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Array-OL revisité, spécification de traitements de signal

multidimensionnel

Résumé : Cet article présente le langage de spécification Array-OL. C’est un langage visuel de haut

niveau dédié aux applications de traitement de signal intensif. Il permet de spécifier à la fois le
parallélisme de tâches et le parallélisme de données de ces applications avec un focus particulier

sur les motifs complexes d’accès aux données multidimensionnelles. Cette présentation inclut
plusieurs extensions et outils développés autour d’Array-OL ces dernières années et étudie le
problème du placement d’une spécification Array-OL sur une architecture matérielle distribuée et

hétérogène.

Mots-clés : Array-OL, parallélisme, parallélisme de données, traitement de signal multidimen-
sionnel, placement
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1 Introduction

Computation intensive multidimensional applications are predominant in several application
domains such as image and video processing or detection systems (radar, sonar). In general,
intensive signal processing applications are multidimensional. By multidimensional, we mean
that they primarily manipulate multidimensional data structures such as arrays. For example,
a video is a 3D object with two spatial dimensions and one temporal dimension. In a sonar
application, one dimension is the temporal sampling of the echoes, another is the enumeration of

the hydrophones and others such as frequency dimensions can appear during the computation.

Actually, such an application manipulates a stream of 3D arrays.

Dealing with such applications presents a number of difficulties:

• Very few models of computation are multidimensional.

• The patterns of access to the data arrays are diverse and complex.

• Scheduling these applications with bounded resources and time is challenging, especially in

a distributed context.

When dealing with parallel heterogeneous and constrained platforms and applications, as it is

the case of embedded systems, the use of a formal model of computation (MoC) is very useful.
Edwards et al. [11] and more recently Jantsch and Sander [13] have reviewed the MoCs used for
embedded system design. These reviews classify the MoCs with respect to the time abstraction
they use, their support for concurrency and communication modeling. In our application domain

there is little need for modeling state as the computations are systematic, the model should be data

flow oriented. On the contrary, modeling parallelism, both task and data parallelism, is mandatory

to build efficient implementations. More than a concrete representation of time, we need a way

to express precedence relations between tasks. We focus on a high level of abstraction where
the multidimensional data access patterns can be expressed. We do not look for a programming

language but for a specification language allowing to deal with the multidimensional arrays easily.

The specification has to be deadlock free and deterministic by construction, meaning that all
feasible schedules compute the same result. In their review of models for parallel computation [26]

Skillicorn and Talia classify the models with respect to their abstraction level. We aim for the
second most abstract category which describes the full potential parallelism of the specification

(the most abstract category does not even express parallelism). We want to stay at a level that is

completely independent on the execution platform to allow reuse of the specification and maximal

search space for a good schedule.

As far as we know, only two MoCs have attempted to propose formalisms to model and
schedule such multidimensional signal processing applications: MDSDF (MultiDimensional Syn-

chronous Dataflow) [4, 21, 24, 25] and Array-OL (Array Oriented Language) [6, 7] . MDSDF and
its follow-up GMDSDF (Generalized MDSDF) have been proposed by Lee and Murthy. They are

extensions of the SDF model proposed by Lee and Messerschmitt [19, 20]. Array-OL has been
introduced by Thomson Marconi Sonar and its compilation has been studied by Demeure, Soula,

Dumont et al. [1, 7, 8, 27, 28]. Array-OL is a specification language allowing to express all the
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4 Boulet

parallelism of a multidimensional application, including the data parallelism, in order to allow an

efficient distributed scheduling of this application on a parallel architecture. The goals of these two

propositions are similar and although they are very different on their form, they share a number of

principles such as:

• Data structures should make the multiple dimensions visible.

• Static scheduling should be possible with bounded resources.

• The application domain is the same: intensive multidimensional signal processing applica-

tions.

A detailed comparison of these two models is available in [9].

An other language worth mentioning is Alpha, proposed by Mauras [23], a functional language

based on systems of recurrent equations [16]. Alpha is based on the polyhedral model, which is

extensively used for automatic parallelization and the generation of systolic arrays. Alpha shares

some principles with Array-OL:

• Data structures are multidimensional: union of convex polyhedra for Alpha and arrays for

Array-OL.

• Both languages are functional and single assignment.

