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Abstract

We exhibit probabilistic algorithms which compute the differentiation index, the
differential Hilbert function and an algebraic parametric set associated to a differ-
ential rational mapping. These algorithms are based on a process of linearization
and specialization in a generic solution, and have polynomial time complexity.

Key words: Differential rational mapping, discrete invariants, Kähler differentials,
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1 Introduction

Let k be a field and let x1, . . . , xn be (ordinary) differential indeterminates
over k, depending on a single variable t. For 1 ≤ i ≤ n, let ẋi denote the first
derivative of the differential indeterminate xi with respect to the variable t. Let
be given rational functions f1, . . . , fn of k(X, Ẋ) := k(x1, . . . , xn, ẋ1, . . . , ẋn)
which are differentially algebraically independent over k, and suppose that we
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want to solve the following system of (ordinary) algebraic–differential equa-
tions:


f1(X, Ẋ) = 0,

...

fn(X, Ẋ) = 0.

(1)

If the Jacobian determinant JF := det ∂(f1, . . . , fn)/∂(ẋ1, . . . , ẋn) is a nonzero
element of k(X, Ẋ), then the implicit function theorem allows us to locally
rewrite system (1) into the following explicit equivalent form:


ẋ1 = f̃1(X),

...

ẋn = f̃n(X),

(2)

where f̃1, . . . , f̃n are analytic functions. In such a case, given a suitable value t0
in k, and a suitable set of initial conditions {xi(t0); 1 ≤ i ≤ n}, the (unique)
solution (ϕ1, . . . , ϕn) of system (1) satisfying ϕi(t0) = xi(t0) for 1 ≤ i ≤ n, can
be numerically approximated in a neighborhood of t0. We call such a process
a numerical integration of system (1).

On the other hand, if the Jacobian determinant JF is the zero rational func-
tion in k(X, Ẋ), then the implicit function theorem cannot be applied in order
to obtain an explicit system (2), which is locally equivalent to our input sys-
tem (1). In such a case, system (1) is called implicit, and several difficulties
arise in the process of its numerical integration (see e.g. (Brenan et al., 1989)).

In order to numerically integrate system (1) in the implicit case, it is necessary
to know certain discrete information. In particular, it is necessary to know the
differentiation index of system (1), which may be roughly described as the
minimal number ν of derivatives of the rational functions f1, . . . , fn needed to
(locally) obtain an equivalent explicit form of system (1) (see (Campbell and
Gear, 1995), (Fliess et al., 1995b) and Section 3.3), and to describe the variety
of constraints, i.e. the algebraic equations satisfied by the variables x1, . . . , xn.

Furthermore, it is also necessary to know a maximal subset C of the set of
derivatives ΘνX := {xi

(j); 1 ≤ i ≤ n, 0 ≤ j ≤ ν} whose initial conditions must
be fixed in order to (locally) assure existence and uniqueness of solutions of
system (1). We call such a set an algebraic parametric set of system (1).
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In order to obtain these informations, one may consider a generic perturbation
of system (1) (compare with (Campbell and Gear, 1995), (Fliess et al., 1995b)):

f1(X, Ẋ) = y1,
...

fn(X, Ẋ) = yn,

(3)

where the right–hand side terms of the equations defining system (1) are re-
placed by a set of ordinary differential indeterminates y1, . . . , yn over k(X, Ẋ).
Under the assumption of certain well–posedness condition (cf. (Fliess et al.,
1995b)), it turns out that the discrete invariants associated to system (1)
mentioned above can be easily extracted from system (3).

Example. The following system (taken from (Fliess et al., 1995a)):

x1 = y1,

ẋ1 + x2 = y2,
...

ẋn−2 + xn−1 = yn−1,

ẋn + ẋn−1 = yn,

(4)

can be easily rewritten as a vector field

ẋn = yn − ẏn−1 + . . .+ (−1)ny1
(n−1),

on the constraint variety defined by the following equations:

x1 = y1,

x2 = y2 − ẏ1,
...

xn−1 = yn−1 − ẏn−2 + . . .+ (−1)n−2 y1
(n−2).

We conclude that the differentiation index of system (4) is n− 1, the ini-
tial condition on the variable xn can be arbitrarily fixed, and the quanti-
ties x1, . . . , xn−1 and ẋn depend algebraically on the variables y1, . . . , yn and
their derivatives.

Related work. This discrete information is usually determined by a process
of completion, which computes the variety of constraints associated to sys-
tem (3) by applying successive steps of formal differentiation and elimination

3



to the input equations. A completion can be performed by applying a symbolic
algorithm, based on the computation of a Gröbner basis or a triangular set,
such as the Rosenfeld–Gröbner algorithm (see e.g. (Boulier et al., 1995), (Hu-
bert, 2000)), or the rewriting algorithms of Mansfield (1991), Maârouf et al.
(1998), Sadik (2000), Reid et al. (2001), Hausdorf and Seiler (2002). As shown
in (Sadik, 2000), these algorithms have exponential complexity if differential
polynomials are encoding using the usual dense representation model. On the
other hand, a numeric–symbolic algorithm which computes the completion
using the straight–line program representation of polynomials was proposed
in (Reid et al., 2002).

Main contribution. In this article, we adopt a different point of view, which
consists in determining the discrete information mentioned above, without
computing the completion of system (3). More precisely, we shall exhibit prob-
abilistic polynomial–time algorithms that determine the following data:

• the differentiation index of system (3),
• the differential Hilbert function associated to system (3),
• an algebraic parametric set of system (3).

These algorithms take as input a straight–line program of length L computing
the input rational functions f1, . . . , fn, and compute the above mentioned data
with time complexity LnO(1) (see Section 5).

Our algorithms are of Monte Carlo or BPP type (see e.g. (Balcázar et al.,
1988), (Zippel, 1993), (Pardo, 1995), (von zur Gathen and Gerhard, 1999))
i.e. they return the correct output with a probability of at least a fixed value
strictly greater than 1/2. This means that the error probability can be made
arbitrarily small by iteration of the algorithms. On the other hand, our algo-
rithms do not seem to be of Las Vegas or ZPP type i.e. we have no means of
checking the correctness of our output results. Let us observe that the prob-
abilistic aspect of our algorithms is related to the random choice of a certain
point outside a Zariski closed subset of suitable affine space, which is explicitly
estimated.

Outline of the paper. This paper gives detailed proofs of the results pre-
sented in the conference paper (Matera and Sedoglavic, 2002). Furthermore,
we extend these contributions by estimating the probability of success of our
algorithms. Our approach is based on a linearization process that reduces our
problems to the determination of the dimension of certain F–vector spaces of
Kähler differentials (see Section 4), where F is the function field of the solu-
tion set of system (3). These F–vector spaces are described as the cokernel of
certain Jacobian matrices, which can be easily obtained from the input poly-
nomials. Therefore, their dimensions can be expressed in terms of the ranks
over F of the corresponding Jacobian matrices (see Theorems 10, 11 and 12).
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In order to compute the F–rank of these Jacobian matrices, we describe the
solution set of system (3) as the Zariski closure of the graph of the differential
rational mapping defined by the rational functions f1, . . . , fn (see Section 3).
Applying techniques of Ollivier (1990), we shall obtain an explicit generic
point η of this graph. Taking into account that the rank of these Jacobian
matrices does not change by evaluation of the variables X, Ẋ into the generic
point η, we obtain an efficient algorithm computing these ranks.

Let us finally remark that our approach makes an essential use of the (strong)
hypothesis of the differentially algebraically independence of the input ratio-
nal functions f1, . . . , fn. Therefore, it cannot be easily generalized to more
general situations. On the other hand, our approach can be extended with
minor changes to any system of ordinary algebraic–differential equations de-
fined by n differentially algebraically independent rational functions f1, . . . , fn

of k(X, . . . , X(e)) of arbitrary order e.

2 Notions and notations

Let us recall some standard notions and notations of differential algebra and
differential algebraic geometry, which can be found in e.g. (Ritt, 1950) and
(Kolchin, 1973). Let k be a field of characteristic zero, which we think “ef-
fective” with respect to addition, subtraction, multiplication and division.
Let x1, . . . , xn be a set of indeterminates over k, and let X := (x1, . . . , xn).
The differential k–algebra k{X} is defined as the k–algebra of (differential)
polynomials in an infinite set of indeterminates

ΘX :=
{
xj

(i); 1 ≤ j ≤ n, i ≥ 0
}
,

equipped with the k–derivation δ defined by the rule δx
(i)
j = x

(i+1)
j for i ≥ 0

and 1 ≤ j ≤ n. We shall use the classical notation u̇ := δu and u(i) := δiu.
Further, for any ` ≥ 0, we shall frequently use the notation

Θ`X :=
{
xj

(i) ; 1 ≤ j ≤ n, 0 ≤ i ≤ `
}
.

