a
succession of obstacles in time. Therefore, the planning
module will consider all of these obstacles to compute its new
trajectory.

Figure 7: Remote control software program architecture

The simulator was first used to make the existing algorithm
from the real CyCab more robust and stable. The first tests of
the new algorithm were run in a scenario called “face to face
encounter” that involves two vehicles facing each other set on
a collision course.

The results of these tests show that the vehicles anticipate
and avoid the collision by adapting their trajectory to the new
received future obstacles (i.e. the trajectory of the other
cybercar). Without the communication, tests had shown that
the vehicles can stop in front of each other, unable to move
anymore. Then, without any priority rules in the planning
algorithm, vehicles were able to pass beside each other.

Now that the algorithm has been validated, two real CyCabs
are being equipped with the appropriate sensors to run the
same experiments for real.

> ICRA07 – WPPNIV-P02<

6

VII. LIMITATIONS

The purpose of this simulation software is to test
functionalities of autonomous driving algorithms in city-like
road traffic situations, helping design and development of
Cybernetic Transportation System. However, the presented
simulation tool cannot be used for the purpose of evaluating
the global performance of CTS systems. Another tool will be
needed to accurately monitor the traffic (average time to reach
a specified location, traffic flow in crossings, etc.) and prove
that CTS can resolve congestion problems in cities.

To remove unessential calculations, only collision couples
between vehicles and the static world have been defined. This
allows more simulated vehicles and more moving obstacles to
be added. Therefore, it is not possible to get accurate feedback
about collisions between other objects, and the results of the
simulation (obstacle avoidance for instance) have to be
visually interpreted through the rendering window.

As previously mentioned, the main loop frequency remains
constant during the simulation ensuring the accuracy of the
simulation. Therefore, the number of CyCabs able to be
introduced to any given scenario is heavily dependant on the
processing power of the computer running the simulator. The
quick collision test capabilities of 3impact engine (thanks to
sphere-based models) let us introduce up to six simulated
vehicles in a world up to 500*500 m2 containing static and
moving obstacles on a Pentium 4 2.8 GHz with 512 MB of
RAM. If the computer running the simulator is not fast
enough to process the main loop at the set frequency, a black
screen is displayed (rendering frequency tends towards zero).
Therefore, a more powerful computer is needed to simulate
more complex scenarios.

VIII. CONCLUSION AND FUTURE WORK

The simulation software presented in this paper aims to help

development of CTS by simulating several cybercars with
physics and sensors in a virtual 3D environment. 3D models
of worlds and moving obstacles are fully customizable as most
3D modelers can be used to create them. Therefore, it is
possible to build very specific environments (traffic situation,
crossings, pedestrian…).

The real vehicles are equipped with more sensors (camera,
odometers, …) than are currently simulated. Therefore, to
keep the simulation software up-to-date, further development
will include the addition of new sensor simulation models.

In the meantime, in order to simulate a complete traffic
scenario including communication between cybercars, some
features may be added to make communication more realistic.
The current simulator setup permits communication between
all vehicles being simulated, regardless of whether they would
be able to communicate in real life (maximum wifi range), as

they are all connected via ethernet or WiFi. New modules will
be added to emulate the WiFi structure regarding of the
relative location of the vehicles in the virtual world and to
filter packets that actually can not reach their target.

Moreover, first experiments have shown that cybercars
which use the Optimize Link State Routing (OLSR) protocol
[14] allow for an ad-hoc network to be created between the
vehicles, which dynamically updates itself with respect to the
relative position of the vehicles and the radio links present
between them. As communication between cybercars seems to
be a very important research topic for the next few years in
CTS development, a simulation of this protocol based on
information available in the simulator could be interesting as
well.

REFERENCES
[1] http://opensimulator.sourceforge.net/
[2] http://cycabtk.gforge.inria.fr/
[3] http://www.3impact.com
[4] http://www.ode.org/
[5] http://mgengine.sourceforge.net/v1/
[6] Nathan Koenig, Andrew Howard, “Design and Use Paradigms for

Gazebo, An Open-Source Multi-Robot Simulator” presented at the 2004
IEEE/RSJ International Conference Intelligent Robots and Systems,
September 28 - October 2, 2004, Sendai, Japan

[7] Olivier Michel for Cyberbotics Ltd, “WebotsTM: Professional Mobile
Robot Simulation”, pp. 39-42, International Journal of Advanced
Robotic Systems, Volume 1 Number 1 (2004), ISSN 1729-8806

[8] Mary Koes, Jijun Wang, Michael Lewis, Stephen Hughes and Stefano
Carpin, “Validating USARsim for use in HRI Research”, presented at
the 2005 Human factors and ergonomics society meeting.

[9] Eric Guttman, Autoconfiguration for IP Networking: “Enabling Local
Communication”, IEEE INTERNET COMPUTING, May-June 2001,
p81-p86

[10] M. Parent, “Automated public vehicles: A first step towards the
automated highway”, In 4th World Congress on Intelligent Transport
Systems, October 1997.

[11] Michel Parent, Arnaud de La Fortelle, “Cybercars: Past, Present and
Future of the Technology” in ITS World Congress 2005 ITS World
Congress 2005, San Francisco, USA, November 2005

[12] Rodrigo Benenson, Stephane Petti, Thierry Fraichard and Michel Parent,
“Integrating Perception and Planning for Autonomous Navigation of
Urban Vehicles”, IROS 2006

[13] S. Petti and Th. Fraichard. “Safe motion planning in dynamic
environments”. In IEEE-RSJ Int. Conf. on Intelligent Robots and
Systems, Edmonton, AB (CA), August 2005.

[14] Laurent Bouraoui, Arnaud de La Fortelle, Anis Laouiti, “OLSR
improvement for distributed traffic applications”, Mediterranean Ad Hoc
Networks, 2005

[15] http://www.autodesk.com/3dsmax/
[16] http://www.newtek.com/lightwave/
[17] http://chumbalum.swissquake.ch/
[18] http://www.ac3d.org/

	I. Introduction
	II. Framework architecture
	III. Dynamic environment simulation
	A. Simulation loop
	B. Models
	1) Vehicle models
	2) Moving obstacle models
	3) World model
	4) The whole virtual environment

	C. Rendering

	IV. Simulation of sensors and actuators
	A. Sensors
	1) Laser sensor
	2) GPS sensor
	3) Compass sensor
	4) Noise

	B. Actuators

	V. Simulation of traffic scenarios
	VI. Results
	VII. Limitations
	VIII. Conclusion and future work

