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POLYGRAPHS FOR TERMINATION OF
LEFT-LINEAR TERM REWRITING SYSTEMS

February 2, 2007

Yves GUIRAUD
INRIA Lorraine – LORIA – yves.guiraud@loria.fr5

Abstract – We present a methodology for proving termination of left-linear term rewriting systems (TRSs)

by using Albert Burroni’s polygraphs, a kind of rewriting systems on algebraic circuits. We translate

the considered TRS into a polygraph of minimal size whose termination is proven with a polygraphic

interpretation, then we get back the property on the TRS. We recall Yves Lafont’s general translation of

TRSs into polygraphs and known links between their termination properties. We give several conditions10

on the original TRS, including being a first-order functional program, that ensure that we can reduce the

size of the polygraphic translation. We also prove sufficient conditions on the polygraphic interpretations

of a minimal translation to imply termination of the original TRS. Examples are given to compare this

method with usual polynomial interpretations.

1 Introduction15

Termination is a fundamental property of rewriting systems, since it ensures that the rule-based computa-

tions they define end with a result [2]. Even if this is an undecidable property for a general term rewriting

system (TRS), many different techniques have been developped for this purpose. Among them, we are

particularly interested into polynomial interpretations [16]: indeed, when one can prove termination

of a (first-order) functional program with a polynomial interpretation, there are many cases where one20

can deduce an implicit complexity bound for the function that the program computes [6, 3]. However,

polynomial interpretations on TRSs have limits and here we address two of them.

First, as explained in [4], the interpretation of a term conveys a mixed up information, containing a

common bound on the size of the values to be computed and the size of the computation itself. Thus,

the idea is that the coefficients one computes are higher than necessary: this increases the time to find25

a correct polynomial interpretation and decreases the precision of the computational complexity bound.

For example, let us consider the functional program {D(0) → 0, D(s(x)) → s(s(D(x)))} computing

the "double" function on natural numbers. Then one can prove that the lower polynomial interpretation

yielding its termination takes D to P(D)(X) = 3X: this is the sum of the size 2X of the computed

value and the number X of rewriting steps required to reach it on an input of size X. With the help of30

dependency pairs [1], one can lower the interpretation of D to 2X. It is possible that, by application of

several other methods, one could prove that D can be interpreted to the polynomial X. But, atop of the

complication of the process, we are not sure that theoretical results exist to state that this is an implicit

complexity bound for the double function.

The second limit we consider comes with TRSs that do not admit simplification orders. The func-35

tional program {M(0, x) → 0, M(x, 0) → x, M(s(x), s(y)) → M(x, y), Q(0, x) → 0, Q(s(x), y) →
s(Q(M(x, y), y))}, computing division on natural numbers, is an example of this class. Indeed, in the

last rule, if one replaces y by s(x), the left-hand side l(x, s(x)) can be embedded into the right-hand

side r(x, s(x)): hence, for any simplification order >, we have r(x, s(x)) > l(x, s(x)) while proving

termination with this strict order would require the reverse strict inequality. Nonetheless, this TRS is40



1. Introduction

terminating and this can be proved, for example, by using dependency pairs, then semantic labelling and,

finally, some simplification order. As above, this means that it is more complicated to prove termination

of these systems and that we do not know if we can deduce an implicit complexity bound from this proof.

In order to solve these problems, we propose to use another formalism for expressing rewriting-

based computations: higher-dimensional rewriting [13], a Turing-complete model [4], based on Albert45

Burroni’s polygraphs [5], which could be described, at first glance, as an algebraic description of term

graph rewriting systems [19] and interaction nets [11]. Let us give the polygraphic versions of the two

programs we have seen. For the double function, terms are replaced by 2-dimensional algebraic circuits

built upon the elementary gates for 0, for s and for D. The rewriting rules are replaced by the

following ones:50

⇛⇛

Concerning the division on natural numbers, we still use the gates and , plus for M and for Q.

We also need two extra gates and which are central in the present study and will be discussed later.

The five rewriting rules are translated as follows:

⇛⇛⇛ ⇛ ⇛

55

Polygraphs are higher-dimensional categories which are free in every dimensions. They have been

introduced by Albert Burroni in order to provide a unified algebraic structure to many objects from

theoretical computer science with an emphasis on rewriting systems. Yves Lafont has started the study

of the computational properties of polygraphs [12, 13]. Until now, polygraphs have been proved to unify

several objects such as abstract, word and term rewriting systems [8], Petri nets [10] or formal proofs of60

propositional logics [9].

We think that polygraphs are particularly suited for proving termination of TRSs using adaptated

polynomial interpretations and, particularly, for functional programs. Indeed, we can see on the examples

that, given a TRS, its associated polygraph is a quite direct translation, so that programs are written as

polygraphs in a natural way. Furthermore, we have proved that the termination of the polygraph implies65

the termination of the rewriting system, provided it is left-linear [8]. Finally, we have developped a tool

called polygraphic interpretations [8], giving, on examples, some implicit complexity information which

is much finer than the one we get on terms [4]: in the case of the double function, we get the X bound

we have discussed. The reason comes from the ability of polygraphic interpretations to differentiate

functions from constructors in functional programs, as does the dependency pairs method.70

However, the standard translation of a TRS into a polygraph generates a huge object, with many more

rewriting rules: indeed, in the polygraphic framework, one has to explicitely handle duplications ,

erasures and even permutations , which means that one needs to add all the rules to compute these

operations. This may have some advantages: for example, in the polygraphic setting, commutativity

equations can be directed in a terminating way [13, 8]. But, for the moment, this expliciteness also has75

practical drawbacks. Indeed, there is only one result linking the termination of a TRS to the one of its

standard polygraphic translation and this requires to consider all the rules of the polygraph, including the

extra ones. And there can be many of them: for a term rewriting system with m sorts, n operations and p

2



2. Polygraphs, interpretations and term rewriting systems translations

rules, the standard polygraphic translation has p+2n(m+1)+m(m2+6m+5) rules. Even if we know

that these extra rules have nice computational properties, including termination and confluence [8], we80

could not, until now, set aside some or all of these rules, thus making any practical use of the polygraphic

method really hard, at best.