With respect to the application domain, arrays are sufficient and more easily handled by the user

than polyhedra. Some data access patterns such as cyclic accesses are more easily expressible
in Array-OL than in Alpha. And finally, Array-OL does not manipulate the indices directly. In the

one hand that restricts the application domain but in the other hand that makes it more abstract

and more focused on the main difficulty of intensive signal processing applications: data access

patterns.

The purpose of this paper is to present in the most comprehensive and pedagogical way
the Array-OL model of specification. Departing from the original description of Array-OL (only
available in French), we present an integrated view of the language including the various extensions

that were made over the years and a more “modern” vocabulary. Section 2 will define the core
language. Its projection to an execution model will be discussed in section 3 and we will present a

number of extensions of Array-OL in section 4.

2 Core language

As a preliminary remark, Array-OL is only a specification language, no rules are specified for
executing an application described with Array-OL, but a scheduling can be easily computed using

this description.

INRIA



Array-OL Revisited 5

2.1 Principles

The initial goal of Array-OL is to give a mixed graphical-textual language to express multidi-
mensional intensive signal processing applications. As said before, these applications work on
multidimensional arrays. The complexity of these applications does not come from the elementary

functions they combine, but from their combination by the way they access the intermediate
arrays. Indeed, most of the elementary functions are sums, dot products or Fourier transforms,
which are well known and often available as library functions. The difficulty and the variety of these

intensive signal processing applications come from the way these elementary functions access
their input and output data as parts of multidimensional arrays. The complex access patterns
lead to difficulties to schedule these applications efficiently on parallel and distributed execution

platforms. As these applications handle huge amounts of data under tight real-time constraints,

the efficient use of the potential parallelism of the application on parallel hardware is mandatory.

From these requirements, we can state the basic principles that underly the language:

• All the potential parallelism in the application has to be available in the specification, both

task parallelism and data parallelism.

• Array-OL is a data dependence expression language. Only the true data dependences are
expressed in order to express the full parallelism of the application, defining the minimal
order of the tasks. Thus any schedule respecting these dependences will lead to the same

result. The language is deterministic.

• It is a single assignment formalism. No data element is ever written twice. It can be read
several times, though. Array-OL can be considered as a first order functional language.

• Data accesses are done through sub-arrays, called patterns.

• The language is hierarchical to allow descriptions at different granularity levels and to handle

the complexity of the applications. The data dependences expressed at a level (between
arrays) are approximations of the precise dependences of the sub-levels (between patterns).

• The spatial and temporal dimensions are treated equally in the arrays. In particular, time
is expanded as a dimension (or several) of the arrays. This is a consequence of single
assignment.

• The arrays are seen as tori. Indeed, some spatial dimensions may represent some physical

tori (think about some hydrophones around a submarine) and some frequency domains
obtained by FFTs are toroidal.

The semantics of Array-OL is that of a first order functional language manipulating multidi-

mensional arrays. It is not a data flow language but can be projected on such a language.

As a simplifying hypothesis, the application domain of Array-OL is restricted. No complex
control is expressible and the control is independent of the value of the data. This is realistic in the

given application domain, which is mainly data flow. Some efforts to couple control flows and
data flows expressed in Array-OL have been done in [18] but are outside the scope of this paper.

RR n° 6113



6 Boulet

The usual model for dependence based algorithm description is the dependence graph where

nodes represent tasks and edges dependences. Various flavors of these graphs have been defined.

The expanded dependence graphs represent the task parallelism available in the application. In

order to represent complex applications, a common extension of these graph is the hierarchy. A

node can itself be a graph. Array-OL builds upon such hierarchical dependence graphs and adds

repetition nodes to represent the data-parallelism of the application.

Formally, an Array-OL application is a set of tasks connected through ports. The tasks are
equivalent to mathematical functions reading data on their input ports and writing data on their

output ports. The tasks are of three kinds: elementary, compound and repetition. An elementary

task is atomic (a black box), it can come from a library for example. A compound is a dependence

graph whose nodes are tasks connected via their ports. A repetition is a task expressing how a
single sub-task is repeated.

All the data exchanged between the tasks are arrays. These arrays are multidimensional and

are characterized by their shape, the number of elements on each of their dimension1. A shape
will be noted as a column vector or a comma-separated tuple of values indifferently. Each port is

thus characterized by the shape and the type of the elements of the array it reads from or writes

to. As said above, the Array-OL model is single assignment. One manipulates values and not
variables. Time is thus represented as one (or several) dimension of the data arrays. For example,

an array representing a video is three-dimensional of shape (width of frame, height of frame, frame

number). We will illustrate the rest of the presentation of Array-OL by an application that scales an

high definition TV signal down to a standard definition TV signal. Both signals will be represented

as a three dimensional array.