We observe that k{X} is an integral domain. Its differential fraction field k〈X〉
is defined as the fraction field of the k–algebra k{X}, equipped with the
derivation provided by the (unique) extension of the derivation δ (which we
also denote δ). A differential ideal of the differential k–algebra k{X} is an
(algebraic) ideal of the k–algebra k{X} which is closed under derivation. Given
a subset P of k{X}, we define the differential ideal [P ] generated by P as the
minimal differential ideal of k{X} containing the set P .
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2.1 Differential Hilbert function: dimension, order and regularity

Let I be a prime differential ideal of k{X}. We define the differential Hilbert
function Hk : Z≥0 → Z≥0 of the ideal I (with respect to k) as follows: for
any positive integer i, we define Hk(i) as the Krull dimension of the (alge-
braic) ideal I ∩ k[ΘiX]. The following result shows that this function has a
similar behavior as the standard Hilbert function of algebraic geometry (see
(Kolchin, 1973, Chapter II, Theorem 6)).

Theorem 1 Let I be a prime differential ideal of k{X} and let Hk be the
differential Hilbert function of I with respect to k. Then there exists positive
integers dimk I and ordk I with the following property: for i ≥ 0 large enough,
we have the identity

Hk(i) = dimk I · (i+ 1) + ordk I. (5)

The integers dimk I and ordkI are invariants associated to the ideal I, called
the dimension and the order of I with respect to k, respectively. According
to Ritt (1950), these invariants correspond to what are classically known as
the number of arbitrary functions and the number of initial conditions in
the solution set of the ordinary differential system associated to the ideal I.
For example, if I is the differential ideal generated by ẏ − x then dimk I = 1
and ordk I = 1. Observe that these notions are strongly dependent on the
ground field k, namely dimk〈Y 〉 I = 0 and ordk〈Y 〉 I = 0.

The least integer ` such that the identity (5) holds for any i ≥ ` is called the
regularity of the differential Hilbert function Hk.

2.2 Generic zeros

Let I be a prime differential ideal of k{X} and let K denote the fraction field
of the quotient ring k{X}/I. Then K, equipped with the derivation induced
by δ, is a differential field. An element η of Kn is called a generic zero of the
ideal I if the identity I = {p ∈ k{X}; p(η) = 0} holds.

For example, the formal power series η :=
∑

i≥0(−1)i x0
i+1ti is a generic zero of

the prime differential ideal [ẋ+ x2] in k{x}, while η := 0 is not.

Finally, let η = (η1, . . . , ηn) be the element of Kn whose j–th coordinate ηj is
the quotient class of K defined by xj. Then η is a generic zero of the ideal I.
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2.3 Rankings: orderly and elimination rankings, characteristic sets

A ranking over k{X} is a total order ≥ on the set ΘX such that u̇ ≥ u holds

for any u in ΘX. A ranking over k{X} is an orderly ranking if xi
(r) ≥ x

(s)
j holds

whenever r ≥ s holds. Let X1, X2 be two subsets of X such that X1 ∪X2 = X
holds. Suppose that the algebras k{X1} and k{X2} are endowed with two
rankings. The elimination ranking X1 � X2 induced by the given rankings
over k{X1} and k{X2} is the ranking over k{X} that extends the rankings
over k{X1} and k{X2} and satisfies z1 ≤ z2 for any z1 in ΘX1 and any z2

in ΘX2.

Let us fix a ranking over k{X}. For a given element p of k{X}, we define the
leader up and the initial ip of p as the highest ranking derivative appearing
in p and the coefficient of its highest power in p respectively. The separant sp

of p is defined as sp := ∂p/∂up. A differential polynomial q in k{X} is re-
duced with respect to p if no proper derivative of up appears in q and the
condition degup

q < degup
p holds.

Let us fix a subset A of k{X}. We shall denote by IA and SA the set of initials
and separants of the elements of A respectively. Let HA := IA ∪ SA. The set A
is an autoreduced set if any element p of A is reduced with respect to all the
elements of A \ {p}. The set A is called a characteristic set of a differential
ideal I of k{X} if it is autoreduced and there is no nonzero element p in I
reduced with respect to A.

3 Differential ideals associated to a differential rational mapping

Let p1, q1, . . . , pn, qn be polynomials in k[X, Ẋ] such that pj/qj is a reduced
fraction for 1 ≤ j ≤ n, and let fj denote the rational function fj := pj/qj.
Assume that the set of rational functions {f1, . . . , fn} is differentially alge-
braically independent over k, i.e. there does not exist a nonzero differential
polynomial p in k{X} for which p(f1, . . . , fn) = 0 holds. As expressed at the
introduction, our aim is to determine certain discrete information associated
to the following system of ordinary differential equations in k〈X, Y 〉:


f1(X, Ẋ) = y1,

...

fn(X, Ẋ) = yn.

(6)
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For this purpose, we introduce the following system of ordinary differential
equations and inequalities in k{X, Y }, equivalent to system (6):

p1

(
X, Ẋ

)
− y1 q1

(
X, Ẋ

)
= 0,
...

pn

(
X, Ẋ

)
− yn qn

(
X, Ẋ

)
= 0,∏n

j=1 qj
(
X, Ẋ

)
6= 0.

(7)

We may regard the solution set of system (6), or equivalently of system (7),
as the graph of the differential rational mapping defined by f1, . . . , fn.

In Section 3.1, we shall analyze the Zariski closure of this graph, which has bet-
ter geometric properties than the graph itself and still uniquely characterizes
the underlying differential rational mapping. For this purpose, we shall con-
sider the differential ideal defining the Zariski closure of the graph associated
to systems (6) and (7), and a suitable localization Γ of it.

Then, in Section 3.2 we discuss a definition in the setting of differential algebra
that corresponds to the intuitive notion of differentiation index presented in
the introduction.

Finally, in Section 3.3 we shall introduce a further differential ideal ∆, isomor-
phic to Γ, which shares the same discrete invariants as Γ and has a generic
zero with a simple and explicit description. As it will be clear in Section 5,
such generic zero will play a crucial role in our algorithmic approach.

3.1 Zariski closure of a graph and an associated field extension

Let I be the differential ideal of k{X, Y } generated by the polynomials

g̃1 := p1 − y1q1, . . . , g̃n := pn − ynqn,

let S := {q1, . . . , qn}, and let S∞ ⊂ k{X, Y } be the multiplicatively closed
subset of k{X} generated by 1 and the elements of the set S. We associate
to system (7) the saturation (I : S∞) of the differential ideal I in k{X, Y } by
the set S, which is defined in the following way:

(I : S∞) := {p ∈ k{X, Y };∃ s ∈ S∞ with sp ∈ I} .

The saturation (I : S∞) is a differential ideal. Furthermore, we have the fol-
lowing result (compare with (Ollivier, 1990)):
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Lemma 2 (I : S∞) is a prime differential ideal of k{X, Y }.

Proof.– Let us fix an elimination ranking over k{X,Y } with X � Y .We
observe that the polynomial g̃j := pj − yjqj has degree 1 in its leader yj, and
that sgj

= igj
= qj for 1 ≤ j ≤ n. Then H∞

I = S∞ and applying (Ritt, 1950,
Chapter IV, §17–20), we conclude that (I : H∞

I ) = (I : S∞) is a prime differ-
ential ideal of k{X, Y }.

Our next purpose is to consider a “generic specialization” of the variables Y .
In order to do this, we localize the ideal (I : S∞) at the multiplicatively
closed set k{Y } \ {0}. We observe that (I : S∞) ∩ k{Y } = {0} holds. Indeed,
any nonzero polynomial p in (I : S∞) ∩ k{Y } would induce a nontrivial re-
lation p(f1, . . . , fn) = 0, contradicting thus the fact that the rational func-
tions f1, . . . , fn are differentially algebraically independent over k. Therefore,
the resulting localization

Γ := k〈Y 〉 ⊗k{Y }(I : S∞)

is a nontrivial prime differential ideal of the differential k〈Y 〉–algebra k〈Y 〉{X}.

In what follows, we shall consider the following extension of differential k–
algebras:

k〈Y 〉 ↪→ k〈Y 〉{X}
Γ

. (8)

We shall see that the discrete invariants we want to compute can be obtained
by considering this extension. First of all, we have the following remark:

Lemma 3 The differential k–algebra extension k〈Y 〉 ↪→ k〈Y 〉{X}/Γ has dif-
ferential transcendence degree 0.

Proof.– Since the rational functions f1, . . . , fn in k〈X〉 are differentially
algebraically independent over k, we conclude that the field extension

k〈f1, . . . , fn〉 ↪→ k〈X〉

is differentially algebraic. This implies that for 1 ≤ j ≤ n there exists a nonzero
differential polynomial aj in k{f1, . . . , fn}[Z] such that aj(f1, . . . , fn, xj) = 0
holds. Rewriting this identity, we obtain a congruence relation aj(Y, xj) ≡ 0
(modulo [y1−f1, . . . , yn−fn]). Multiplying this relation by a suitable power m
of q := q1 · · · qn we conclude that qmaj(Y, xj) belongs to the ideal [g̃1, . . . , g̃n].
We deduce that aj(Y, xj) belongs to the ideal Γ for 1 ≤ j ≤ n. This implies
that the differential k–algebra extension k〈Y 〉 ↪→ k〈Y 〉{X}/Γ has differential
transcendence degree 0.