In order to correct this problem, we propose in this study several results that allow us to discard

some or all of these extra rules in order to alleviate the computational burden they otherwise gener-

ate. We think that the results we prove here make it possible to automatically prove termination of85

TRSs by polygraphic interpretations and, for some functional programs, to give an implicit complexity

bound at the same time. We plan to test such a prover-bounder on the Termination Problems DataBase

(http://www.lri.fr/∼marche/tpdb): this will give essential information on the possible efficiency of our

method compared to other ones, together with a general view on which systems it is most suited at and

for which systems it can be improved.90

This paper is organized into two main sections, apart from this introduction and the conclusion. In

section 2, we recall the special case of polygraphs we consider (2.1), then we explain the method of

polygraphic interpretation (2.2) and how to translate a TRS into a polygraph (2.3). Section 3 contains

the conditions for reducing the size of the polygraph one has to consider to prove termination of a left-

linear TRS: theorem 3.1.2 can always be applied to discard a family of extra rules, theorem 3.2.1 is a95

special case that allows one to consider no extra rules, theorem 3.3.2 is dedicated to the case of first-

order functional programs and, finally, theorems 3.4.1 and 3.4.3 give sufficient conditions on a proof by

polygraphic interpretation to discard several or all of the extra rules.

For some basic notions of rewriting we do not recall, the reader can consult [2]. The author wishes

to thank Frédéric Blanqui, Guillaume Bonfante, Yves Lafont and Philippe Malbos for many valuable100

discussions about polygraphic interpretations.

2 Polygraphs, interpretations and term rewriting systems translations

2.1 Polygraphs

The general definition of polygraph can be found in documents by Albert Burroni, Yves Lafont and

François Métayer [5, 13, 18, 14, 15]. Here we give a rewriting-minded presentation of a special case of105

polygraphs, seeing them as rewriting systems on algebraic circuits.

Definition 2.1.1. A monoidal 3-polygraph is a composite object consisting of cells, paths and composi-

tions organized into dimensions.

Dimension 1 contains elementary sorts called 1-cells and represented by wires. Their concatena-

tion ⋆0 yields product types called 1-paths and pictured as juxtaposed vertical wires. The empty product ∗110

is also a 1-path, represented by the empty diagram.

Dimension 2 is made of operations called 2-cells, with a finite number of typed inputs and outputs.

They are pictured as circuit gates, with inputs at the top and outputs at the bottom. Using all the 1-cells

and 2-cells as generators, one builds circuits called 2-paths, using the following two compositions:

⋆1=f fg g f g =
f

g
⋆0

115
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2. Polygraphs, interpretations and term rewriting systems translations

The constructions are considered modulo some relations, including topological deformation: one can

stretch or contract wires freely, move 2-cells, provided one does not create crossings or break wires.

Each 2-cell and each 2-path f has a 1-path s1(f) as input, its 1-source, and a 1-path t1(f) as output, its

1-target. The compact notation f : s1(f) ⇒ t1(f) summarizes these facts.

Dimension 3 contains rewriting rules called 3-cells. They always transform a 2-path into another120

one with the same 1-source and the same 1-target. Using all the 1-cells, 2-cells and 3-cells as generators,

one can build reductions paths called 3-paths, by application of the following three compositions, defined

for F going from f to f ′ and G going from g to g ′: F⋆0G goes from f⋆0g to f ′⋆0g ′; when t1(f) = s1(g),

then F ⋆1 G goes from f ⋆1 g to f ′ ⋆1 g ′; when f ′ = g, then F ⋆2 G goes from f to g ′. These constructions

are identified modulo some relations, given in [9], where their 3-dimensional nature was explained. The125

relations allow one to freely deform the constructions in a reasonable way: in particular, they identify

paths that only differ by the order of application of the same 3-cells on non-overlapping parts of a 2-path.

A 3-path is elementary when it contains exactly one 3-cell. Each 3-cell and each 3-path F has a 2-path

s2(F) as left-hand side, its 2-source, and a 2-path t2(F) as right-hand side, its 2-target. The notation

F : s2(F) ⇛ t2(F) stands for these facts.130

In this study, polygraph always means monoidal 3-polygraph. For polygraphs, rewriting notions are

defined in a similar way as for TRSs, with terms replaced by 2-paths, reduction steps by elementary 3-

paths and reduction paths by 3-paths [8]. Hence, a normal form in a polygraph P is a 2-path f which is the

2-source of no elementary 3-path. The polygraph P terminates when it does not contain infinite families

(Fn)n∈N of elementary 3-paths such that t2(Fn) = s2(Fn+1) for all n. Other rewriting properties, such135

as confluence or convergence are also defined in an intuitive way. If X is a family of i-cells in P, we

denote by 〈X〉 the i-paths of P whose generating i-cells are all in X. If i = 3 and if there exists a 3-path

in 〈X〉 from f to g, we use the notation f ⇛X g.When this path is elementary, we write f ⇛
1
X g. If

X = {α}, we write f ⇛α g.

