
HAL Id: hal-00128505
https://hal.archives-ouvertes.fr/hal-00128505

Submitted on 1 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peer-to-Peer and Fault-tolerance: Towards
Deployment-based Technical Services

Denis Caromel, Alexandre Di Costanzo, Christian Delbe

To cite this version:
Denis Caromel, Alexandre Di Costanzo, Christian Delbe. Peer-to-Peer and Fault-tolerance: To-
wards Deployment-based Technical Services. Future Generation Computer Systems, Elsevier, 2007,
pp.FGCS-D-06-00155. �hal-00128505�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50402039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00128505
https://hal.archives-ouvertes.fr


Peer-to-Peer and Fault-tolerance:

Towards Deployment-Based Technical Services

Denis Caromel, Alexandre di Costanzo, and Christian Delbé

INRIA Sophia - I3S - CNRS - Université de Nice Sophia Antipolis

INRIA, 2004 Rt. des Lucioles, BP 93

F-06902 Sophia Antipolis Cedex, France

Abstract

For effective components, non-functional aspects must be added to the application
functional code. Likewise enterprise middleware and component platforms, in the
context of Grids, services must be deployed at execution in the component contain-
ers in order to implement those aspects without application code modifications.

This paper proposes an architecture for defining, configuring, and deploying such
Technical Services in a Grid platform.

Key words: Grid Deployment, Non-Functional Service, Peer-to-Peer,
Fault-Tolerance, Load-Balancing

1 Introduction

The last decade has seen a clear identification of the so called Non-Functional

aspects for building flexible and adaptable software. In the framework of mid-
dleware, e.g. business frameworks such as the EJB [1], architects have been
making a strong point at separating the application operations, the functional

aspects, from services that are rather orthogonal to it: transaction, persistence,
security, distribution, etc.

The frameworks, such as Enterprise JavaBeans containers (JBoss, JOnAs,
etc.), can further be configured for enabling and configuring such non-functional
aspects. Hence, the application logic is subject to various setting and con-
figuration, depending of the context. Overall, it opens the way to effective
component codes usable in various contexts, with the crucial feature of pa-
rameterizations: choosing at deployment time various Technical Services to be
added to the application code. In the framework of Grids, current platforms
are falling short to provide such flexibility. One cannot really add and configure

Preprint submitted to Elsevier Science 31 January 2007



Fault-Tolerance, Security, Load Balancing, etc. without intensive modification
of the source code. Moreover, there are no coupling with the deployment in-
frastructures.

In an attempt to solve this shortcoming of current Grid middlewares, this
article proposes a framework for defining such Technical Services dynamically,
based on the application needs, potentially taking into account the underlying
characteristics of the infrastructure.

Section 2 presents a short related work on the field of deploying such kind of
non-functional services. Section 3 introduces the ProActive middleware. An
overview of the programming model based on active objects, asynchronous
communications, and futures is first given, followed with a detailed presen-
tation of the deployment model. The later relies on Virtual Nodes and XML
deployment descriptors. For the sake of reasoning in the context of real tech-
nical services, Section 4.2.2 presents the Peer-to-Peer infrastructure available
in ProActive. Finally, Section 5 proposes a flexible architecture for specifying
technical services dynamically at deployment time. Taking Peer-to-Peer and
fault-tolerance as basic examples, it is showed how to appropriately combine
and configures them together.

2 Related Work

In the field of Grid, the Open Grid Services Architecture OGSA [2] defines
a mechanism for creating, managing, and discovering grid services, which are
network-enabled entities that provide some capability through the exchange
of messages.The OGSA specifies a uniform service semantic that allows users
to build their grid applications by assembling some services from enterprises,
service providers, and themselves.

Unlike our approach of technical service, the OGSA does not limit services to
be only non-functional; for example a grid service can be a cluster for data
storage. On the other hand, non-functional services are parts of the architec-
ture model and users cannot configure security or fault-tolerance for their own
applications.

The concept of non-functional requirements, i.e. technical services, was first
introduce in the field of component models. Such models allows a clear sep-
aration between the functional code written by the developer and the non-
functional services provided by the framework. In [3] a technical service must
be developed by an expert of the field, such as an expert in load-balancing for
implementing a load-balancing service, because a field expert can provide a
good quality-of-service for a large scale of applications.