9



3.2 On the differentiation index

One may ask for the minimal number of derivatives of the input polyno-
mials g̃1, . . . , g̃n necessary to obtain an explicit system in the sense of the
introduction. For this purpose, we have the following result:

Lemma 4 Let ` denote the regularity of the Hilbert function of the differ-
ential ideal Γ with respect to the differential field k〈Y 〉. Then there exists
elements h1, . . . , hn of the (algebraic) ideal Γ` := Γ ∩ k〈Y 〉[Θ`X] with the fol-
lowing property:

det

(
∂(h1, . . . , hn)

∂X(`)

)
6= 0 modulo Γ`. (9)

We may interpret condition (9) as the fact that h1, . . . , hn define an explicit
system. As it will be shown by the proof of this lemma, the existence of such
polynomials h1, . . . , hn is a consequence of the equality

Hk〈Y 〉(`) = ordk〈Y 〉Γ = dimk〈Y 〉 Γ`,

where dimk〈Y 〉 Γ` denotes the Krull dimension of the (algebraic) ideal Γ`. This
suggests that the completion process mentioned at the introduction will be
certainly achieved once a system of generators of Γ`, or of a suitable localiza-
tion of Γ`, is obtained.

Therefore, we define the differentiation index of system (6) as the least positive
integer ν for which the identity

dimk〈Y 〉 Γ` = dimk〈Y 〉(S∞)−1(G̃, . . . , G̃(ν)) ∩ (S∞)−1k〈Y 〉[Θ`X]

holds, where (G̃, , . . . , G̃(ν)) denotes the (algebraic) ideal of k〈Y 〉[Θν+1X] span-

ned by G̃(i) := {g̃(i)
1 , . . . , g̃(i)

n } for 0 ≤ i ≤ ν. The reasons why we consider lo-
calizations at S∞ will become apparent in Section 4.2.

Proof of Lemma 4.– Let Hk〈Y 〉 denote the differential Hilbert function of the
ideal Γ with respect to k〈Y 〉, and let ` be its regularity (see Section 2.1).
Lemma 3 shows that the differential dimension of Γ over k〈Y 〉 is equal to zero.
Hence, from identity (5) we see that Hk〈Y 〉(i) = ordk〈Y 〉Γ holds for any i ≥ `.
Let us fix an orderly ranking on the set ΘX. Then the ideal Γ` contains a
characteristic set of the differential ideal Γ with respect to the orderly ranking
chosen (see e.g. Cluzeau and Hubert, 2003, Section 4.2). Hence, there exists a
subset C of Θ`−1X such that the k–algebra extension

k〈Y 〉[C] ↪→ k〈Y 〉[Θ`X]

Γ`

(10)
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is algebraic. Applying (Matsumura, 1986, Theorem 26.3) we deduce that the
ideal Γ` ⊗ k〈Y 〉(C) is a radical zero–dimensional ideal of k〈Y 〉(C)[Θ`X\C].
This implies that there exist s := #(Θ`X\C) elements h̃1, . . . , h̃s that span the
ideal Γ` ⊗ k〈Y 〉(C) in k〈Y 〉(C)[Θ`X\C] (see e.g. Kunz, 1986, Corollary V.1.5).
Therefore, from the Jacobian criterion (Eisenbud, 1995, Corollary 16.20) we
deduce that the (s× s)–Jacobian matrix ∂(h̃1, . . . , h̃s)/∂(Θ`X\C) is nonsingu-
lar. In particular, we have that there exist indices i1, . . . , in ∈ {1, . . . , s} such
that ∂(h̃i1 , . . . , h̃in)/∂(X(`)) is nonsingular. Since Γ` ⊗ k〈Y 〉(C) ∩ k〈Y 〉[Θ`X] is
equal to Γ`, multiplying h̃i1 , . . . , h̃in by suitable elements of k〈Y 〉[C] we obtain
elements h1, . . . , hn of Γ` satisfying condition (9). 2

3.3 Generic section of a graph

In order to efficiently compute the discrete invariants associated to the dif-
ferential k–algebra extension (8), following Ollivier (1990) we associate to the
differential ideal Γ another prime differential ideal, isomorphic to Γ, which has
a generic zero with a simple and explicit description.

Let x̃1, . . . , x̃n be differential indeterminates over k, let X̃ := (x̃1, . . . , x̃n), and
let K denote the differential field extension of k generated by the differential

rational functions f1(X̃,
˙̃
X), . . . , fn(X̃, ˙̃

X) i.e.

K := k〈f1(X̃,
˙̃
X), . . . , fn(X̃,

˙̃
X)〉.

Observe that K has differential transcendence degree n over k, because the
rational functions f1, . . . , fn are differentially algebraically independent over k.
Let ψ : k〈Y 〉{X} → K{X} be the differential homomorphism defined in the
following way:

ψ(xj) := xj , (1 ≤ j ≤ n)

ψ(yj) := fj(X̃,
˙̃
X). (1 ≤ j ≤ n)

Let gi := ψ(g̃i) in K{X} for 1 ≤ j ≤ n and let ∆ := ψ(Γ). Observe that

∆ = ([g1, . . . , gn] : S∞)

=
(
p1(X, Ẋ)− p1(X̃,

˙̃
X)

q1(X̃,
˙̃
X)
q1(X, Ẋ), . . . , pn(X, Ẋ)− pn(X̃,

˙̃
X)

qn(X̃,
˙̃
X)
qn(X, Ẋ) : S∞

)
holds. Therefore, the morphism ψ allows us to replace the set of variables Y
by a set of n “symmetric” variables X̃. Our next result shows that the discrete
invariants we want to compute can be obtained by considering the differential
ideal ∆, and that the vector (x̃1, . . . , x̃n) is a generic solution of the ideal ∆.

Lemma 5 We have the following properties:
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(i) ∆ is a nontrivial prime differential ideal of K{X}.
(ii) The differential Hilbert function of the ideal ∆ with respect to K is equal to

the differential Hilbert function of the ideal Γ with respect to k〈Y 〉.
(iii) The element (x̃1, . . . , x̃n) is a generic zero of the differential ideal ∆.

Proof.– Since the morphism ψ acts as the identity mapping on the set ΘX,
and maps isomorphically the differential field k〈Y 〉 onto the differential fieldK,
we conclude that the ideal ∆ := ψ(Γ) is a nontrivial prime differential ideal
of K{X}. This shows assertion (i). Furthermore, for any i ≥ 0, we have the
identity

ψ(Γ ∩ k〈Y 〉[ΘiX]) = ∆ ∩K[ΘiX].

This shows assertion (ii). In order to prove assertion (iii), we consider the dif-
ferential homomorphism ϕ : K{X} → k〈X̃〉 that maps xj to x̃j for 1 ≤ j ≤ n.
We have that Ker(ϕ) = ∆ holds (see Ollivier, 1990, II §4.2, Proposition 3) and
the image of ϕ contains the differential k-algebra k{X̃}. This implies that the
fraction field of the quotient ring K{X}/∆ is isomorphic to k〈X̃〉. This shows
assertion (iii).

4 Linearization of the completion process

For the sake of clarity, we recall some notations and hypotheses introduced
in Section 3. Let f1, . . . , fn be rational functions of k〈X〉 of order 1 which are
differentially algebraically independent over k. For 1 ≤ j ≤ n, let pj, qj be the
numerator and denominator in k[X, Ẋ] of a reduced representation fj := pj/qj
of fj. Let X̃ := (x̃1, . . . , x̃n) be new differential indeterminates, and let gj be
the differential rational function

gj := pj(X, Ẋ)− fj(X̃,
˙̃
X)qj(X, Ẋ)

in k〈X̃〉{X} for 1 ≤ j ≤ n. Let K := k〈f1(X̃,
˙̃
X), . . . , fn(X̃,

˙̃
X)〉, let S be the

set {q1(X, Ẋ), . . . , qn(X, Ẋ)} and let ∆ be the differential ideal of K{X} de-
fined as the saturation ∆ := ([g1, . . . , gn] : S∞).

In Section 3, we show that the discrete invariants we want to compute can
be obtained by considering the differential ring extension K ↪→ K{X}/∆. In
order to analyze this extension, in this section we are going to show that the
computation of the differentiation index of system (6), and the differential
Hilbert function and an algebraic parametric set of the (prime) differential
ideal ∆ with respect to K, can be reduced to the computation of the dimen-
sion of certain vector spaces. These vector spaces can be easily described in
terms of the input polynomials g1, . . . , gn. For this purpose, we are going to
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“linearize” our problems, using the theory of Kähler differentials (cf. (Eisen-
bud, 1995), (Kunz, 1986) in the purely algebraic case, and (Johnson, 1969),
(Johnson, 1974) in the setting of differential algebra).