Example 2.1.2. We have already seen two examples of polygraphs in the introduction. The following140

one computes the addition and the multiplication on natural numbers 〈 , 〉, provided one adds

the rules for the computation of and , as we explain in 2.3:

⇛⇛ ⇛ ⇛

Note that we only give the 3-cells, since the 1-cells and 2-cells can be deduced from them. This polygraph

is used in [4] to compute polynomials. The same document contains another example of polygraph,145

computing the fusion sort function on lists of natural numbers, which does not come from a TRS.

2.2 Polygraphic interpretations

In order to prove that a polygraph terminates, we have developped a notion of polygraphic interpreta-

tion [8]. Intuitively, we consider the 2-paths as circuits crossed by currents. Each 2-cell of a 2-path

produces some heat according to the intensity of the currents that reach it and the total heat produced by150

the generating 2-cells of a 2-path is used to compare it to other ones.

Definition 2.2.1. Let X and Y be non-empty ordered sets and M be a commutative monoid equipped with

a strict, terminating order such that its addition is strictly monotone in both arguments. A polygraphic

4



2.3. Polygraphic translations of term rewriting systems

interpretation of a polygraph P into (X, Y,M) consists into a mapping of each 2-path f with m inputs

and n outputs onto three monotone maps f∗ = f : Xm → Xn, f∗ = f : Yn → Ym and [f] = f :155

Xm × Yn → M, such that the following conditions are satisfied:

• For every 1-path x of length n, we have x∗ = IdXn , x∗ = IdYn and [x] = 0.

• For every 2-paths f and g, the following three equalitities hold:

f⋆0 g = f g= +f gf⋆0 g =f⋆0 gf g

• For every 2-paths f and g such that t1(f) = s1(g), the following three equalitities hold:160

f⋆1 g = f⋆1 g = +
f f

g g
f⋆1 g =

f

g

f

g

• For every 3-cell α : f ⇛ g, we have f ≻ g, which means that, for every possible x and y, the three

inequalities f∗(x) ≥ g∗(x), f∗(y) ≥ g∗(y) and [f](x, y) > [g](x, y) hold.

The first three conditions in the definition of polynomial interpretation ensure that, given a 2-path f, all

the maps f∗, f∗ and [f] are uniquely determined by the maps ϕ∗, ϕ∗ and [ϕ] for all the 2-cells ϕ that f165

is made of. The following result was proved for polygraphs with exactly one 1-cell in [8]. In [9], it was

explained, on an example with two 1-cells, how to extend the result to polygraphs with many 1-cells.

Theorem 2.2.2 ([8]). If a 3-polygraph P admits a polygraphic interpretation, then it terminates.

Example 2.2.3. Let us consider the polygraph consisting only of the four 3-cells for addition and multi-

plication given in example 2.1.2 and the following values:170

•
∗

= 1,
∗
(i) = i + 1,

∗
(i) = (i, i),

∗
(i, j) = i + j,

∗
(i, j) = ij;

•
[ ]

=
[ ]

(i) =
[ ]

(i) =
[ ]

(i) = 0,
[ ]

(i, j) = i,
[ ]

(i, j) = (i + 1)j.

To prove that this yields a polygraphic interpretation into (N, ∗, N), one makes computations such as:

[ ]

(i, j) =
[ ]

(i,
∗
(j)) +

[ ]

(j) = (i + 1)(j + 1).

One can find more examples of polygraphic interpretations and related computations in [8, 4]. In [4],

it was proved that some polygraphic interpretations, such as the one we have built here, give more than

termination: an information on the implicit complexity of the computed functions. Furthermore, the175

information we get here is divided into two parts: for every function , the current function
∗

gives

a bound on the size of the values computed by , while the heat function
[ ]

limits the length of the

computation. The heat function bound we get here is to be compared with the bounds that are found in [3]

by using usual polynomial interpretations on a TRS: (i + 1)j versus (i + 1)(j + 1) for the multiplication

and i versus 2i + j + 1 for the addition.180

5



2. Polygraphs, interpretations and term rewriting systems translations

2.3 Polygraphic translations of term rewriting systems

This section recalls the standard translation of term rewriting systems into polygraphs. As a consequence

of William Lawvere’s work, term rewriting systems can be seen as presentations of algebraic theo-

ries [17]. Then, Albert Burroni has proved that an algebraic theory can be presented by a 3-polygraph [5].

Yves Lafont has given a standard translation of TRSs into 3-polygraphs [13]. We have proved that this185

translation preserves termination and, under the hypothesis of left-linearity, reflects it [8]. Because of

size limitations, we only give here an informal construction of the polygraphic translation of a TRS, the

formal results being in [13, 8].

Let us fix a (many-sorted) TRS Σ = (Σ1, Σ2, Σ3), with elementary sorts in Σ1, operations in Σ2 and

rewriting rules in Σ3. The standard polygraphic translation of Σ is denoted by P(Σ) and is described190

thereafter, dimension after dimension:

Its 1-cells are the elements of Σ1.