2



In the Enterprise JavaBeans (EJB) [1] framework, technical services are spec-
ified by Sun; in the Corba Component Model (CCM) [4], they are provided
by CORBA. These services are at the component container level, i.e. they
are parts of the framework. For all these frameworks, users specify and config-
ure technical services at the deployment time. Consequently, users have choice
between few technical services imposed by the models, thus fault-tolerance ex-
pert cannot propose her own solution. Then, users are limited in their choices,
they cannot choose between different versions or implementations of the same
service.

Unlike component frameworks, we propose an extensible model for technical
services that allows programmer experts to propose their own implementation
of non-functional services. Like EJB and CCM, users specify and configure
the technical service at the deployment time.

3 The ProActive Grid Middleware

ProActive is a Java library for concurrent, distributed and mobile computing
originally implemented on top of RMI [5] as the transport layer, now HTTP,
RMI/SSH, and Ibis [6] are also usable as transport layer. Besides RMI services,
ProActive features transparent remote active objects, asynchronous two-way
communications with transparent futures, high-level synchronisation mecha-
nisms, and migration of active objects with pending calls. As ProActive is
built on top of standard Java APIs, neither does it require any modification
to the standard Java execution environment, nor does it make use of a special
compiler, preprocessor or modified Java Virtual Machine (JVM).

A distributed or concurrent application built using ProActive is composed of
a number of medium-grained entities called active objects. Each active object
has one distinguished element, the root, which is the only entry point to the
active object. Each active object has its own thread of control and is granted
the ability to decide in which order to serve the incoming method calls that
are automatically stored in a queue of pending requests. Method calls sent to
active objects are asynchronous with transparent future objects and synchro-
nization is handled by a mechanism known as wait-by-necessity [7]. There is
a short rendezvous at the beginning of each asynchronous remote call, which
blocks the caller until the call has reached the context of the callee. The ProAc-
tive library provides a way to migrate any active object from any JVM to any
other one through the migrateTo(...) primitive which can either be called
from the object itself or from another active object through a public method
call.

3



4 Descriptor-based Deployment of Grid Applications

4.1 Deployment Model

The deployment of grid applications is commonly done manually through the
use of remote shells for launching the various virtual machines or daemons
on remote computers and clusters. The commoditization of resources through
grids and the increasing complexity of applications are making the task of
deploying central and harder to perform.

ProActive succeeded in completely avoiding scripting for configuration, get-
ting computing resources, etc. ProActive provides, as a key approach to the
deployment problem, an abstraction from the source code such as to gain in
flexibility [8]. A first principle is to fully eliminate from the source code the
following elements: machine names, creation protocols, registry and lookup
protocols. The goal being to deploy any application anywhere without chang-
ing the source code. The deployment sites are called Nodes, and correspond
for ProActive to JVMs which contain active objects.

To answer these requirements, the deployment framework in ProActive relies
on XML descriptors. These descriptors use a specific notion, Virtual Nodes

(VNs):

• a VN is identified as a name (a simple string),
• a VN is used in a program source,
• a VN, after activation, is mapped to one or to a set of actual ProActive

Nodes, following the mapping defined in an XML descriptor file.

A VN is a concept of a distributed program or component, while a node is
actually a deployment concept: it is an object that lives in a JVM, hosting
active objects. There is of course a correspondence between VNs and nodes: the
function created by the deployment, the mapping. This mapping is specified
in the deployment descriptor. By definition, the following operations can be
configured in the deployment descriptor:

• the mapping of VNs to nodes and to JVMs,
• the way to create or to acquire JVMs,
• the way to register or to lookup VNs.

Figure 1 summarizes the deployment framework provided by the ProActive
middleware. Deployment descriptor can be separated in two parts: mapping
and infrastructure. The VN, which is the deployment abstraction for applica-
tions, is mapped to nodes in the deployment descriptor and nodes are mapped
to physical resources, i.e. to the infrastructure.