4.1 Kähler differentials

For a given K–algebra A, the module of Kähler differentials of A over K
is defined as the unique A–module ΩA/K , together with an A–derivation d
from A into ΩA/K that satisfies the following universal property: for any A–
module B and any K–derivation D : A→ B, there exists a unique homomor-
phism of A–modules ϕ : ΩA/K → B such that ϕ ◦ d = D. If A is a differential
K–algebra, then ΩA/K has a (unique) canonical structure of differential A–
module such that δ ◦ d(a) = d ◦ δ(a) for any derivation δ : A→ A and any a
in A (see (Johnson, 1969, §1)). Our interest on modules and vector spaces of
Kähler differentials is mainly based on the following result (Eisenbud, 1995,
Theorem 16.14):

Theorem 6 Let K ↪→ F be a finitely generated field extension of K. A sub-
set {η1, . . . , ηr} of F is a transcendence basis of F over K if and only if the
set {dη1, . . . , dηr} is a basis of the F -vector space ΩF/K.

Boulier (1999) and Sedoglavic (2002) (see also (Sedoglavic, 2001)) make use of
the theory of Kähler differentials in order to develop algorithms of differential
algebra in a similar way as here.

Notations. Let us fix some notations we are going to use in the sequel.
Let A := K{X} and let Ai := K[ΘiX]. From the fact that ∆ is a prime
differential ideal of A we easily conclude that ∆ ∩ Ai is a prime (algebraic)
ideal of Ai and the quotient ring Ai/(∆ ∩ Ai) is a domain for any i ≥ 0. We
shall denote by F the (differential) fraction field of the quotient ring A/∆,
and by (Fi)i≥0 the sequence of (algebraic) fraction fields of the quotient
rings Ai/(∆ ∩ Ai). In symbols:

• A := K{X};
• Ai := K[ΘiX] = K[X, . . . , X(i)];
• F := Fraction field of A/∆;
• Fi := Fraction field of Ai/(∆ ∩ Ai).

For any i ≥ 0, we have a canonical inclusion Fi ↪→ F . Finally, let ΩF/K denote
the F–vector space of Kähler differentials of F over K, and let ΩFi/K denote
the Fi–vector space of Kähler differentials of Fi over K for any i ≥ 0.

Kähler differentials, discrete invariants and algebraic parametric
sets. First, we observe that the computation of the differential Hilbert func-
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tion of the differential ideal ∆ with respect to K can be easily reduced to
the analysis of certain vector spaces of Kähler differentials. Indeed, from the
definition of the Hilbert function HK of the differential ideal ∆ with respect
to K, we conclude that the following identity holds for any i ≥ 0:

HK(i) = dimFi
ΩFi/K . (11)

Now, we explain how one may describe an algebraic parametric set of the
differential ideal ∆ with respect to K using Kähler differentials.

Let us fix an orderly ranking on the set ΘX. Then the ideal ∆∩A` contains a
characteristic set of the differential ideal ∆ with respect to the orderly rank-
ing chosen (see e.g. Cluzeau and Hubert, 2003, Section 4.2), where ` denotes
the regularity of the Hilbert function HK . Therefore, there exists a subset C
of Θ`−1X of cardinality ordK∆ which is a transcendence basis of the field F`

over K. We call such a set an algebraic parametric set of the ideal ∆ with
respect to K. Observe that such a subset C represents a maximal set of deriva-
tives of ΘX whose initial conditions must be fixed in order to assure existence
and uniqueness of solutions of the input system (6). Applying Theorem 6 we
conclude that such a set C is characterized by the following condition:

dimF`
Span(d(C)) = #(C) = dimF`

ΩF`/K , (12)

where Span(d(C)) denotes the linear subspace of ΩFi/K spanned by the ele-
ments of the set d(C).

Identities (11) and (12) show that the discrete invariants we want to compute
can be obtained from an explicit description of the Fi–vector spaces ΩFi/K .

4.2 An explicit representation of ΩFi/K

In order to obtain a simpler description of the Fi–vector space ΩFi/K , it
would be desirable to have a simpler description of the field Fi. Let us re-
call that Fi is the fraction field of the quotient ring Ai/(∆ ∩ Ai), where ∆
denotes ([g1, . . . , gn] : S∞). Therefore, in order to manipulate the elements of
the field Fi, it would be desirable to have an explicit system of generators of
the ideal ∆. Unfortunately, it is not clear how one may efficiently obtain such
a system of generators. In order to circumvent this inconvenience, we con-
sider the localization (S∞)−1∆, which has an explicit system of generators,
namely (S∞)−1∆ = (S∞)−1[g1, . . . , gn].
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Lemma 7 The total ring of fractions of the quotient ring

(S∞)−1Ai

(S∞)−1[g1, . . . , gn] ∩ (S∞)−1Ai

is isomorphic to the field Fi for any i > 0.

Proof.– Since S is not a subset of A0, we shall suppose first that i ≥ 1.
Since S∞ is a multiplicatively closed subset of Ai that does not meet the
ideal ∆ ∩ Ai, (S∞)−1(∆ ∩ Ai) is a nontrivial prime ideal of (S∞)−1Ai. From
the definition of the ideals ∆ := ([g1, . . . , gn] : S∞) and [g1, . . . , gn] we deduce
the following identity of localized ideals in the ring (S∞)−1Ai (see e.g. Mat-
sumura, 1986, §4):

(S∞)−1(∆∩Ai) = (S∞)−1([g1, . . . , gn]∩Ai) = (S∞)−1[g1, . . . , gn]∩ (S∞)−1Ai.

Therefore, applying standard properties of localizations (see e.g. Matsumura,
1986, Theorem 4.2), we have the following ring isomorphism:

(S∞)−1
(

Ai

∆ ∩ Ai

)
' (S∞)−1Ai

(S∞)−1(∆ ∩ Ai)

=
(S∞)−1Ai

(S∞)−1[g1, . . . , gn] ∩ (S∞)−1Ai

.
(13)

Applying (Matsumura, 1986, Theorem 4.3) we deduce that Fi is isomorphic
to the total ring of fractions of the ring (S∞)−1 (Ai/(∆ ∩ Ai)). Combining this
with isomorphism (13) shows that Fi isomorphic to the total ring of fractions
of the ring (S∞)−1Ai/((S∞)−1[g1, . . . , gn] ∩ (S∞)−1Ai).

Now let i = 0, and let Ŝ := S ∩K[X]. Then the previous argumentation, re-
placing S by Ŝ, shows that the total ring of fractions of the quotient ring

(Ŝ∞)−1A0

(Ŝ∞)−1[g1, . . . , gn] ∩ (Ŝ∞)−1A0

is isomorphic to the field F0. Lemma 7 shows that (S∞)−1[g1, . . . , gn]∩(S∞)−1Ai

is a prime ideal of (S∞)−1Ai for any i ≥ 0. Furthermore, a similar argument as
above shows that (S∞)−1[g1, . . . , gn] is a prime ideal of (S∞)−1A and the total
ring of fractions of the quotient ring (S∞)−1A/(S∞)−1[g1, . . . , gn] is isomorphic
to the differential field F . Hence, the ideal (S∞)−1[g1, . . . , gn] satisfies the
statement of Lemma 5. This means that the discrete invariants associated to
the ideals ∆ and (S∞)−1[g1, . . . , gn] coincide, and the point X̃ is a generic
zero of the ideal (S∞)−1[g1, . . . , gn]. Therefore, in the sequel we shall also
consider the differential ideal (S∞)−1[g1, . . . , gn], which has an explicit system
of generators.
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4.3 Completion process and Jacobian matrices

In this section we discuss how the computation of the differentiation index ν,
the differential Hilbert function HK and an algebraic parametric set of the
ideal ∆ with respect to K can be reduced to linear algebra computations
over the field F . More precisely, we shall describe this discrete data in terms
of the F–ranks of certain Jacobian matrices related to the input differential
polynomials g1, . . . , gn. Let i and j be integers with j ≤ i+ 1, and let J(i, j)
denote the following Jacobian (block) (n(i+ 1)× n(i− j + 2))–matrix with
entries in K{X}:

J(i, j) :=


∂G(i)

∂X(i+1)

∂G(i)

∂X(i)
· · · ∂G

(i)

∂X(j)

...
...

...
∂G

∂X(i+1)

∂G

∂X(i)
· · · ∂G

∂X(j)

,

where ∂G(h)/∂X(l) denotes the following (n× n)–matrix with entries inK{X}:

∂G(h)

∂X(l)
:=



∂g1
(h)

∂x1
(l)

. . .
∂g1

(h)

∂xn
(l)

...
...

∂gn
(h)

∂x1
(l)

. . .
∂gn

(h)

∂xn
(l)

.

The Jacobian matrices J(i, 0) are closely related to the (algebraic) ideals ∆i

of Ai+1 spanned by the set of polynomials {G, . . . , G(i)}. In the sequel, we
shall rather consider the localizations (S∞)−1∆i, which have better geometric
properties than the ideals ∆i and describe a Zariski–dense open subset of the
graph defined by our input differential rational mapping. In fact, we have the
following result :

Lemma 8 (S∞)−1∆i is a prime ideal of (S∞)−1Ai+1 for any i ≥ 0.