Its 2-cells are divided between algebra 2-cells and structure 2-cells. The algebra 2-cells are the

elements of Σ2; if ϕ : ξ1 × · · · × ξn → ξ is in Σ2, then, as a 2-cell, ϕ : ξ1 ⋆0 · · · ⋆0 ξn ⇒ ξ. The

family ∆2 of structure 2-cells consists of one : ξ⋆0ζ ⇒ ζ⋆0ξ for each pair (ξ, ζ) of 1-cells, plus one

: ξ ⇒ ξ ⋆0 ξ and one : ξ ⇒ ∗ for each 1-cell ξ. Given a family ~x of distinct variables, any term u

whose variables are in ~x admits a translation into a 2-path u~x. This is formalized in [8] and suggested by

the following examples, taken from the TRS for addition and multiplication of natural numbers:

0∗ = , s(x)xy = , A(x, x)x = , A(x, y)yx = , M(A(x, y), x)xyz = .

Its 3-cells are divided between computation 3-cells and structure 3-cells. The computation 3-cells

are the elements of Σ3; if α : u → v is in Σ3 and ~x is the family of distinct variables appearing in u

from left to right, then α : u~x ⇛ v~x when seen as a 3-cell. The family ∆3 of structure 3-cells is divided195

into two subfamilies. The first subfamily ∆1
3 depends only on the 1-cells and is given by the following

diagrams with each wire coloured by any possible 1-cell:

⇛

⇛ ⇛ ⇛ ⇛

⇛⇛⇛⇛

⇛ ⇛ ⇛

The second subfamily ∆2
3 depends on the algebra 2-cells and, for part, on the 1-cells. It is given, for any

algebra 2-cell and 1-cell ζ, by:200

x ζ

ζ ξ

ζ x

ξ ζ

x

ξ ξ

x

ξ ξ

x

⇛ ⇛ ⇛ ⇛

xx ζ

ζ ξ

xζ

ξ ζ

6



3. Reduced polygraphic translations for left-linear term rewriting systems

The 2-targets of the 3-cells of ∆2
3 use structure 2-paths built from the structure 2-cells by using the

following structural induction rules:

∗

∗ ξ

=
ξ

∗ξ

=
ξ

=
ξ⋆0 xζ

ζ ξ x

x⋆0 ξ

x ξ

∗

= ∗

=

=

ξx

=
x⋆0 ξ ζ

ζξx

∗ x⋆0 ξ

=

Proposition 2.3.1 ([8]). Let Σ be a term rewriting system. Then the following properties hold:205

1. The three families ∆1
3, ∆2

3 and ∆3 are convergent.

2. For any term u and any possible family ~x of variables, u~x is a ∆3-normal form.

3. Any ∆2
3 normal form is of the shape f ⋆1 g with f in 〈∆2〉 and g in 〈Σ2〉.

4. Any ∆3-normal form is of the shape f ⋆1 g with f a ∆1
3-normal form in 〈∆2〉 and g in 〈Σ2〉.

5. If Σ is left-linear, u and v are two terms and α is a rule such that u →α v holds, then, for any210

possible family ~x of variables, there exists a 2-path f such that u~x ⇛
1
α f ⇛∆3

v~x holds.

In the following equivalence, the direct implication is true even without the hypothesis of left-linearity: it

is proved by using a special polygraphic interpretation. The reverse direction is the one that is of interest

for us in this study and is proved with the help of proposition 2.3.1 last point.

Theorem 2.3.2 ([8]). A left-linear TRS Σ terminates if and only P(Σ) does.215

Example 2.3.3. Let us try to use theorem 2.3.2 to prove termination of the division program and see why

and how we want to enhance it. We consider the polygraphic interpretation of the computation 3-cells

into (N, ∗, N) generated by the following values:

•
∗

= 1,
∗
(i) = (i + 2),

∗
(i, j) = (j, i),

∗
(i) = (i, i),

∗
(i, j) =

∗
(i, j) = i;

•
[ ]

=
[ ]

(i) =
[ ]

(i, j) =
[ ]

(i) =
[ ]

(i) = 0,
[ ]

(i, j) = j,
[ ]

(i, j) = ij.220

One can check that this yields an interpretation such that s2(α) ≻ t2(α) for any computation 3-cell α.

For example, for the last computation 3-cell α, we have both s2(α)∗(i, j) and t2(α)∗(i, j) equal to i + 2

and [s2(α)](i, j) = ij + 2j while [t2(α)](i, j) = ij + j. But the 3-cells expressing how to duplicate

and satisfy the reverse strict inequality: we do not have a polygraphic interpretation of the standard

polygraphic translation.225

Thus, we do not have its termination and, consequently, no information on the implicit complexity

of the division function, even if the interpretation we have considered satisfies the conditions of [4]. In

section 3, we correct this problem with results that allow us, in particular, to conclude for the present

example.

3 Reduced polygraphic translations for left-linear term rewriting systems230

From now on, we assume that Σ is a left-linear term rewriting system.

7



3. Reduced polygraphic translations for left-linear term rewriting systems

3.1 The general case

Here we prove that there is no need to consider the family ∆1
3 of structure 3-cells for proving termination

of the original TRS: these 3-cells are only required to ensure confluence.

Lemma 3.1.1. Let f be a 2-path and g its ∆3-normal form. Then there exists a 2-path h in ∆2
3-normal235

form such that f ⇛∆2
3

h ⇛∆1
3

g holds.

Proof. Let h be the ∆2
3-normal form of f. We use proposition 2.3.1: since ∆3 is confluent (first point),

we know that the ∆3-normal form of h is g. From the shape of h (third point), we deduce that only

3-cells from ∆1
3 can be applied to h or any of its reduces.