4



Deployment Descriptor

VN

Nodes

Connectors Acquisition

Creation
Infrastructure

Mapping

Application Codes

Fig. 1. Deployment descriptor model

4.2 Retrieval of Resources

In the context of the ProActive middleware, nodes designate physical resources
from a physical infrastructure. They can be created or acquired. The deploy-
ment framework is responsible for providing the nodes mapped to the virtual
nodes used by the application. Nodes may be created using remote connection
and creation protocols. Nodes may also be acquired through lookup protocols,
which notably enable access to the ProActive Peer-to-Peer infrastructure as
explained below.

4.2.1 Creation-based deployment

Machine names, connection and creation protocols are strictly separated from
application code, and ProActive deployment descriptors provide the ability to
create remote nodes (remote JVMs). For instance, deployment descriptors are
able to use various protocols:

• local
• ssh, gsissh, rsh, rlogin
• lsf, pbs, sun grid engine, oar, prun
• globus (GT2, GT3 and GT4), unicore, glite, arc (nordugrid)

Deployment descriptors allow to combine these protocols in order to create
seamlessly remote JVMs, e.g. log on a remote cluster frontend with ssh, and
then use pbs to book cluster nodes to create JVMs on each. All processes are
defined in the infrastructure part of the descriptor.

5



In addition, the JVM creation is handled by a special process, localJVM, which
starts a JVM. It is possible to specify the classpath, the Java install path, and
all JVM arguments. In addition, it is in this process that the deployer specifies
which transport layer the ProActive node uses. For the moment, ProActive
supports as transport layer: RMI, HTTP, RMIssh, and Ibis [6].

4.2.2 Acquisition-based deployment

The main goal of the ProActive Peer-to-Peer (P2P) infrastructure [9] is to
provide a new way to build and use grids. The infrastructure allows applica-
tions to transparently and easily obtain computational resources from grids
composed of both clusters and desktop machines. The application deployment
burden is eased by a seamless link between applications and the infrastructure.
This link allows applications to be communicant, and to manage the resources
volatility.

The P2P infrastructure has three main characteristics. First, the infrastructure
is decentralized and completely self-organized. Second, it is flexible, thanks to
parameters for adapting the infrastructure to the location where it is deployed.
Last, the infrastructure is portable since it is built on top of JVMs, which run
on cluster nodes and on desktop machines. Thus, the infrastructure contributes
to ProActive, providing a new way for: deploying applications and acquiring
already running JVMs (instead of starting new ones).

The proposed P2P infrastructure is an unstructured P2P network, such as
Gnutella [10]. Therefore, the infrastructure resource query mechanism is simi-
lar to the Gnutella communication system, which is based on the Breadth-First
Search algorithm (BFS). The system is message-based with application-level
routing. Messages are forwarded to each acquaintance, and if the message has
already been received (looped), then it is dropped.

At the beginning, when a fresh peer joins the network, it only knows ac-
quaintances from a list of potential network members, such as with super-peer
architectures. The initially known peers will not be permanently available,
and as a consequence peers have to update their list of acquaintances to stay
connected in the infrastructure.

The proposed infrastructure uses a specific parameter called Number of Ac-

quaintances (NOA): the minimum number of known acquaintances for each
peer. Peers update their acquaintance list every Time to Update (TTU). NOA
and TTU are both configurable, checking their own acquaintance list to re-
move unavailable peers, i.e. they send heartbeat messages to them. When the
number in the list is less than the NOA, a peer will try to discover new ac-
quaintances. To discover new acquaintances, peers send exploring messages
through the infrastructure. Note that each peer can have its own parameter

6



values, and that they can be dynamically updated.

Applications use the P2P infrastructure as a pool of resources, which are
nodes. The main problem for applications to use those resources is that re-
sources are returned via a best-effort mechanism; there are no guarantees that
the requested number of resources can be satisfied.

5 Deployment and Technical Services

5.1 Model

Some parts of applications may require specific non-functional services, such
as security, load-balancing, or fault-tolerance. These constraints can only be
expressed by the deployer of the application because she is the only one that
can configure them for the physical infrastructure.

Because the deployment infrastructure is abstracted into virtual nodes, we
propose to express these non-functional requirements as contracts [11] in de-
ployment descriptors (Fig. 2). This allows a clear separation between the
conceptual architecture using virtual nodes and the physical infrastructure
where nodes exist or are created; it maintains a clear separation of the roles:
the developer implements the application without take into account of non-
functional requirements; and the deployer, considering the available physical
infrastructure, enforces the requirements when writing the mapping of virtual
nodes in the deployment descriptor. Then, the expert implements and provides
non-functional services as technical services. Moreover, we propose to leverage
the definition of deployment non-functional services with the introduction of
dynamically applicable technical service.