Proof.– Following the notations of Section 3, let g̃j := pj(X, Ẋ)− yjqj(X, Ẋ)
for 1 ≤ j ≤ n, let G̃ := {g̃1, . . . , g̃n}, and let Γ̃i ⊂ k[Θi+1X,ΘiY ] be the (alge-
braic) ideal spanned by the set {G̃, . . . , G̃(i)} for i ≥ 0. Then (Ritt, 1950, Chap-
ter IV, §17–20) shows that for any i ≥ 0 the saturation ideal (Γ̃i : S∞) is a
prime ideal of k[Θi+1X,ΘiY ], where S := {q1, . . . , qn}. From the arguments of
Section 3.1 we deduce that Γ̃i ∩ k{Y } = Γ̃i ∩ k{X} = {0} holds. Therefore, we
have that the localized ideal (S∞)−1Γ̃i is a prime ideal of (S∞)−1k[Θi+1X,ΘiY ].
We conclude that (S∞)−1∆i = (S∞)−1ψ(Γ̃i) is a prime ideal of (S∞)−1Ai+1,
where ψ : k〈Y 〉{X} → K{X} denotes the homomorphism of Section 3.3. This
concludes the proof of the lemma.
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The consideration of the ideals (S∞)−1∆i will allow us to control the number of
derivatives of the set of polynomials G which are required for the computation
of the discrete invariants associated to the ideal ∆. More precisely, we have
the following result :

Lemma 9 For 0 ≤ i ≤ `, the following identity of Krull dimensions holds :

dimK

(
(S∞)−1∆2n−2 ∩ (S∞)−1Ai

)
= dimK (∆ ∩ Ai). (14)

Proof.– Let us fix an arbitrary orderly ranking over K{X}. Then, (Sadik,
2000, Theorem 27) shows that the (algebraic) ideal ∆n−1 contains a charac-
teristic set H := {h1, . . . , hs} of ∆ with respect to the orderly ranking chosen.
Then we have ∆ = [H] : (SH)∞, where SH denotes the set of initials and sep-
arants of the elements of H. Let h be an arbitrary element of ∆ ∩ An. Then
(Sadik, 2000, Lemma 26) shows that h belongs to (H, . . . , H(n−1) : S∞H ), and
hence to (∆2n−2 : S∞H ). We conclude that

(∆2n−2 : S∞H ) ∩ An = (∆2n−2 ∩ An : S∞H ) = (∆ ∩ An : S∞H ) = ∆ ∩ An

holds. Then we have (∆2n−2 : S∞H ) ∩ Ai = ∆ ∩ Ai for 0 ≤ i ≤ `; this implies
that (S∞)−1 ((∆2n−2 : S∞H ) ∩ Ai) is equal to (S∞)−1(∆ ∩ Ai) for 0 ≤ i ≤ `.

Let us fix 0 ≤ i ≤ `. Then

(S∞)−1(∆ ∩ Ai) = (S∞)−1 ((∆2n−2 : S∞H ) ∩ Ai)

= (S∞)−1(∆2n−2 : S∞H ) ∩ (S∞)−1Ai

= ((S∞)−1∆2n−2 : S∞H )) ∩ (S∞)−1Ai

= (S∞)−1∆2n−2 ∩ (S∞)−1Ai,

(15)

the last equality being consequence of the fact that (S∞)−1∆2n−2 is a prime
ideal (Lemma 9). From Lemma 7, we see that the dimension of ∆ ∩ Ai over K
is equal to dimK(S∞)−1(∆ ∩ Ai). Combining this equality with equality (15)
we deduce the statement of Lemma 9.

Now we show how the values of the differential Hilbert function HK of the
differential ideal ∆ with respect toK can be expressed in terms of the Jacobian
matrices J(i, j).

Theorem 10 For 0 ≤ i≤ `, the value of the differential Hilbert function HK(i)
of the differential ideal ∆ with respect to K satisfies the following identity:

HK(i) = n(i+ 1)− rankF J(2n− 2, 0) + rankF J(2n− 2, i+ 1).
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Proof.– Combining Lemma 7 and identities (13) and (15) we see that Fi is
isomorphic to the fraction field of the quotient ring

(S∞)−1Ai

(S∞)−1∆2n−2 ∩ (S∞)−1Ai

.

Therefore, (Eisenbud, 1995, §16.1) shows that the dimension of the Fi–vector
space ΩFi/K satisfies the following identity:

dimFi
ΩFi/K = n(i+ 1)− rankFi

J((S∞)−1∆2n−2 ∩ (S∞)−1Ai), (16)

where J((S∞)−1∆2n−2 ∩ (S∞)−1Ai) denotes the Jacobian matrix of any sys-
tem of generators of the ideal (S∞)−1∆2n−2 ∩ (S∞)−1Ai. Since the matrix rank
does not change by field extension, we conclude that

rankFi
J((S∞)−1∆2n−2 ∩ (S∞)−1Ai) = rankF J((S∞)−1∆2n−2 ∩ (S∞)−1Ai)

holds. We observe that the F–rank of the matrix J((S∞)−1∆2n−2 ∩ (S∞)−1Ai)
equals the dimension of the F–vector subspace of ΩF/K spanned by the set

d((S∞)−1∆2n−2 ∩ (S∞)−1Ai).

In order to describe the dimension of this vector space in terms of the Ja-
cobian matrices J(i, j) introduced above, we see that any element of the
set d((S∞)−1∆2n−2) is generated by an F–linear combination of the coor-
dinates of the column vector

J(2n− 2, 0)

 dX(2n−1)

...
dX

 .
Hence, we have the identity

dimF Span
(
d((S∞)−1∆2n−2)

)
= rankFJ(2n− 2, 0). (17)

Let J̃(2n− 2, 0) denotes the (unique) reduced row–echelon form of the ma-
trix J(2n− 2, 0). Let us write J̃(2n− 2, 0) := (J1|J2), where J1 and J2 are
the submatrices of J̃(2n− 2, 0) consisting of the first (2n− i− 1)n columns
and the last (i+ 1)n columns of J̃(2n− 2, 0) respectively. Since the matrix
denoted by J(2n− 2, i+ 1) is the submatrix of J(2n− 2, 0) consisting of the
first (2n− 1− i)n columns of J(2n− 2, 0), by elementary properties of the
reduced row–echelon form of a matrix we conclude that the identity

rankF J(2n− 2, i+ 1) = rankF J1
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holds. On the other hand, the elements of ΩF/K corresponding to the rows

of J̃(2n− 2, 0) whose first (2n− 1− i)n coordinates are zero, span the sub-
space d((S∞)−1∆2n−2 ∩ (S∞)−1Ai). We conclude that denoting by C the di-
mension of d((S∞)−1∆2n−2 ∩ (S∞)−1Ai) over F , we have

C = rankF J̃(2n− 2, 0)− rankF J1,

= rankF J(2n− 2, 0)− rankF J(2n− 2, i+ 1).
(18)

Taking into account that HK(i) is equal to dimFi
ΩFi/K and combining iden-

tities (16) and (18) completes the proof of Theorem 10.

Let us observe that, combining Theorem 1 and Lemma 3, we see that for i ≥ `
the identity HK(i) = HK(`) holds. Since ` ≤ n− 1 holds (see e.g. Sadik, 2000,
§ 5.2)), this furnishes a practical method to compute the regularity ` of the
Hilbert function HK .

In Section 3.3, we define the differentiation index of system (6) as the least
positive integer ν such that the identity

ordk〈Y 〉Γ = dimk〈Y 〉(S∞)−1(G̃, , . . . , G̃(ν)) ∩ (S∞)−1k〈Y 〉[Θ`X]

holds. From the definition of the differential homomorphism ψ from k〈Y 〉[X]
into K{X} of Section 3.3 we easily conclude that ν is the least positive integer
such that

ordK∆ = dimK ((S∞)−1∆ν ∩ (S∞)−1A`)

holds. We have the following result:

Theorem 11 The differentiation index of system (6) is the least positive in-
teger ν such that the following identity holds:

HK(`) = rankF J(ν, 0)− rankF J(ν, `+ 1).

Proof.– From the above remarks we see that the differentiation index ν is
the least positive integer such that the identity

ordK∆ = dimK ((S∞)−1∆ν ∩ (S∞)−1A`)

holds. On one hand, we have ordK∆ = HK(`) = d(∆ ∩ A`). On the other
hand, arguing as in the proof of Theorem 10 we see that the identity

dimK ((S∞)−1∆ν ∩ (S∞)−1A`) = rankF J(ν, 0)− rankF J(ν, `+ 1)

holds. Combining both identities completes the proof of Theorem 11.
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Finally, we discuss how one may determine in Θ`−1X an algebraic parametric
set C of the ideal ∆ with respect to K. Let us recall that such an algebraic
parametric set is characterized by the conditions #(C) = ordK∆ and the F`–
vector subspace Span(d(C)) of ΩF`/K spanned by the set d(C) has dimension

dimF`
Span(d(C)) = HK(`) = ordK∆.