2.2 Task parallelism

The task parallelism is represented by a compound task. The compound description is a simple

directed acyclic graph. Each node represents a task and each edge a dependence connecting two

conform ports (same type and shape). There is no relation between the shapes of the inputs and

the outputs of a task. So a task can read two two-dimensional arrays and write a three-dimensional

one. The creation of dimensions by a task is very useful, a very simple example is the FFT which

creates a frequency dimension. We will study as a running example a downscaler from high
definition TV to standard definition TV. Here is the top level compound description. The tasks are

represented by named rectangles, their ports are squares on the border of the tasks. The shape
of the ports is written as a t-uple of positive numbers or ∞. The dependences are represented by

arrows between ports.

1A point, seen as a 0-dimensional array is of shape (), seen as a 1-dimensional array is of shape (1), seen as a 2-
dimensional array is of shape

(

1
1

)

, etc.

INRIA



Array-OL Revisited 7

Horizontal Filter
(1920,1080,∞) (720,1080,∞)

Vertical Filter

(720,1080,∞) (720,480,∞)

There is only one limitation on the dimensions: there must be at most one infinite dimension

by array. Most of the time, this infinite dimension is used to represent the time, so having only one

is quite sufficient.

Each execution of a task reads one full array on its inputs and writes the full output arrays. It’s

not possible to read more than one array per port to write one. The graph is a dependence graph,

not a data flow graph.

So it is possible to schedule the execution of the tasks just with the compound description.
But it’s not possible to express the data parallelism of our applications because the details of the

computation realized by a task are hidden at this specification level.

2.3 Data parallelism

A data-parallel repetition of a task is specified in a repetition task. The basic hypothesis is that all

the repetitions of this repeated task are independent. They can be scheduled in any order, even in

parallel 2. The second one is that each instance of the repeated task operates with sub-arrays of

the inputs and outputs of the repetition. For a given input or output, all the sub-array instances

have the same shape, are composed of regularly spaced elements and are regularly placed in the

array. This hypothesis allows a compact representation of the repetition and is coherent with the

application domain of Array-OL which describes very regular algorithms.

As these sub-arrays are conform, they are called patterns when considered as the input arrays

of the repeated task and tiles when considered as a set of elements of the arrays of the repetition

task. In order to give all the information needed to create these patterns, a tiler is associated
to each array (ie each edge). A tiler is able to build the patterns from an input array, or to store
the patterns in an output array. It describes the coordinates of the elements of the tiles from the

coordinates of the elements of the patterns. It contains the following information:

• F : a fitting matrix.

• o: the origin of the reference pattern (for the reference repetition).

• P : a paving matrix.

2This is why we talk of repetitions and not iterations which convey a sequential semantics.

RR n° 6113
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Visual representation of a repetition task. The shapes of the arrays and patterns are, as in
the compound description, noted on the ports. The repetition space indicating the number of
repetitions is defined itself as an multidimensional array with a shape. Each dimension of this
repetition space can be seen as a parallel loop and the shape of the repetition space gives the
bounds of the loop indices of the nested parallel loops. An example of the visual description of
a repetition is given below by the horizontal filter repetition from the downscaler. The tilers are
connected to the dependences linking the arrays to the patterns. Their meaning is explained below.

Horizontal filter

(1920,1080,∞) (720,1080,∞)

(240,1080,∞)

Hfilter
(13) (3)

F =





1

0

0





o =





0

0

0





P =





8 0 0

0 1 0

0 0 1





F =





1

0

0





o =





0

0

0





P =





3 0 0

0 1 0

0 0 1





Building a tile from a pattern. From a reference element (ref) in the array, one can extract a
pattern by enumerating its other elements relatively to this reference element. The fitting matrix

is used to compute the other elements. The coordinates of the elements of the pattern (ei) are
built as the sum of the coordinates of the reference element and a linear combination of the fitting

vectors as follows

∀ i,0 ≤ i < spattern,ei = ref+F · i mod sarray (1)

where spattern is the shape of the pattern, sarray is the shape of the array and F the fitting matrix.