5.2 Technical Services

A technical service is a non-functional requirement that may be dynamically
fulfilled at runtime by adapting the configuration of selected resources.

This section describes our proposal for a simple and unique specification for
the configuration of technical services.

From the expert programmer point of view, a technical service is a class that
implements the TechnicalService interface. This class defines how to config-
ure a node. From the deployer point of view, a technical service is a set of

7



Application

Available 
physical 

infrastructure

Deployer

writes

dynamically applicable

Technical 
services

Deployment descriptor 
(Virtual Nodes mapping)

Deployment

Developer

considers

considers

code

imposes

writes

Expert

writes

Fig. 2. Deployment roles and artifacts

”variable-value” tuples, each of them configuring a given aspect of the appli-
cation environment.

For example, for configuring fault-tolerance, a FaultToleranceService class is
provided; it defines how the configuration is applied from a node to all the
active objects hosted by this node. The deployer of the application can then
configure in the deployment descriptor the fault-tolerance using the technical
service XML interface.

A technical service is defined as a stand-alone block in the deployment descrip-
tor. It is attached to a virtual node (it belongs to the virtual node container
tag); the configuration defined by the technical service is applied to all the
nodes mapped to this virtual node. A technical service is defined as follows:

<technicalServiceDefinition id = "myService" class="services.

Service1">

<arg name="name1" value="value1"/>

<arg name="name2" value="value2"/>

</technicalServiceDefinition>

The class attribute defines the implementation of the service, a class which
must implement the TechnicalService interface:

public interface TechnicalService {

public void init(HashMap argValues);

public void apply(Node node);

8



}

The configuration parameters of the service are specified by arg tags in the
deployment descriptor. Those parameters are passed to the init method as a
map associating the name of a parameter as a key and its value. The apply

method takes as parameter the node on which the service must be applied.
This method is called after the creation or acquisition of a node, and before
the node is used by the application.

A technical service is attached to a virtual node as following:

<virtualNodesDefinition>

<virtualNode name="virtualNode1" serviceRefid="myService"/>

</virtualNodesDefinition>

Figure 3 summarizes the deployment framework with the added part for non-
functional aspects.

Deployment Descriptor

Nodes

Connectors Acquisition

Creation
Infrastructure

Mapping

Application Code

Non-functional aspects

Technical 

Service

VN

Fig. 3. Deployment descriptor model with the technical service part

ProActive provides a mechanism for load-balancing active objects [12], the
drawback of this work is that the activation of the mechanism is at the code
level. So, we have implemented a technical service for activing and configuring
load-balancing at deployment time. Figure 4 shows the implementation of our
load-balancing technical service.

The implementation does the same thing of what the developer does for acti-
vating load-balancing at source code level.

Two or several technical services could be combined if they touch separate
aspects. Indeed, two different technical services, which are conceptually or-
thogonal, could be incompatible at source code level.

9



public class LoadBalancingTS implements TechnicalService {

public void init(Map argValues) {

String metricFactoryName = (String) argValues.get

("MetricFactory");

MetricFactory mf = (MetricFactory) Class.forName(

metricFactoryName).newInstance();

LoadBalancing.activate(mf);

}

public void apply(Node node) {

LoadBalancing.addNode(node);

}

}

Fig. 4. Load-balancing technical service code

In practice, we have noticed such an incompatibility in our implementation
of fault-tolerance and load-balancing services, developed by two different pro-
grammers. That is why a virtual node can be configured by only one technical
service. However, combining two technical services can be done at source code
level, by providing a class extending TechnicalService that defines the correct
merging of two concurrent technical services.

6 Example: Fault-Tolerant Flow-Shop on Peer-to-Peer

This section illustrates the concept of dynamically deploying and configur-
ing technical services: it presents a use case involving the deployment of an
appliation with some fault-tolerance requirements on a P2P infrastructure;
it demonstrates how the proposed approach helps resolving deployment in
the most suitable way. Beforehand, we provide an explanation of the fault-
tolerance mechanism and configuration in ProActive, which is essential to the
comprehension of this use case.