Let be given a subset C of Θ`−1X, and let J (C)(ν, 0) denote the submatrix
of the Jacobian matrix J(ν, 0) obtained by deleting the columns of J(ν, 0)
corresponding to the derivatives in C. We have the following result:

Theorem 12 For a given subset C of Θ`−1X, C is an algebraic parametric
set of ∆ if, and only if, the following identities hold:

#(C) = ordK∆ and rankF J
(C)(ν, 0) = rankF J(ν, 0).

Proof.– Let be given a subset C of Θ`−1X with #(C) = ordK∆. Arguing as in
the proof of Theorem 10, replacing the K–algebra (S∞)−1Ai by (S∞)−1K[C],
we obtain the identity:

dimF Span
(
d((S∞)−1∆ν ∩ (S∞)−1K[C])

)
= rankF J(ν, 0)− rankF J

(C)(ν, 0).

From this we deduce the following identity:

dimF Span(d(C)) = ordK∆− dimF Span d
(
(S∞)−1∆ν ∩ (S∞)−1K[C]

)
= ordK∆− rankF J(ν, 0) + rankF J

(C)(ν, 0).
(19)

Identity (19) immediately implies that dimF`
Span(d(C)) = ordK∆ holds if,

and only if, rankF J(ν, 0) = rankF J
(C)(ν, 0) holds. This completes the proof

of Theorem 12.

5 Computational aspects

Let notations and assumptions be as in Section 4. In this section we exhibit
efficient algorithms which compute the following items:

• The differentiation index ν of the input system (6).
• The differential Hilbert function HK of the differential ideal ∆ with respect

to K.
• An algebraic parametric set of the differential ideal ∆ with respect to K.
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5.1 The complexity model

Algorithms in differential algebra are usually described using the standard
dense or sparse complexity model, i.e. encoding multivariate polynomials by
means of the vector of all or of all nonzero coefficients. Taking into account
that a generic n–variate polynomial of degree d has

(
d+n

n

)
= O(dn) nonzero

coefficients, we see that the dense or sparse representation of multivariate poly-
nomials requires an exponential size, and their manipulation usually requires
an exponential number of arithmetic operations with respect to the parame-
ters d and n. In order to avoid this exponential behavior, we are going to use an
alternative encoding of input, output and intermediate results of our computa-
tions, by means of straight–line programs (cf. (Heintz, 1989), (Strassen, 1990),
(Pardo, 1995), (Bürgisser et al., 1997)). A straight–line program β in k(ΘX)
is a finite sequence of rational functions (b1, . . . , bs) in k(ΘX)s such that
for 1 ≤ i ≤ s the rational function bi is either an element of the set ΘX, or an
element of k (a parameter), or there exist 1 ≤ i1, i2 < i such that bi = bi1 ◦i bi2
holds, where ◦i is one of the arithmetic operations +,−,×,÷. The straight–
line program β is called division–free if ◦i is different from ÷ for 1 ≤ i ≤ s.
A basic measure of the complexity of β is the number s, which is called the
length of the straight–line program β. We say that the straight–line program β
computes or represents a subset T of k(ΘX) if the inclusion T ⊂ {b1, . . . , bs}
holds.

Let us suppose that the input polynomials p1, q1, . . . , pn, qn are represented
by a division–free straight–line program β in k(X, Ẋ) of length L. Observe
that there exists a straight–line program β̃ of length O(L+ n) computing the
polynomials g̃1 := p1(X, Ẋ)− y1q1(X, Ẋ), . . . , g̃n := pn(X, Ẋ)− ynqn(X, Ẋ).

In the sequel, we shall need to compute the Jacobian matrix of the polynomi-
als g̃1, . . . , g̃n. For this purpose, we have the following constructive result:

Theorem 13 ((Baur and Strassen, 1983),(Morgenstern, 1984))
Let be given a straight–line program of length L computing a rational func-
tion f in k(ΘX). Then there exists a straight–line program of length 3L that
computes f and all its first order derivatives.

A difficult point in the manipulation of multivariate polynomials represented
by straight–line programs is the so–called identity testing problem: given two
polynomials f and g in k[ΘX] represented by straight–line programs of length
at most L, decide whether f is equal to g. Indeed, all known deterministic
algorithms solving this problem have exponential complexity at least O(2L).
In this article, we are going to use probabilistic algorithms to solve the identity
testing problem, based on the following result:
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Theorem 14 ((Schwartz, 1980), (Zippel, 1979), (Zippel, 1993))
Let be given a nonzero polynomial f in k[ΘiX] of degree at most d, and let be
given a finite subset A of k. Then the set An(i+1) contains at most d#(A)n(i+1)−1

zeros of f .

For the analysis of our algorithms, we shall interpret the statement of The-
orem 14 in terms of probabilities. More precisely, given a fix nonzero poly-
nomial f in k[ΘiX] of degree at most d, and given a fix subset A of k, from
Theorem 14 we conclude that the probability of choosing randomly a point a
in An(i+1) such that f(a) = 0 holds is bounded from above by d/#(A). Here, we
assume a uniform distribution of probability on the elements of the set An(i+1).

We shall applied this result in the following way: given a straight–line pro-
gram of length L representing a polynomial f in k[ΘiX] of degree at most d,
we compute the value f(a), where a is a point in kn(i+1) whose coordinates
are chosen randomly in a given finite subset A of k. Then, if f(a) = 0 we
conclude that f = 0, which holds true with probability at least 1− d/#(A).
Such a probabilistic test is called the Zippel–Schwartz test. We remark that
the Zippel–Schwartz test requires L arithmetic operations.

Our model of computation is based on the concept of straight–line programs.
However, a model of computation consisting only of straight–line programs is
not expressive enough for our purposes. Therefore our model of computation
has to include decisions and selections (subject to previous decisions). For this
reason we shall consider computation trees instead of straight–line programs.
A computation tree is nothing but a straight–line program which includes selec-
tions, subject to previous equal–to–zero decisions, i.e. a straight–line program
with branchings. The length of a given computation tree is defined analogously
as in the case of straight–line programs (see e.g. (Bürgisser et al., 1997) for
more details on the notion of computation trees).

5.2 Specialization in a generic point

Theorems 10, 11 and 12 show that the computation of the differentiation
index of system (6), the differential Hilbert function HK and an algebraic
parametric set of the differential ideal ∆ with respect to K can be easily
reduced to the computation of the F–rank or certain submatrices of the Ja-
cobian matrix J(2n− 2, 0). The definition of this matrix involves the set of
polynomials G, . . . , G(2n−2), and hence requires the computation of iterative
derivatives of the polynomials g1, . . . , gn up to order 2n− 2. Unfortunately,
according to Valiant (1982), such a computation cannot be performed in poly-
nomial time, unless Valiant’s arithmetic analogue of Cook’s P6=NP conjecture,
Valiant’s Hypothesis, is false (see (Valiant, 1979), (Valiant, 1982), (von zur
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Gathen, 1987), (Bürgisser et al., 1997), (Bürgisser, 2000) for background on
Valiant’s Hypothesis). This shows that it is very unlikely that there exists a
polynomial–time algorithm computing the entries of the matrix J(2n− 2, 0),
even in the straight–line program complexity model.

Furthermore, even if we were given a straight–line program representing the
entries of the matrix J(2n− 2, 0), the statements of Theorems 10, 11 and 12
would still require the computation of the F–rank of certain submatrices of the
matrix J(2n− 2, 0). Since arithmetic operations with elements of the field F
cannot be performed at unit cost, usual linear algebra routines cannot be
applied in a straightforward way.

In order to solve these problems, we shall apply a strategy which is based on
the observation that the rank of a matrix with polynomial entries does not
change by specialization of these entries in a generic point. More precisely, we
observe that the entries of the matrix J(2n− 2, 0) belong to the differential
K–algebraK{X}, and the computation of the F–rank of a given submatrixM
of J(2n− 2, 0) can be reduced to determine whether the determinant h of cer-
tain minor ofM vanishes in F , the fraction field of the quotient ringK{X}/∆.
Observe that this determinant is an element of K{X} whose quotient class
in F is the zero quotient class if, and only if, h is in ∆. Therefore, apply-
ing Lemma 5 (iii) we conclude that h vanishes in F if, and only if, h(X̃) is
the zero element of k〈X̃〉, where X̃ denotes the set of “symmetric” variables
introduced in Section 3.3.

Let t be a new indeterminate over k. In order to effectively test the vanishing
of h(X̃) in k〈X̃〉, we observe that h(X̃) = 0 if, and only if, the specializa-
tion h(η) of h in a vector of generic power series η in k[[t]]n vanishes in k[[t]].
Furthermore, from the genericity of η we deduce that h(η) = 0 if, and only if,
the constant term h(η) mod (t) of the power series h(η) in k[[t]] vanishes.

For a given matrixM in k〈X̃〉{X}r×s, we denote byM(η) the matrix in k[[t]]r×s

obtained by specialization of the variables X, X̃ of the entries of the matrix M
into the value X = η and X̃ = η. In order to apply the above strategy, we first
exhibit an efficient algorithm computing the constant term of the entries of
the matrix J(2n− 2, 0) specialized in a given vector of power series η in k[[t]]n.
This algorithm avoids the (inefficient) computation of the derivatives of the
polynomials g1, . . . , gn up to order 2n− 2, by dealing with a specialization of
the matrix J(2n− 2, 0) in a given vector of power series.