In the following examples of fitting matrices and tiles, the tiles are drawn from a reference
element in a 2D array. The array elements are labeled by their index in the pattern, i, illustrating

the formula ∀ i,0 ≤ i < spattern,ei = ref+F · i. The fitting vectors constituting the basis of the tile are

drawn from the reference point.

INRIA
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( 0 ) ( 1 ) ( 2 )

F =

(

3

0

)

spattern =
(

3
)

There are here 3 elements in this tile because the shape of the pattern is (3). The indices of

these elements are thus (0), (1) and (2). Their position in the tile relatively to the reference

point are thus F · (0) =
(

0
0

)

,F · (1) =
(

3
0

)

,F · (2) =
(

6
0

)

.

(

1
0

)

(

0
1

) (

1
1

)

(

0
2

) (

1
2

)

(

0
0

)

F =

(

1 0

0 1

)

spattern =

(

2

3

)

The pattern is here two-dimensional with 6 elements. The fitting matrix builds a compact

rectangular tile in the array.

(

1
0

)

(

0
1

) (

1
1

)

(

0
2

) (

1
2

)

(

0
0

)

F =

(

2 1

0 1

)

spattern =

(

2

3

)

This last example illustrates how the tile can be sparse, thanks to the
(

2
0

)

fitting vector, and

non parallel to the axes of the array, thanks to the
(

1
1

)

fitting vector.

A key element one has to remember when using Array-OL is that all the dimensions of the
arrays are toroidal. That means that all the coordinates of the tile elements are computed modulo

the size of the array dimensions. The following more complex examples of tiles are drawn from
a fixed reference element (o as origin in the figure) in fixed size arrays, illustrating the formula
∀ i,0 ≤ i < spattern,ei = o+F · i mod sarray.

RR n° 6113



10 Boulet

0 5

0

3 F =

(

2 0

0 1

)

spattern =

(

3

2

)

o =

(

0

0

)

sarray =

(

6

4

)

A sparse tile aligned on the axes of the array.

0 5

0

3 F =

(

1

1

)

spattern =
(

6
)

o =

(

2

0

)

sarray =

(

6

4

)

The pattern is here mono-dimensional, the fitting builds a diagonal tile that wraps around

the array because of the modulo.

0 5

0

5 F =

(

1 0 1 −1 1

0 1 1 1 −1

)

spattern =















2

2

3

2

2















o =

(

1

2

)

sarray =

(

6

6

)

This is an extreme case of a five-dimensional pattern fitted as a two-dimensional tile. Most

of the elements of the tile are read several times to build the 48 pattern elements.

Paving an array with tiles. For each repetition, one needs to design the reference elements of
the input and output patterns. A similar scheme as the one used to enumerate the elements of a

pattern is used for that purpose.

The reference elements of the reference repetition are given by the origin vector, o, of each
tiler. The reference elements of the other repetitions are built relatively to this one. As above, their

coordinates are built as a linear combination of the vectors of the paving matrix as follows

∀r,0 ≤ r < srepetition,refr = o+P · r mod sarray (2)

INRIA
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where srepetition is the shape of the repetition space, P the paving matrix and sarray the shape of the

array. Here are some examples.

0 9
0

4

r = ( 0 ) 0 9
0

4

r = ( 1 ) 0 9
0

4

r = ( 2 ) 0 9
0

4

r = ( 3 ) 0 9
0

4

r = ( 4 )

F =

(

1

0

)

spattern =
(

10
)

o =

(

0

0

)

sarray =

(

10

5

)

P =

(

0

1

)

srepetition =
(

5
)

This figure represents the tiles for all the repetitions in the repetition space, indexed by r.

The paving vectors drawn from the origin o indicate how the coordinates of the reference

element refr of the current tile are computed. Here the array is tiled row by row.

0 8
0

7

r =
(

0
0

) 0 8
0

7

r =
(

1
0

) 0 8
0

7

r =
(

2
0

)

0 8
0

7

r =
(

0
1

) 0 8
0

7

r =
(

1
1

) 0 8
0

7

r =
(

2
1

)

F =

(

1 0

0 1

)

spattern =

(

3

4

)

o =

(

0

0

)

sarray =

(

9

8

)

P =

(

3 0

0 4

)

srepetition =

(

3

2

)

A 2D pattern tiling exactly a 2D array.