6.1 Fault-Tolerance in ProActive

As the use of desktop grids goes mainstream, the need for adapted fault-
tolerance mechanisms increases. Indeed, the probability of failure is dramati-
cally high for such systems: a large number of resources imply a high proba-
bility of failure of one of those resources. Moreover, public Internet resources
are by nature unreliable.

10



Rollback-recovery [13] is one solution to achieve fault-tolerance: the state of
the application is regularly saved and stored on a stable storage. If a failure
occurs, a previously recorded state is used to recover the application. Two main
approaches can be distinguished : the checkpoint-based [14] approach, relying
on recording the state of the processes, and the log-based [15] approach, relying
on logging and replaying inter-process messages.

Fault-tolerance in ProActive is achieved by rollback-recovery; two different
mechanisms are available. The first one is a Communication-Induced Check-
pointing protocol (CIC): each active object has to checkpoint at least every
TTC (Time To Checkpoint) seconds. Those checkpoints are synchronized us-
ing the application messages to create a consistent global state of the applica-
tion [16]. If a failure occurs, every active object, even the non faulty one, must
restart from its latest checkpoint. The second mechanism is a Pessimistic Mes-
sage Logging protocol (PML): the difference with the CIC approach is that
there is no need for global synchronization, because all the messages delivered
to an active object are logged on a stable storage. Each checkpoint is indepen-
dent: if a failure occurs, only the faulty process has to recover from its latest
checkpoint.

Basically, we can compare those two approaches based on two metrics: the
failure-free overhead, i.e. the additional execution time induced by the fault-
tolerance mechanism without failure, and the recovery time, i.e. the additional
execution time induced by a failure during the execution. The failure-free over-
head induced by the CIC protocol is usually low [17], as the synchronization
between active objects relies only on the messages sent by the application.
Of course, this overhead depends on the TTC value, set by the programmer;
the TTC value depends mainly on the assessed frequency of failures. A small
TTC value leads to very frequent global state creation and thus to a small
rollback in the execution in case of failure. But a small TTC value leads also
to a higher failure free overhead. The counterpart is that the recovery time
could be high since all the application must restart after the failure of one or
more active object.

As for CIC protocol, the TTC value impacts on the global failure-free over-
head, but the overhead is more linked to the communication rate of the ap-
plication. Regarding the CIC protocol, the PML protocol induces a higher
overhead on failure-free execution. But the recovery time is lower as a single
failure does not involve all the system: only the faulty has to recover.

6.1.1 Fault-Tolerance Configuration

Choosing the adapted protocol depends on the characteristics of the appli-
cation, and of the underlying hardware that are known at deployment time;

11



we then design the fault-tolerance mechanism such that making a ProActive
application fault-tolerant is automatic and transparent to the developer; there
is no need to consider fault-tolerance concerns in the source code of the ap-
plication. The fault-tolerance settings are actually contained in the nodes: an
active object deployed on a node is configured by the settings contained in
this node.

Fault-tolerance is a technical service as defined in Section 5. The designer can
specify in the virtual nodes descriptor the needed reliability of the different
parts of the application, and the deployer can choose the adapted mechanism
to obtain this reliability by configuring the technical service in the deployment
descriptor. The deployer can then select the best mechanism and configuration:

• the protocol to be used (CIC or PML), or no protocol if software fault-
tolerance is not needed on the used hardware,

• the Time To Checkpoint value (TTC),
• the URLs of the servers.

6.2 Example

To illustrate our mechanism of technical services, we consider a master-slaves
application for solving Flow-Shop problems. A Flow-Shop problem aims to find
the optimal schedule of a set of jobs on a set of machines in order to minimize
the total execution time; this problem can be solved by exploring a solution
tree. The whole solution tree is explored in parallel, and while exploring the
tree, the current best solution is shared within the application, which allows
the elimination of bad tree branches.

The solution tree of the problem is divided by a master in a set of sub-tasks,
these sub-tasks are allocated to a number of sub-managers, which can also
be at the top of a hierarchy of sub-managers. Sub-managers manage sub-task
allocation to the workers and also perform communications between them to
synchronize the best current solution. Sub-managers handle dynamic acquisi-
tion of new workers and also handle worker failures by reallocating failed tasks.
As a consequence, there is no need for applying an automatic fault-tolerance
mechanism (then to pay an execution-time overhead) on the workers. On the
contrary, the manager and the sub-managers must be protected against fail-
ures by the middleware since there is no failure-handling at application level
for them.