Theorem 3.1.2. If P(Σ) terminates without the first family of structure 3-cells, then Σ terminates.240

Proof. Let us assume that P(Σ) terminates without ∆1
3 but that Σ does not terminate. Then, there exists

a sequence (un)n∈N of terms and a sequence (αn)n∈N such that, for every natural number n, we have

un →αn un+1. Let us fix a family ~x of variables such that (u0)~x is defined. Then, the last point of

proposition 2.3.1 yields a family of 2-paths (fn)n∈N such that (un)~x ⇛
1
αn

fn ⇛∆3
(un+1)~x holds for

every n. Let us fix a natural number n. From proposition 2.3.1, we know that (un+1)~x is a ∆3-normal

form (second point) and that ∆3 is confluent (first point): hence (un+1)~x is the ∆3-normal form of the

2-path fn. We apply lemma 3.1.1 and get a 2-path gn in ∆2
3-normal form satisfying:

(un)~x ⇛
1
αn

fn ⇛∆3
gn ⇛∆1

3
(un+1)~x.

With proposition 2.3.1, we know that gn = hn⋆1kn (third point) and (un+1)~x = h ′

n⋆1kn (fourth point),

with kn in 〈Σ2〉, hn in 〈∆2〉 and h ′

n its ∆1
3-normal form. But we have seen that (un+1)~x ⇛

1
αn+1

fn+1

holds and, since the TRS we consider is left-linear, the 2-source of αn+1 does not contain any structure

2-cell. This implies that s2(αn+1) is entirely contained into kn, so that fn+1 can be decomposed into

h ′

n ⋆1 k ′

n, with kn ⇛
1
αn+1

k ′

n. We deduce from these facts the following reduction chain:

gn = hn ⋆1 kn ⇛
1
αn+1

hn ⋆1 k ′

n ⇛∆1
3

h ′

n ⋆1 k ′n = fn+1.

We know that (un+2)~x is the ∆3-normal form of fn+1. By confluence of ∆3, we deduce that it is also

the ∆3-normal form of hn ⋆1 k ′

n. Then lemma 3.1.1 gives the existence of a ∆2
3-normal form gn+1 such

that:

hn ⋆1 k ′

n ⇛∆2
3

gn+1 ⇛∆1
3

(un+2)~x.

By induction on n, we conclude that the infinite reduction path (un)n∈N in Σ generates an infinite

reduction path in P(Σ) that only uses 3-cells of Σ3 and ∆2
3, the existence of which has been prohibited

by assumption. Hence Σ terminates.

Remark 3.1.3. Removing some structure 3-cells allows for a wider range of interpretations for the

duplication, such as
∗
(i) = (⌈i/2⌉ , ⌊i/2⌋) for the descending currents. This would be prohibited by245

the two structure 3-cells of ∆1
3 involving both and , since they require the inequality

∗
(i) ≥ (i, i).

8



3.2. The case of planar linear term rewriting systems

3.2 The case of planar linear term rewriting systems

Let us recall that a term rewriting rule is usually called linear when no variable occur twice in its left

member or in its right member. Here and in order to match the vocabulary from linear algebra and

operadic theory, we call a rule linear when its two sides contain exactly the same variables, exactly once.250

Thus, if Σ is linear, which means that all of its rules are, the computation 3-cells of the polygraph P(Σ)

do not use any or . We say that a term rewriting rule is planar when variables occur in the same

order in its two sides. Then Σ is planar when all of its rules are and, in that case, the computation 3-cells

of P(Σ) do not use any .

Theorem 3.2.1. Let us assume that Σ is both linear and planar. If P(Σ) terminates without the structure255

3-cells, then Σ terminates.

Proof. If Σ is both linear and planar, then the computation 3-cells of P(Σ) do not contain any structure 2-

cell. Now, let us assume that P(Σ) terminates without the structure 3-cells. If Σ does not terminate, then

there exists an infinite reduction path u0 →α0
u1 →α1

u2 →α2
(· · · ). Let us fix a family ~x of distinct

variables such that (u0)~x is defined. By proposition 2.3.1, points two and four, each (un)~x decomposes

into gn ⋆1 hn with gn in 〈∆2〉 and hn in 〈Σ2〉. Let us fix a natural number n. Then, point five of the

same proposition yields a 2-path fn such that:

gn ⋆1 hn = (un)~x ⇛
1
αn

fn ⇛∆3
(un+1)~x = gn+1 ⋆1 hn+1.

Since αn is left-linear, its 2-source does not contain any structure 2-cell, so that it is entirely contained

into hn. This means that there exists a 2-path h ′

n such that hn ⇛
1
αn

h ′

n and fn = gn ⋆1 h ′

n. Since αn is

linear and planar, its 2-target does not contain any structure 2-cell either: this means that h ′

n is in 〈Σ2〉.
Hence, any 3-path of 〈∆3〉 starting at fn = gn ⋆1 h ′

n only acts on gn. So gn+1 is the ∆3-normal form260

of gn and h ′

n = hn+1. Thus, we have hn ⇛
1
αn

hn+1. Since this is valid for any natural number n, we

have an infinite reduction path in P(Σ) that does not use any structure 3-cell: this is prohibited by our

hypothesis, so that Σ terminates.