0 9
0

4

r =
(

0
0

) 0 9
0

4

r =
(

1
0

) 0 9
0

4

r =
(

2
0

)

0 9
0

4

r =
(

0
1

) 0 9
0

4

r =
(

1
1

) 0 9
0

4

r =
(

2
1

)

0 9
0

4

r =
(

0
2

) 0 9
0

4

r =
(

1
2

) 0 9
0

4

r =
(

2
2

)

F =

(

1 0

0 1

)

spattern =

(

5

3

)

o =

(

0

0

)

sarray =

(

10

5

)

P =

(

0 3

1 0

)

srepetition =

(

3

3

)

The tiles can overlap and the array is toroidal.
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12 Boulet

Summary. We can summarize all these explanations with two formulas:

• ∀r,0 ≤ r < srepetition,refr = o+P ·r mod sarray gives all the reference elements of the patterns,

• ∀ i,0 ≤ i < spattern,ei = refr +F · i mod sarray enumerates all the elements of a pattern for
repetition r,

where sarray is the shape of the array, spattern is the shape of the pattern, srepetition is the shape of
the repetition space, o is the coordinates of the reference element of the reference pattern, also
called the origin, P is the paving matrix whose column vectors, called the paving vectors, represent

the regular spacing between the patterns, F is the fitting matrix whose column vectors, called the

fitting vectors, represent the regular spacing between the elements of a pattern in the array.

Some constraints on the number of rows and columns of the matrices can be derived from
their use. The origin, the fitting matrix and the paving matrix have a number of rows equal to the

dimension of the array; the fitting matrix has a number of columns equal to the dimension of the

pattern 3; and the paving matrix has a number of columns equal to the dimension of the repetition

space.

Linking the inputs to the outputs by the repetition space. The previous formulas explain which

element of an input or output array one repetition consumes or produces. The link between the

inputs and outputs is made by the repetition index, r. For a given repetition, the output patterns

(of index r) are produced by the repeated task from the input patterns (of index r). These pattern

elements correspond to array elements through the tiles associated to the patterns. Thus the set of

tilers and the shapes of the patterns and repetition space define the dependences between the
elements of the output arrays and the elements of the input arrays of a repetition. As stated before,

no execution order is implied by these dependences between the repetitions.

To illustrate this link between the inputs and the outputs, we show below several repetitions of

the horizontal filter repetition. In order to simplify the figure and as the treatment is made frame

by frame, only the first two dimensions are represented 4. The sizes of the arrays have also been

reduced by a factor of 60 in each dimension for readability reasons.

3Thus if the pattern is a single element viewed as a zero-dimensional array, the fitting matrix is empty and noted as
(). The only element of a tile is then its reference element. This can be viewed as a degenerate case of the general fitting

equation where there is no index i and so no multiplication F · i.
4Indeed, the third dimension of the input and output arrays is infinite, the third dimension of the repetition space is

also infinite, the tiles do not cross this dimension and the only paving vector having a non null third element is
(0

0
1

)

along

the infinite repetition space dimension.

INRIA
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0 31
0

17

r =
(

0
0

)

F =

(

1

0

)

spattern =
(

13
)

o =

(

0

0

)

sarray =

(

32

18

)

P =

(

8 0

0 1

)

srepetition =

(

4

18

)

HFilter

0 11
0

17

r =
(

0
0

)

F =

(

1

0

)

spattern =
(

3
)

o =

(

0

0

)

sarray =

(

12

18

)

P =

(

3 0

0 1

)

srepetition =

(

4

18

)

0 31
0

17

r =
(

1
0

)

HFilter

0 11
0

17

r =
(

1
0

)

0 31
0

17

r =
(

2
5

)

HFilter

0 11
0

17

r =
(

2
5

)

2.4 Enforcing determinism by construction

The basic design decision that enforces determinism is the fact that Array-OL only expresses data

dependences. To ease the manipulation of the values, the language is single assignment. Thus
each array element has to be written only once. To simplify the verification of this, the constraint

that each task produces all the elements of its output arrays is built into the model. An array has to

be fully produced even if some elements are not read by any other task. Enforcing this rule for all

the tasks at all the levels of the hierarchy also allows to compose tasks easily. A direct consequence

of this full production rule is that a repetition has to tile exactly its output arrays. In other words

each element of an output array has to belong to exactly one tile. Verifying this can be done by
using polyhedra computations using a tool like SPPoC5 [3].