Figure 5 shows a complete example of a deployment descriptor based on the
P2P infrastructure.

This descriptor defines two virtual nodes: one for hosting the masters and one

12



<ProActiveDescriptor>

<componentDefinition>

<virtualNodesDefinition>

<virtualNode name="master" serviceRefid="master" />

<virtualNode name="slaves" />

</virtualNodesDefinition>

</componentDefinition>

<deployment>

<mapping>

<map virtualNode="master">

<vmName value="localJVM" />

</map>

<map virtualNode="salves">

<vmName value="p2plookup" />

</map>

</mapping>

</deployment>

<infrastructure>

<processes>

<processDefinition id="localJVM">

<jvmProcess class="org.objectweb.proactive.core.process.

JVMNodeProcess" />

</processDefinition>

</processes>

<aquisition>

<P2PService id="p2plookup" nodesAsked="1000">

<peer>rmi://registry1:3000</peer>

</P2PService>

</aquisition>

</infrastructure>

<technicalServiceDefinitions>

<service id="ft-master" class="services.FaultTolerance">

<arg name="protocol" value="pml" />

<arg name="server" value="rmi://host/FTServer1" />

<arg name="TTC" value="60" />

</service>

</technicalServiceDefinitions>

</ProActiveDescriptor>

Fig. 5. P2P and Fault-Tolerance: Deployment Descriptor

for hosting the slaves. Only the master virtual node is configured by a technical
service defining the most adapted fault-tolerance configuration regarding the
underlying hardware; here, the protocol used is PML, set with a short TTC
value as we are in P2P with volatile nodes.

13



Figure 6 shows the full implementation of our fault-tolerance technical service.
The functional code of the fault-tolerance is in fact implemented in the ProAc-
tive core code for logging messages. Thus the technical service just sets some
global properties for starting the logging of messages by the fault-tolerance.

public class FaultToleranceTS implements TechnicalService {

private String SERVER;

private String TTC;

private String PROTOCOL;

public FaultToleranceTS() {

}

public void apply(Node node) {

ProActiveRuntime par = node.getProActiveRuntime();

par.setSystemProperty("proactive.ft.server.global", this

.SERVER);

par.setSystemProperty("proactive.ft.ttc", this.TTC);

par.setSystemProperty("proactive.ft.protocol", this.

PROTOCOL);

}

public void init(Map argValues) {

this.SERVER = (String) argValues.get("proactive.ft.

server.global");

this.TTC = (String) argValues.get("proactive.ft.ttc");

this.PROTOCOL = (String) argValues.get("proactive.ft.

protocol");

}

}

Fig. 6. P2P and Fault-Tolerance: Fault-tolerance service implementation

6.3 Experimentation

This section aims to show that our Technical Service mechanism is imple-
mented and works. For more benchmarks on the fault-tolerance itself, we in-
vite you to look up this article [18] and this work [9] for experimentation about
the P2P and Flow-Shop .

In order to run our experiments, we use the desktop infrastructure fully de-
scribed in [9]. This infrastructure is a permanent desktop grid managed by
our P2P infrastructure (section 4.2.2). All these desktops configuration and
hardware are heterogeneous.

14



Figure 7 shows the Flow-Shop application deployed with the technical service
for fault-tolerance on the P2P infrastructure. The instance of the Flow-Shop
problem is 15 jobs / 20 machines. The fault-tolerance protocol used is PML
with a TTC of 60 seconds. We observe that the computation time decreases
with the number of CPUs.

Fig. 7. Benchmarks with Flow-Shop and Fault-tolerance

The increase from 50 to 60 CPUs is due to the fact that some tasks of the
problem run on more slower machines than for 50 or 70 CPUs. Benchmarks
run on a desktop grid and use a different set of machines at each run. It is hard
to control expected machines with the peer-to-peer aspects of our benchmarks.