Remark 3.2.2. The proof of theorem 3.2.1 can be adaptated for TRSs whose computation 3-cell do not

require any or any or any . In that case, we do not discard all the srtucture 3-cells of ∆2
3 but only265

the ones concerning the unused structure 2-cell(s).

Example 3.2.3. The TRS for the double function is both linear, in our sense, and planar. Hence, for

proving its termination, we only have to prove the termination of the two computation 3-cells of its

translation. We consider the interpretation into (N, ∗, N) generated by
∗

= 1,
∗
(i) = i+1,

∗
(i) = 2i,

[ ]

= 0,
[ ]

(i) = 0,
[ ]

(i) = i. On top of proving termination, this polygraphic interpretation270

satisfies the conditions given in [4] that allow us to conclude that the polynomials
∗
(i) = 2i and

[ ]

(i) = i respectively bound the size of the computed values and the length of the computations, with

respect to the size of the argument. This is to be compared with the polynomial bounds of 3i given by

polynomial interpretations on terms and of 2i given by the same interpretations with a preprocessing

using dependency pairs.275
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3. Reduced polygraphic translations for left-linear term rewriting systems

3.3 The case of first-order functional programs

Definition 3.3.1. A function (or defined symbol) of Σ is an operation in Σ2 that only appears as the root

symbol of the left-hand side of rewriting rules of Σ3. A constructor of Σ is an operation in Σ2 that never

appears as the root symbol of the left-hand side of rewriting rules of Σ3. Two rules α and β are weakly

orthogonal when all their critical pairs are of the form u ⇒
α
β v: whenever one can apply α and β on280

overlapping parts of the same term, both reductions give the same result.

A first-order functional program is a left-linear term rewriting system Σ whose operations are either

a function or a constructor and whose rewriting rules are pairwise weakly orthogonal. In that case, we

denote by ΣC
2 the set of constructors and by ΣF

2 the one of functions. The polygraphic program associated

to a first-order functional program Σ is the standard polygraphic translation P(Σ) without ∆1
3 and ∆F

3,285

the 3-cells of ∆2
3 corresponding to functions. We denote by ∆C

3 the 3-cells of ∆2
3 corresponding to

constructors.

The notion of polygraphic program was introduced in [4]. This class of rewriting systems contains more

than translations of first-order functional programs: polygraphic programs can compute functions with

many outputs with a link between them, such as the list splitting function that is studied in [4]. A key290

argument for the following result is given in [7]: for a first-order functional program, termination and

innermost termination are equivalent.

Theorem 3.3.2. Let Σ be a first-order functional program. If the polygraphic program associated to Σ

terminates, then so does Σ.

Proof. Let us assume that the polygraphic program associated to Σ terminates but that Σ does not. Hence,295

there exists an infinite innermost reduction sequence u0 →i
α0

u1 →i
α1

u2 →i
α2

(· · · ) in Σ. Let ~x be a

family of variables such that (u0)~x is defined. Point five of proposition 2.3.1 tells us that the reduction

sequence (un)n∈N lifts up to P(Σ), yielding (u0)~x ⇛
1
α0

f0 ⇛∆3
(u1)~x ⇛

1
α1

f1 ⇛∆3
(u2)~x ⇛

1
α2

(· · · ).

Since Σ is a functional program, there exist, for every n in N, ϕn in ΣF
2, an in 〈ΣC

2 〉, a ′

n in 〈Σ2〉 and bn

in 〈∆2〉 such that s2(αn) = an⋆1ϕn and t2(αn) = bn⋆1a ′

n. Now, since (un)~x ⇛
1
αn

fn, there exist Cn300

and cn in 〈Σ2〉 and Sn in 〈∆2〉 such that:

fnan

cn

Sn

ϕn

Cn

=(un)~x

cn

Sn

bn

a′

n

Cn

=

By examination of the shapes and properties of the structure 3-cells, there exist b ′

n, b ′′

n and S ′

n in 〈∆2〉, c
′

n

in 〈ΣC
2 〉, dn and d ′

n in 〈Σ2〉 such that the following three normalizing reductions hold:

⇛∆1

3

a′

n

c′

n

b′

n

dn

cn

bn

a′

n

S′

n

a′

n

c′

n

d′

n

b′′

n

⇛∆C

3

⇛∆2

3
b′′

n

Sn

305
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3.3. The case of first-order functional programs

Thus, we have two decompositions of (un+1)~x, expressed by the following equalities:

(un+1)~x

Sn+1

ϕn+1

cn+1

an+1

Cn+1

a′

n

Cn

S′

n

d′

n

c′

n = =

In the leftmost decomposition, the function 2-cell ϕn+1 of the rightmost decomposition must appear in

either d ′

n, a ′

n or Cn, since c ′

n is in ΣC
2 and S ′

n is in 〈∆2〉. Let us assume that it is in d ′

n. Since d ′

n has

been produced from dn by the action of the structure 2-cells, any redex it contains is a copy of one that310

is already in dn. This means that the reduction αn+1 can already be applied on un, in a proper subterm

of the term where αn is applied: this is in contradiction with the hypothesis that the reduction from un

to un+1 is innermost. Hence, ϕn+1 is in Cn or in a ′

n. Furthermore, an+1 is only made of constructors:

each 2-cell it contains was either already in Cn or a ′

n or appear in c ′

n as the result of the application of

3-cells of ∆C
3 . Hence, the reduction (un+1)~x ⇛

1
αn+1

fn+1 can be anticipated on the following 2-path gn,315

which is the ∆C
3 -normal form of fn:

gn

a′

n

c′

n

b′

n

dn

Sn

Cn

=

Let us denote by hn the result of this αn+1-reduction on gn and by gn+1 the ∆C
3 -normal form of hn.