5http://www.lifl.fr/west/sppoc/
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To check that all the elements of an output array have been produced, one can check that the

union of the tiles spans the array. The union of all the tiles can be built as the set of points e(r,i)

verifying the following system of (in)equations















0 ≤ r < srepetition

refr = o+P · r mod sarray

0 ≤ i < spattern

e(r,i) = refr +F · i mod sarray

. (3)

Building the difference between the array and this set is done in one operation (polyhedral
difference from the Polylib6 that is included in SPPoC) and testing if the resulting set is empty is

done by looking for an element in this set using a call to the PIP7 [12] solver that is also included

in SPPoC. These operations are possible because, as the shapes are known values, the system of

inequations is equivalent to a system of affine equations.

To check that no point is computed several times in an output array, one builds the following

set of points, e, (intersection of two tiles) verifying the following system of (in)equations



















































0 ≤ r < srepetition

refr = o+P · r mod sarray

0 ≤ i < spattern

e = refr +F · i mod sarray

0 ≤ r′ < srepetition

refr′ = o+P · r′ mod sarray

0 ≤ i′ < spattern

e = refr′ +F · i′ mod sarray

. (4)

If this set is empty, then no two tiles overlap and each computed element is computed once. To

check the emptiness of this set, the same technique as above can be used: to call PIP. As above, the

above system of inequations is equivalent to a system of affine equations, thus solvable by PIP.

With these two checks, one can ensure that all the elements of the output arrays are computed

exactly once and so that the single assignment is respected.

We have defined in this section the Array-OL language, its principles and how it allows to
express in a deterministic way task and data parallelism. The most original feature of Array-OL is

the description of the array accesses in data parallel repetitions by tiling. As this language make no

assumption on the execution platform, we will study in the next section how the projection of an

Array-OL specification to such an execution platform can be made.

3 Projection onto an execution model

The Array-OL language expresses the minimal order of execution that leads to the correct compu-

tation. This is a design intension and lots of decisions can and have to be taken when mapping an

6http://icps.u-strasbg.fr/polylib/
7http://www.piplib.org/
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Array-OL specification onto an execution platform: how to map the various repetition dimensions

to time and space, how to place the arrays in memory, how to schedule parallel tasks on the same

processing element, how to schedule the communications between the processing elements?

3.1 Space-time mapping

One of the basic questions one has to answer is: What dimensions of a repetition should be
mapped to different processors or to a sequence of steps? To be able to answer this question, one

has to look at the environment with which the Array-OL specification interacts. If a dimension
of an array is produced sequentially, it has to be projected to time, at least partially. Some of the

inputs could be buffered and treated in parallel. On the contrary, if a dimension is produced in
parallel (e.g. by different sensors), it is natural to map it to different processors. But one can also

group some repetitions on a smaller number of processors and execute these groups sequentially.

The decision is thus also influenced by the available hardware platform.

It is a strength of Array-OL that the space-time mapping decision is separated from the func-

tional specification. This allows to build functional component libraries for reuse and to carry out

some architecture exploration with the least restrictions possible.

Mapping compounds is not specially difficult. The problem comes when mapping repetitions.

This problem is discussed in details in [1] where the authors study the projection of Array-OL onto

Kahn process networks [14, 15]. The key point is that some repetitions can be transformed to flows.

In that case, the execution of the repetitions is sequentialized (or pipelined) and the patterns are

read and written as a flow of tokens (each token carrying a pattern).

3.2 Transformations

A set of Array-OL code transformations has been designed to allow to adapt the application to the

execution, allowing to choose the granularity of the flows and a simple expression of the mapping

by tagging each repetition by its execution mode: data-parallel or sequential.

These transformations allow to cope with a common difficulty of multidimensional signal
processing applications: how to chain two repetitions, one producing an array with some paving

and the other reading this same array with another paving? To better understand the problem, let

us come back to the downscaler example where the horizontal filter produces a (720,1080,∞) array

row-wise 3 by 3 elements and the vertical filter reads it column-wise 14 elements by 14 elements

with a sliding overlap between the repetitions as shown on the following figure.
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Horizontal filter

(1920,1080,∞)

(720,1080,∞)

(240,1080,∞)

Hfilter

(13) (3)

F =





1

0

0





o =





0

0

0





P =





8 0 0

0 1 0

0 0 1





F =





1

0

0





o =





0

0

0





P =





3 0 0

0 1 0

0 0 1





Vertical filter

(720,1080,∞) (720,480,∞)