The complexity estimate of this algorithm will be given in terms of quantity

M(n) := O(n log(n) log log n),

that represents an upper bound for the number of arithmetic operations in k
necessary to compute the product of two power series in k[[t]] up to order n,
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and to invert a power series of k[[t]] up to order n (see e.g. (von zur Gathen
and Gerhard, 1999), (Bini and Pan, 1994)).

Proposition 15 Let be given the expansion of a vector of power series η
in k[[t]]n up to order 2n. Then there exists a straight–line program computing
the entries of the matrix J(2n− 2, 0)(η) mod (t) with

O((L+ n)M(n) + n4)

arithmetic operations in k.

Proof.– Let gi denotes the polynomial pi(X, Ẋ)− fi(X̃,
˙̃
X)qi(X, Ẋ) inK[X, Ẋ]

for 1 ≤ i ≤ n, and let G := {g1, . . . , gn}. Taking into account that the polyno-
mials p1, q1, . . . , pn, qn are represented by a straight–line program of length L,
we conclude that there exists a straight–line program of length O(L+ n) repre-
senting the polynomials g1, . . . , gn. Therefore, applying Baur–Strassen’s Theo-
rem 13 we see that there exists a straight–line program of length O(L+ n) that
computes the entries of the Jacobian matrices ∂G/∂X and ∂G/∂Ẋ. The rows of
these Jacobian matrices represent the coordinates of the set of Kähler differen-
tials dG with respect to the basis {dX, dẊ} of the K[X, Ẋ]–module ΩK[X,Ẋ]/K .
More precisely, we have the following matrix identity:

dG =
∂G

∂X
dX +

∂G

∂Ẋ
dẊ. (20)

Let us fix h with 1 ≤ h ≤ 2n− 2, and let Ah+1 := K[Θh+1X]. Taking into ac-
count the identity d(f ′) = (df)′, from the definition of the Ah+1–module of
Kähler differentials ΩAh+1/K , we conclude that the following identity holds:

(dG)(h) = d(G(h)) =
h+1∑
j=0

∂G(h)

∂X(j)
dX(j). (21)

This shows that the coordinates of the differentials dG, . . . , dG(2n−2) in the
basis {dX, . . . , dX(2n−1)} of ΩA2n−1/K represent all the entries of the Jacobian
matrix J(2n− 2, 0). In order to compute these coordinates, we observe that
applying Leibniz’s rule to identity (20) we obtain the following identity:

(dG)(h) =

(
∂G

∂X
dX

)(h)

+

(
∂G

∂Ẋ
dẊ

)(h)

=
∂G

∂Ẋ
dX(h+1) +

(
∂G

∂X

)(h)

dX+

+
h∑

j=1

( h

j − 1

)(
∂G

∂X

)(j−1)

+

(
h

j

)(
∂G

∂Ẋ

)(j)
 dX(h−j+1),

(22)
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where the symbols (∂G/∂X)(j) and (∂G/∂Ẋ)(j) mean the j–th order entry–
wise derivative of the matrices ∂G/∂X and ∂G/∂Ẋ. This shows that any
submatrix ∂G(h)/∂X(j) of the Jacobian matrix J(2n− 2, 0) occurring in iden-
tity (21) can be expressed as the sum of at most two derivatives of the matri-
ces ∂G/∂X, ∂G/∂Ẋ of order at most h.

Now we estimate the complexity of computing the constant term of the entries
of the matrices (∂G/∂X)(j)(η), (∂G/∂Ẋ)(j)(η), assuming that these matrices are
well–defined and their entries belong to k[[t]]. Suppose that we are given the
expansion of the vector of power series η up to order 2n, i.e. we are given a
vector of polynomials η2n−1 in k[t] of degree at most 2n− 1, satisfying the
congruence relation η ≡ η2n−1 mod (t 2n) in k[[t]]n. Then, we conclude that the
following congruence relations hold in k[[t]]n×n for 0 ≤ j ≤ 2n− 2:

(
∂G

∂X

)(j)

(η) ≡
(
∂G

∂X

)(j)

(η2n−1) mod(t 2n−j−1),(
∂G

∂Ẋ

)(j)

(η) ≡
(
∂G

∂Ẋ

)(j)

(η2n−1) mod(t 2n−j−1).

In particular, we have for 0 ≤ j ≤ 2n− 2:

(
∂G

∂X

)(j)

(η) ≡
(
∂G

∂X

)(j)

(η2n−1) mod(t),(
∂G

∂Ẋ

)(j)

(η) ≡
(
∂G

∂Ẋ

)(j)

(η2n−1) mod(t).

(23)

Since there exists a straight–line program β of length O(L+ n) computing
the entries of the matrices ∂G/∂X and ∂G/∂X, we conclude that the entries
of the matrices (∂G/∂X)(η2n−1), (∂G/∂X)(η2n−1) up to order 2n− 1 can be
computed by executing the straight–line program β, with the variables X, X̃
instantiated into the values X = η and X̃ = η, and performing arithmetic op-
erations in k[[t]] modulo (t 2n−1). This procedure requires O((L+n)M(n)) arith-
metic operations in k, and outputs the dense representation of the entries of
the matrices (∂G/∂X)(η2n−1) and (∂G/∂X)(η2n−1) modulo (t 2n−1). Using this
data, for 1 ≤ j ≤ 2n− 2 the dense representation of the entries of the matri-
ces (∂G/∂X)(j)(η2n−1), (∂G/∂Ẋ)(j)(η2n−1) up to order 2n− j − 1 can be easily
computed with O(n3) additional arithmetic operations in k. Finally, using
identities (21), (22) and (23) we conclude that the constant term of the en-
tries of the matrices (∂G(h)/∂X(j))(η) can be computed with O(n4) additional
arithmetic operations in k. Adding the complexity estimates of all the steps of
this procedure, we deduce the complexity estimate stated in Proposition 15.
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5.3 The computation of the discrete invariants associated to the ideal ∆

Proposition 15 is the key point which allows us to obtain efficient algorithms
computing the discrete invariants mentioned at the beginning of this section.
These algorithms depend on the (random) choice of a vector of power series η
satisfying certain genericity condition, whose probability of success we esti-
mate. The complexity of these algorithms will be measured in terms of the
complexity O(nω) of the multiplication of two (n × n)–matrices with entries
in k. We have the estimate ω ≤ 2.376 (see Coppersmith and Winograd, 1990).

Theorem 16 Let notations and assumptions be as above. There exists a com-
putation tree of length O(L M(n) + (n)1+2ω) computing the differential Hilbert
function HK of the differential ideal ∆ with respect to K. Furthermore, for
any κ in N, the parameters of such a computation tree can be randomly
chosen in the set {1, . . . , 2κdn(n+ 1)3} with a probability of success of at
least 1− 1/(2κ), where d is an upper bound for the degrees of the polyno-
mials p1, q1, . . . , pn, qn.

Proof.– Applying Theorem 10 we conclude that the computation of the
differential Hilbert function HK can be reduced to the computation of the F–
ranks of the matrices J(2n− 2, 0), . . . , J(2n− 2, n). Let us fix for the moment
a nonsingular square submatrix Mi of maximal size of the matrix J(2n− 2, i)
for 0 ≤ i ≤n. Observe that the matrix Mi has size at most n(2n−i)× n(2n−i).
Suppose that we are given a vector of power series η in k[[t]]n such that the
following conditions are satisfied for 0 ≤ i ≤ n:

(i) the matrices J(2n− 2, i)(η) and Mi(η) are well–defined and have their en-
tries in k[[t]],

(ii) det (Mi(η)) mod (t) 6= 0.

We conclude that the identity

rankFJ(2n− 2, i) = rankk

(
J(2n− 2, i)(η) mod(t)

)
holds for 0 ≤ i ≤ n.

Now we estimate the probability of finding of vector of power series η in k[[t]]
satisfying conditions (i) and (ii). According to Proposition 15, if we are given
the development η2n−1 up to order 2n of the vector of power series η, then
the constant terms of the entries of the matrix J(2n− 2, 0), and hence of the
matrices M0, . . . ,Mn−1, can be efficiently determined.