Then gn+1 can be normalized successively by ∆2
3 and by ∆1

3 to reach (un+2)~x. Using again the fact

that the reductions on terms have been supposed to be innermost, we prove that the reduction acting on320

(un+2)~x can also be anticipated on gn+1, yielding hn+1 and so on. Thus, an induction on n gives an

infinite reduction sequence (u0)~x ⇛
1
α0

f0 ⇛∆C
3

g0 ⇛
1
α1

h0 ⇛∆C
3

g1 ⇛
1
α2

h1 ⇛∆C
3

(· · · ), which

cannot exist by termination of the polygraphic program associated to Σ.

Example 3.3.3. Let us consider the interpretation we have built in example 2.3.3. Now, equipped with

theorem 3.3.2, we can conclude that this interpretation proves the termination of the original term rewrit-325

ing system for division. Moreover, using the results proved in [4], we conclude that the polynomials

∗
(X, Y) = X and

[ ]

(X, Y) = XY respectively bound the spatial and temporal sizes of the computa-

tion of the division on two arguments with sizes X and Y.

Remark 3.3.4. The result is false if one removes the weak orthogonality assumption. Indeed, let us

consider the polygraphic program whose computation 3-cells are:330

⇛⇛ ⇛⇛
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3. Reduced polygraphic translations for left-linear term rewriting systems

We prove that it terminates with a mapping into (N, ∗, [N]), where [N] is the free commutative monoid

generated by N with its natural multiset order, with {n} standing for n seen as a generator of [N]. We

consider:
∗
(i) = i,

∗
(i) =

∗
(i) =

∗
(i) = i + 1,

∗
(i, j) = i + j,

∗
(i) = (⌈i/2⌉ , ⌊i/2⌋)

and
[ ]

(i) =
[ ]

(i) =
[ ]

(i) =
[ ]

(i) = 0,
[ ]

(i) =
[ ]

(i) = {i} and
[ ]

(i, j) = {i + j}.335

One proves that this mapping satisfies s2(α) ≻ t2(α) if α is the second, third or fourth computation

3-cell and that s2(β) = t2(β) is β is the first one or is in ∆C
3 . Then, we define the mapping counting

the number of in a 2-path: this is the mapping into (∗, ∗, N) whose heat function sends any 2-cell to 0

except , sent to 1. Finally, we use the termination of ∆C
3 to get the one of the polygraphic program.

However, if we add ∆F
3 and ∆1

3, it does not terminate anymore, as proved by the following cycle:340

⇛⇛ ⇛ ⇛ ⇛

However, the results in [7] seem to indicate that the weak orthogonality hypothesis is too strong and

could be replaced by local confluence.

3.4 Special conditions on standard interpretations

Until now, we have seen conditions based solely on the properties of the original TRS. Here we assume345

that we use polygraphic interpretations and give conditions on them: the purpose of such results is to

guide the automatic search of polygraphic interpretations. Let us recall that a TRS is non-duplicating

when no right-hand side of a rewriting rule contains the same variable twice. Hence, the computation

3-cells of such a TRS polygraphic translation do not use any .

Theorem 3.4.1. Let us assume that Σ is non-duplicating. If P(Σ), without the structure 3-cells, admits350

a polygraphic interpretation into some (X, ∗,M) such that
∗
(x, y) = (y, x), then Σ terminates.

Proof. Since Σ is non-duplicating, we adapt the proof of 3.2.1, as mentionned in remark 3.2.2, to get that

the termination of Σ can be deduced from the one of P(Σ), without ∆1
3 and all the structure 3-cells of ∆2

3

that concern ; for this proof, we denote by ∆n
3 the remaining structure 3-cells. Now, let us assume

that P(Σ), without the structure 3-cells, admits a polygraphic interpretation ((·)∗, (·)
∗, [·]) into (X, ∗,M)355

such that
∗
(i, j) = (j, i) holds. Then we define another mapping into (X, ∗,M) with the same currents

functions and with a heat function {·} defined as [·] except on the structure 2-cells, which it sends to 0.

Since the addition of M is monotone in each argument and by properties of the heat functions, we have

[f] ≥ {f} for any 2-path f, with equality when f is in 〈Σ2〉. Hence, by left-linearity of Σ, we get, for each

computation 3-cell α, {s2(α)} = [s2(α)] > [t2(α)] ≥ {t2(α)}. Now let us fix an algebra 2-cell and360

consider the structure 3-cells of ∆n
3 it is involved into. For , the current functions are equal on both

sides and
{

⋆1

}
(~x) =

[ ]

(~x) ≥ 0 =
{

⋆0 · · · ⋆0

}
(~x). For , we have equality between

the current functions and the heat functions on both sides, thanks to the hypothesis
∗
(x, y) = (y, x).

Hence, the new map {·} generates a terminating order relation ≻ on P(Σ) such that, for every computation

3-cell, s2(α) ≻ t2(α) and, for every structure 3-cell β of ∆n
3 , s2(β) º t2(β). Thus, all these 3-cells,365

together, terminate if and only if ∆n
3 terminates, which is true.