(720,120,∞)

Vfilter

(14) (4)

F =





0

1

0





o =





0

0

0





P =





1 0 0

0 9 0

0 0 1





F =





0

1

0





o =





0

0

0





P =





1 0 0

0 4 0

0 0 1





The interesting array is the intermediate (720,1080,∞) array that is produced by tiles of 3

elements aligned along the first dimension and consumed by tiles of 13 elements aligned on

the second dimension.

production patterns consumption patterns

0 11
0

17

r =
(

0
0

) 0 11
0

17

r =
(

0
0

)

1
60 -th of the first two-dimensions and suppression of the infinite dimension of the intermediate

(720,1080,∞) array.

In order to be able to project this application onto an execution platform, one possibility is to

make a flow of the time dimension and to allow pipelining of the space repetitions. A way to do
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that is to transform the application by using the fusion transformation to add a hierarchical level.

The top level can then be transformed into a flow and the sub-level can be pipelined. Here is the

transformed application.

(1920,1080,∞) (720,480,∞)

(240,120,∞)

(14,13) (3,4)

F =





0 1

1 0

0 0





o =





0

0

0





P =





8 0 0

0 9 0

0 0 1





F =





1 0

0 1

0 0





o =





0

0

0





P =





3 0 0

0 4 0

0 0 1





Horizontal filter

(14,13) (3,14)

(14)

Hfilter

(13) (3)

F =

(

0

1

)

o =

(

0

0

)

P =

(

1

0

)

F =

(

1

0

)

o =

(

0

0

)

P =

(

0

1

)

Vertical filter

(3,14) (3,4)

(3)

Vfilter

(14) (4)

F =

(

0

1

)

o =

(

0

0

)

P =

(

1

0

)

F =

(

0

1

)

o =

(

0

0

)

P =

(

1

0

)

A hierarchical level has been created that is repeated (240,120,∞) times. The intermediate

array between the filters has been reduced to the minimal size that respects the dependences.

If the inserted level is executed sequentially and if the two filters are executed on different

processors, the execution can be pipelined.

This form of the application takes into account internal constraints: how to chain the compu-

tations. Now, the environment tells us that a TV signal is a flow of pixels, row after row. We can
now propose a new form of the downscaler application taking that environment constraint into

account by extending the top-level patterns to include full rows. Here is what such an application

could look like.
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(1920,1080,∞) (720,480,∞)

(120,∞)

(14,1920) (720,4)

F =





0 1

1 0

0 0





o =





0

0

0





P =





0 0

9 0

0 1





F =





1 0

0 1

0 0





o =





0

0

0





P =





0 0

4 0

0 1





Horizontal filter

(14,1920) (720,14)

(240,14)

Hfilter

(13) (3)

F =

(

0

1

)

o =

(

0

0

)

P =

(

0 1

9 0

)

F =

(

1

0

)

o =

(

0

0

)

P =

(

3 0

0 1

)

Vertical filter

(720,14) (720,4)

(240,3)

Vfilter

(14) (4)

F =

(

0

1

)

o =

(

0

0

)

P =

(

3 1

0 0

)

F =

(

0

1

)

o =

(

0

0

)

P =

(

3 1

0 0

)

The top-level repetition now works with tiles containing full rows of the images. Less

parallelism is expressed at that level but as the images arrive in the system row by row, the

buffering mechanism is simplified and the full parallelism is still available at the lower level.

A full set of transformations (fusion, tiling, change paving, collapse) described in [8] allows to

adapt the application to the execution platform in order to build an efficient schedule compatible

with the internal computation chaining constraints, those of the environment and the possibilities

of the hardware. A great care has been taken in these transformations to ensure that they do
not modify the semantics of the specifications. They only change the way the dependences are
expressed in different hierarchical levels but not the precise element to element dependences.

4 Extensions

Around the core Array-OL language, several extensions have been proposed recently. We will give

here the basic ideas of these extensions and pointers to references where the reader can go into

details.

4.1 Inter-Repetition dependences

To be able to represent loops containing inter-repetition dependencies, we have added the possi-

bility to model uniform dependencies between tiles produced by the repeated component and
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tiles consumed by this repeated component. The simplest example is the discrete integration
shown below.