Let us denotes by η2n−1 the polynomial
∑2n−1

i=0 η
(i)
2n−1t

i. From the definition of
the matrices ∂G(h)/∂X(l) it is easy to see that the (reduced) denominator of any

entry of such matrices is an element of k[X̃, ˙̃
X] divisible by a power of the poly-
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nomial q :=
∏n

j=1 qj. Therefore, condition (i) will be fulfilled if q(η2n−1) 6= 0
holds. On the other hand, if p denotes the numerator of a reduced representa-
tion of the rational function

∏n−1
i=0 detMi, then it is clear that condition (ii) is

satisfied if the constant term p̂(η
(0)
2n−1, . . . , η

(2n−1)
2n−1 ) of the polynomial p(η2n−1)

in k[t] does not vanish. Therefore, conditions (i) and (ii) are satisfied if the
following condition holds:

(qp̂)
(
η

(0)
2n−1, . . . , η

(2n−1)
2n−1

)
6= 0. (24)

Since the degrees of the polynomials p1, q1, . . . , pn−1, qn−1 are bounded by d>0,
it is easy to see that the degrees of the numerator and denominator of a re-
duced representation of the rational function (pl/ql)

(i) are bounded by d(i+ 1).
From this we conclude that any entry of the matrix ∂G(i)/∂X(j) is a ratio-
nal function of k〈X̃〉{X} of degree at most d(i+ 2). Therefore, detMi is a
rational function of k〈X̃〉{X} of degree at most dn(2n− i)(i+ 2), and the
numerator p of the product

∏n
i=0 detMi has degree at most dn2(n+ 1)2. We

conclude that the product (qp̂)(η
(0)
2n−1, . . . , η

(2n−1)
2n−1 ) is a nonzero polynomial of

degree at most dn(n+ 1)3 in the coordinates of the vectors η
(0)
2n−1, . . . , η

(2n−1)
2n−1 .

Applying the Zippel–Schwartz test (Theorem 14), we conclude that the co-

ordinates of the vectors η
(0)
2n−1, . . . , η

(2n−1)
2n−1 can be randomly chosen in the

set n{1, . . . , 2κdn(n+ 1)3} with a probability of success of at least 1− 1/(2κ).

Assume that we are given such a vector of polynomials η2n−1. Applying Propo-
sition 15 we see that there exists a straight–line program of length

O((L+ n) M(n) + n4)

computing the constant term of the entries of the matrix J(2n− 2, i)(η2n−1).
Since the matrices J(2n− 2, 0), . . . , J(2n− 2, n) have size at most 2n2 × 2n2,
the ranks

rankk

(
J(2n− 2, 0)(η2n−1) mod(t)

)
, . . . , rankk

(
J(2n− 2, n)(η2n−1) mod(t)

)
can be computed using O(n(n2)ω) arithmetic operations in k. Therefore, the
differential Hilbert function HK can be computed with O(L M(n) + n1+2ω)
arithmetic operations in k.

Suppose now that we are given the differential Hilbert HK of the differential
ideal ∆ with respect to K. We describe an efficient algorithm computing the
differentiation index of system (6).

Theorem 17 Let notations and assumptions be as above. There exists a com-
putation tree of length O(L M(n) + n1+2ω) computing the differentiation index
of system (6). Furthermore, for any κ in N, the parameters of such a com-
putation tree can be randomly chosen in the set {1, . . . , 2κdn(n+ 1)3} with a
probability of success of at least 1− 1/(2κ).
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Proof.– Theorem 11 shows that the differentiation index ν is the least
positive integer such that the following condition is satisfied:

HK(`) = rankFJ(ν, 0)− rankFJ(ν, `+ 1).

Therefore, in order to compute the number ν, we have to compute the F–ranks
of the matrices J(`, 0), . . . , J(2n− 2, 0), J(`, `+ 1), . . . , J(2n− 2, `+ 1).

In order to compute these ranks, arguing as in the proof of Theorem 16, we
see that

rankFJ(i, j) = rankk

(
J(i, j)(η2n−1) mod(t)

)
holds for ` ≤ i ≤ 2n− 2 and j in {0, `+ 1}, where η2n−1 represents in k[t]n

the development up to order 2n of a power series η in k[[t]] which satisfies the
following conditions for ` ≤ i ≤ 2n− 2 and j in {0, `+ 1}:

(i) the matrix J(i, j)(η) is well–defined and has their entries in k[[t]],
(ii) if Mi,j denotes a nonsingular square submatrix of J(i, j) of maximal size,

then det (Mi,j(η)) mod (t) 6= 0.

With the same arguments as in the proof of Theorem 17, we deduce that
the coordinates of the coefficients η

(0)
2n−1, . . . , η

(2n−1)
2n−1 of η2n−1 can be randomly

chosen in the set {1, . . . , 2κnd(n+ 1)3} with a probability of success of at
least 1− 1/(2κ).

Suppose that we are given such a vector η2n−2. Then Proposition 15 shows that
there exists a straight–line program of length O(L M(n) + n4) computing the
constant terms of the entries of the matrices J(i, j)(η2n−1) for ` ≤ i ≤ 2n− 2
and j in {0, `+ 1}. Since these are matrices of size at most 2n2 × 2n2, their
ranks can be computed using O(n1+2ω) arithmetic operations in k. Therefore,
the differentiation index of system (6) can be computed with O(L M(n) + n1+2ω)
arithmetic operations in k.

Finally, suppose that we are given the differentiation index ν of system (6)
and the differential Hilbert function HK of the differential ideal ∆ with respect
to K. We describe an algorithm computing an algebraic parametric set of the
ideal ∆ with respect to K:

Theorem 18 Let notations and assumptions be as above. There exists a com-
putation tree of length O(L M(ν) + n`(νn)ω) computing an algebraic parametric
set of the differential ideal ∆ with respect to the differential field K. Further-
more, for any κ in N, the parameters of such a computation tree can be ran-
domly chosen in the set {1, . . . , 2κd`n2(ν + 2)3} with a probability of success
of at least 1− 1/(2κ).
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Proof.– Theorem 12 shows that any subset C of Θ`−1X satisfying the con-
ditions

#(C) = ordK∆ and rankFJ
(C)(ν, 0) = rankFJ(ν, 0),

is an algebraic parametric set of ∆ with respect to K, where J (C)(ν, 0) denotes
the submatrix of the Jacobian matrix J(ν, 0) obtained by deleting the columns
of J(ν, 0) corresponding to the derivatives in C.

The algorithm computing an algebraic parametric set C of the ideal ∆ proceeds
in at most n(`+ 1) steps, starting with the matrix J0 := J(ν, 0) and C0 := ∅.
In the i–th step, let J̃i be the submatrix of the matrix Ji−1 of the previ-
ous step obtained by deleting the (n(ν + 2)− i)–th column of Ji−1, and de-
note zi the derivative corresponding to the (n(ν + 2)− i)–th column of J(ν, 0).
Then we define Ji := J̃i and Ci := Ci−1 ∪ {zi}, if rankF J̃i is equal to rankFJi−1,
and Ji =: Ji−1 and Ci := Ci−1 otherwise. This procedure stops when the con-
dition #(Ci) = ordK∆ is satisfied.

We claim that when the procedure stops, after N ≤ n(`+ 1) steps, the re-
sulting set CN is an algebraic parametric set of ∆ with respect to K. Indeed,
arguing as in the proof of identity (19), we see that rankFJi = rankFJi−1

if, and only if, zi in F is not algebraic over (S∞)−1K[Ci−1]. Therefore, for
any i ≥ 0 the set Ci is algebraically independent over K, and the set CN must
be a transcendence basis of the field extension K ⊂ F . The procedure stops
since there exist algebraic parametric sets of ∆. This shows our claim.

This procedure requires the computation of the F–ranks of N ≤ n(`+ 1) sub-
matrices of the matrix J(ν, 0). Arguing as in the proof of Theorem 16, we see
that

rankFJi = rankk

(
Ji(ην+1) mod(t)

)
holds for 0 ≤ i ≤ N , where ην+1 represents in k[t]n the development up to
order ν + 2 of a power series η in k[[t]] whose coordinates can be randomly
chosen in the set {1, . . . , 2κd`n2(ν + 2)2} with a probability of success of at
least 1− 1/(2κ). Assume that we are given such a vector of polynomials ην+1.

With the same arguments as in the proof of Proposition 15 we see that there
exists a straight–line program of length O((L+ n) M(ν) + n2ν2) computing
the constant terms of the entries of the matrix J(ν, 0)(ην+1). Since the matri-
ces J0, . . . , JN have size at most n(ν + 2)× n(ν + 3), the ranks

rankk

(
J0(ην+1) mod(t)

)
, . . . , rankk

(
JN(ην+1) mod(t)

)
can be computed using O(n`(νn)ω) arithmetic operations in k. Therefore, an
algebraic parametric set of the differential ideal ∆ with respect to K can be
computed with O(L M(n) + n`(νn)ω) arithmetic operations in k.
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6 Conclusions

Algorithms for the symbolic solution of systems of differential equations are
usually based on rewriting techniques, which output complete symbolic infor-
mation of the underlying solution set. Therefore, they are universal solvers in
the sense of Castro et al. (2003) and hence they have exponential–time com-
plexity in worst case. Furthermore, numerical continuation methods which
approximate all the solutions of a given differential equation system such as
those of Reid et al. (2002) also fall in this category. This calls for the develop-
ment of algorithms which are able to compute partial information about the
solution set of the input differential equation system.

In this article we exhibit efficient (polynomial–time) probabilistic algorithms
which compute discrete information relevant for the numerical integration of
the solution set (see also (Sedoglavic, 2002)). We hope that our approach may
be combined with numerical integration procedures in order to obtain fast and
reliable algorithms for computing one solution of certain differential equation
systems.

Acknowledgments. The authors are grateful to L. d’Alfonso and to the
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improve the correctness and presentation of this paper.
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