Notation 3.4.2. Let α : ϕ(u1, . . . , un) → v be a rewrite rule in Σ3. For i ∈ {1, . . . , n} we denote

by Ki(α) the greatest of the number of occurences in v of each variable of ui. For any function ϕ of

12



3.4. Special conditions on standard interpretations

arity n in Σ2 and any i ∈ {1, . . . , n}, we denote by Ki(ϕ) the greatest of the Ki(α) for all the rules α

such that ϕ is the root symbol of the left-hand side of α.370

Theorem 3.4.3. Let X be a set equipped with a terminating strict order. Let us assume that P(Σ),

without the structure 3-cells, admits a polygraphic interpretation into (X, ∗, [X]) such that the following

conditions hold:

• (x) = (x, x), (x, y) = (y, x) and [σ] = 0 when σ ∈
{

, ,
}

.

•
∗
(x1, . . . , xn) ≥ xi for all and all i.375

•
{

∗
(~x)

}
>

[ ]

(~x) for all .

•
[ ]

(x1, . . . , xn) > {xi} if ϕ is the root symbol of some rule and Ki(ϕ) ≥ 2.

Then Σ terminates.

Proof. Let a and b be two terms and α a rewriting rule such that a →α b. We denote by u =

ϕ(u1, . . . , up) the source of α, by v its target and by ~x and ~y the respective families of distinct vari-380

ables that appear in u and v from left to right. We fix a family ~z of distinct variables containing all the

variables that appear in a. Then the 2-paths a~z and b~z decompose as:

b~z

C

S

f

u~x

C

S′

g

v~y

= =a~z

In these decompositions, S and S ′ are in 〈∆2〉 and f, g, C and C ′ in 〈Σ2〉. Let us write f = f1⋆0 · · ·⋆0fm

and g = g1 ⋆0 · · · ⋆0 gn, where each fi and gj has a 1-cell as 1-target. We denote by j(i) the element of385

{1, . . . , p} such that fi appears inside uj(i) in a. Let c be the structure 2-path and d the algebra 2-path

such that v~x = c ⋆1 d, given by proposition 2.3.1 points two and four. Using the same proposition,

we know that there exists a structure 2-path c ′ such that c ′
⋆1 g is the ∆2

3-normal form of f ⋆1 c. But

the structure 3-cells of ∆2
3 act in such a way that each gj is exactly one fi. Moreover, in the family

(g1, . . . , gn), each fi appears at most Kj(i)(ϕ) times, by definition of Kj(i)(ϕ).390

Now, let us compute the interpretations of a~y and b~y. By hypothesis on the interpretation, we have

(a~y)∗ ≥ (b~y)∗. Concerning the heats, still using the assumptions on the interpretation, C receives at

least the same currents in a~y than in b~y and [C] is monotone: hence C produces at least the same heat

in a~y than in b~y. For the same reasons and since [s2(α)] > [t2(α)], u~x produces strictly more heat

in a~y than in b~y. Furthermore f produces
∑m

i=1[fi](~ki) while g produces
∑m

i=1 Kj(i)(ϕ).[fi](~ki) for395

some ~ki: indeed the currents received by each copy of fi in g are the same as the currents received by

the original fi, by properties of the current map on structure 2-cells and by examination of each structure

3-cell. Finally, the structure 2-paths S and S ′ do not produce any heat.

Since we consider a multiset order on [X], we can prove that [a~y] > [b~y] by proving that u~y produces

strictly more heat than each fi such that Kj(i)(ϕ) ≥ 2; by property of the heat function, it is even sufficient400

to prove that [ϕ] produces more heat than each fi such that Kj(i) ≥ 2. In a~y, the current received by u~y
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is ((f1)∗(~k1), . . . , (fm)∗(~k)m). Since each uj transmits a current at least equal to the one it receives in

any of its inputs, ϕ receives at least (fi)∗(~ki) in its imput j(i). By assumption, if Kj(i)(ϕ) ≥ 2, then

the heat produced by ϕ is strictly greater than {(fi)∗(~ki)}, which, in turn, is striclty greater than [fi](~ki),

once again since we consider a multiset order on [X]. Finally, we have a~y ≻ b~y whenever a →α b: we405

deduce from this fact that Σ terminates.

4 Conclusion

In this study, we have proved results that make easier the use of polygraphs and polygraphic interpreta-

tions for proving termination for TRSs and, when it comes to functional programs, finding an implicit

complexity bound with some interpretations. We have seen, on some examples, that the method can410

give better results than polynomial interpretations on TRSs, mainly for functional programs: it gives

better complexity bounds and can prove the termination and give bounds for TRSs that do not admit

simplification orders.

The next step consists into a test of this method on the Termination Problems DataBase in order to

get information on its efficiency and to formulate new conjectures. Among them, we want to examine the415

hypothesis of weak orthogonality used in theorem 3.3.2 and new ways to guide the construction of the

polygraphic interpretation with respect to the shape of the rewriting rules, in the same spirit as in 3.4. We

also plan to enhance the theoretical links between termination of TRSs and termination of polygraphic

versions of them: indeed, we think that there are many known, finer results on term graph rewriting

systems that can be adaptated to polygraphs [19]. The case of non left-linear TRSs may be examinated420

but we are not sure that the polygraphic translations can provide methods for them.

Finally, we need a better understanding of the mathematical structure behind the one of polygraphic

interpretation. This will allow for new kinds of interpretations, extending the range of the method for a

wider variety of functional programs. The main class we will focus on are ones with conditional rules or

with the if-then-else construction, in order to solve some of the problems we have encountered in [4].425
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