Integrate

(∞)

(∞)0 ()

(∞)

+
()

()

()

F =
()

o =
(

0
)

P =
(

1
)

F =
()

o =
(

0
)

P =
(

1
)

def

d =
(

1
)

Here the patterns (and so the tiles) are single points. The uniform dependence vector d = (1)

tells that repetition r depends on repetition r−d(= r− (1)) by adding the result of the addition of

index r−(1) to the input tile r. This is possible because the output pattern and input pattern linked

by the inter-repetition dependence connector have the same shape. To start the computation, a

default value of 0 is taken for repetition 0.

Formally an inter-repetition dependence connects an output port of a repeated component

with one of its input ports. The shape of these connected ports must be identical. The connector is

tagged with a dependence vector d that defines the dependence distance between the dependent

repetitions. This dependence is uniform, that means identical for all the repetitions. When the
source of a dependence is outside the repetition space, a default value is used. This default value

is defined by a connector tagged with “def”.

4.2 Control modeling

In order to model mixed control flow, data flow applications, Labbani et al. [17, 18]have proposed

to use the mode automata concept. An adaptation of this concept to Array-OL is necessary to
couple an automaton and modes described as Array-OL components corresponding to the states

of that automaton.

A controlled component is a switch allowing to select one component according to a special
“mode” input. All the selectable components must have the same interface (same number and
types of ports). An automaton component produces a 1D array of values that will be used as mode

inputs of a controlled component. A repetition component allows to associate the mode values to

a repetition of a controlled component.
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Both the inter-repetition and the control modeling extensions can be used at any level of
hierarchy, thus allowing to model complex applications. The Array-OL transformations still need

to be extended to deal with these extensions.

5 Tools

Several tools have been developed using the Array-OL language as specification language. Gaspard

Classic8 [5] takes as input an Array-OL specification, allows the user to apply transformations to it,

and generates multi-threaded C++ code allowing to execute the specification on a shared memory

multi-processor computer.

The Gaspard29 co-modeling environment [2] aims at proposing a model-driven environment

to co-design intensive computing systems-on-chip. It proposes a UML profile to model the
application, the hardware architecture and the allocation of the application onto the architecture.

The application metamodel is based on Array-OL with the inter-repetition dependence and control

modeling extensions. The hardware metamodel takes advantage of the repetition mechanism
proposed by Array-OL to model repetitive hardware components such as SIMD units, multi-
bank memories or networks-on-chip. The allocation mechanism also builds upon the Array-OL

constructs to express data-parallel distributions. The Gaspard2 tool is built as an Eclipse10 plugin

and mainly generates SystemC code for the co-simulation of the modeled system-on-chip. It also

includes an improved transformation engine.

Two smaller tools are also available11: a simulation [10] of Array-OL in PtolemyII [22] and
Array-OL example, a pedagogical tool helping to visualize repetitions in 3D. And to be complete,

we have to mention that Thales has developed its own internal tools using Array-OL to develop
radar and sonar applications on multiprocessor platforms.

Acknowledgment

The author would like to thank all the members of the west team of the laboratoire d’informatique

fondamentale de Lille who have worked on the definition and compilation of Array-OL or used it

as a tool for their work. They have also made some very useful comments on drafts of this paper.

6 Conclusion

We have presented in this paper the Array-OL language. This language is dedicated to specify
intensive signal processing applications. It allows to model the full parallelism of the application:

both task and data parallelisms. Array-OL is a single assignment first order functional language

manipulating multidimensional arrays. It focuses on the expression of the main difficulty of

8http://www2.lifl.fr/west/gaspard/classic.html
9http://www2.lifl.fr/west/gaspard/

10http://www.eclipse.org/
11http://www2.lifl.fr/west/aoltools/
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the intensive signal processing applications: the multidimensional data accesses. It proposes a
mechanism able to express at a high level of abstraction the regular tilings of the arrays by data-

parallel repetitions. The original Array-OL language has been extended to support inter-repetition

dependences and some control modeling.

As an Array-OL specification describes the minimal order of computing, its space-time map-

ping has to be done taking into account constraints that are not expressed in Array-OL: archi-
tectural and environmental constraints. A toolbox of code transformations allows to adapt the
application to its deployment environment. Future works include extending this toolbox to handle

the control extensions and automating the allocation process of an application on a distributed

heterogeneous platform in the Gaspard2 co-modeling environment.
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