7 Conclusion and Future Work

This article proposes a way to attach Technical Services to Virtual Nodes,
mapping non-functional aspects to the containers, dynamically at deployment
and execution. More investigations are needed to look into the fit of the ar-
chitecture with respect to the complexity of Grid platforms, and to the large
number of technical services to be composed and deployed.

We illustrate the pertinence of this mechanism in a concrete use-case: deploy-
ing an application with Fault-Tolerance on an heterogeneous grid provided by
the ProActive P2P infrastructure.

And in the short term, we are planning to explore the combination of two
technical services: fault-tolerance and load balancing.

15



References

[1] Enterprise JavaBeans Specication. Version 2.1 , Technical Report, 2001, Sun
MicroSystems.

[2] Grid Services for Distributed System Integration. I. Foster, C. Kesselman, J.
Nick, S. Tuecke. Computer, 35(6), 2002.

[3] J. Kinzley and R. Guerraoui, AOP does it make sense? The Case of Concurrency
and Failures, in European Conference on Object-Oriented Programming
(ECOOP 2002), Malaga, June 2002.

[4] CORBA Components. Specication. OMG TC Document orbos/99-02-05,
Technical Report, 1999, Object Management Group.

[5] Sun Microsystems, Java remote method invocation specification, (Oct. 1998).

[6] R. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. F. H. Hofman, C. J. H.
Jacobs, T. Kielmann, and H. E. Bal. Ibis: a exible and efficient java-based
grid programming environment. Concurrency - Practice and Experience, 17(7-
8):10791107, 2005.

[7] D. Caromel, Towards a Method of Object-Oriented Concurrent Programming,
Communications of the ACM 36 (9) (1993) 90102.

[8] F. Baude, D. Caromel, L. Mestre, F. Huet, J. Vayssière, Interactive
and descriptor-based deployment of object-oriented grid applications, in:
Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing, IEEE Computer Society, Edinburgh, Scotland, 2002,
pp. 93102.

[9] D. Caromel, A. di Costanzo, and C. Mathieu, Peer-to-Peer for Computational
Grids: Mixing Clusters and Desktop Machines, in Parallel Computing Journal
on Large Scale Grid, to appear, 2007.

[10] Gnutella, Gnutella peer-to-peer network, http://www.gnutella.com (2001).

[11] S. Frolund and J. Koistinen, Quality-of-service specifications in distributed
object systems, in Distributed Systems Engineering, IEEE, vol. 5, 1998, pp.
179-202.

[12] J. Bustos-Jimenez, D. Caromel, A. di Costanzo, M. L. nd Jose M. Piquer,
Balancing active objects on a peer to peer infrastructure, in: Proceedings of
the XXV International Conference of the Chilean Computer Science Society
(SCCC 2005), IEEE, Valdivia, Chile, 2005.

[13] M. Elnozahy, L. Alvisi, Y. Wang, D. Johnson, A survey of rollback-recovery
protocols in message passing systems, Tech. Rep. CMU-CS-96-181, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA (oct
1996).

16



[14] D. Manivannan, M. Singhal, Quasi-synchronous checkpointing: Models,
characterization, and classification, in: IEEE Transactions on Parallel and
Distributed Systems, Vol. 10, 1999, pp. 703713.

[15] L. Alvisi, K. Marzullo, Message logging: Pessimistic, optimistic, causal, and
optimal, Software Engineering 24 (2) (1998) 149159.

[16] K. M. Chandy, L. Lamport, Distributed snapshots: Determining global states
of distributed systems, in: ACM Transactions on Computer Systems, 1985, pp.
6375.

[17] F. Baude, D. Caromel, C. Delbe, L. Henrio, A hybrid message logging-cic
protocol for constrained checkpointability, in: Proceedings of EuroPar2005,
2005.

[18] F. Baude, D. Caromel, C. Delbé, and L. Henrio. “ A hybrid message logging-cic
protocol for constrained checkpointability. ”. In Euro-Par, pages 644–653, 2005.

17


	Introduction
	Related Work
	The ProActive Grid Middleware
	Descriptor-based Deployment of Grid Applications
	Deployment Model
	Retrieval of Resources

	Deployment and Technical Services
	Model
	Technical Services

	Example: Fault-Tolerant Flow-Shop on Peer-to-Peer
	Fault-Tolerance in ProActive
	Example
	Experimentation

	Conclusion and Future Work
	References

