
HAL Id: inria-00129515
https://hal.inria.fr/inria-00129515

Submitted on 7 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Term-graph rewriting in Tom using relative positions
Emilie Balland, Paul Brauner

To cite this version:
Emilie Balland, Paul Brauner. Term-graph rewriting in Tom using relative positions. 4th International
Workshop on Computing with Terms and Graphs, Mar 2007, Braga, Portugal. pp.3-17. �inria-
00129515�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50401151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00129515
https://hal.archives-ouvertes.fr

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Term-graph rewriting in Tom
using relative positions

Emilie Balland and Paul Brauner

UHP & LORIA, INPL & LORIA
Campus Scientifique, BP 239,

54506 Vandœuvre-lès-Nancy Cedex France

Abstract

In this paper, we present the implementation in Tom of a de Bruijn indices gen-
eralization allowing the representation of term-graphs over an algebraic signature.
By adding pattern matching and traversal controls to Java, Tom is a well-suited
environment for defining program transformations or analyses. As some analyses,
e.g. based on control flow, require graph-like structures, the use of this formalism
is a natural way of expressing them by graph rewriting.

1 Introduction

Program transformation and graph rewriting are strongly related [9]. Indeed,
although the structure of a program may be represented by a tree, informa-
tions about its execution like data dependencies or control flow are naturally
expressed by data-structures inherently using cycles or subterms sharing, in
other words by graphs. More precisely, since these graphs are oriented and la-
belled over an algebraic signature, such transformations are described within
the framework of term-graphs [12]. There exists several definitions of term
graph rewriting, category-theory oriented [6,10], equationally oriented [1] or
implementation-oriented [2].

Since 2001, the Protheo team is developing the Tom system [11], whose
main originality is to be built on top of an existing language Java. Tom

provides pattern matching facilities to inspect objects and retrieve values.
Moreover, the rewriting steps can be controlled using a powerful strategy
language. The main application of the language being program transformation
and code analysis, we were interested in extending the Tom language for
supporting term-graph transformations.

In this paper, we introduce the notion of relative position inspired from the
de Bruijn indices as a way to express paths between two subterms. Then we
present an implementation of term-graphs based on this formalism. As Tom

c©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Balland,Brauner

provides rewriting strategies, integrating such structures in the language offers
strategic graph rewriting for free. After introducing the notion of relative
positions, we will explain how the language can be extended to offer facilities
for strategic graph rewriting. Finally, we will illustrate the use of this extension
by an implementation of lambda-calculus normalization.

2 Term-graph representation

Our goal is to represent term-graphs on top of the term rewriting theory with
the fewer possible modifications to this formalism to take advantage of the
existing result and tools, namely Tom. The main idea of this paper is to raise
the notion of position to the level of first-order terms by extending algebraic
signatures with an infinite set of constants representing positions. This allows
for the description of terms containing some ”pointers” to subterms of them-
selves. As an example, the term s(a, 1) defined over such a signature denotes
a term whose second child references the first-one.

The main issue of this representation is that it is context sensitive. For
instance, the position 1.2 references the subterm a in f(s(1.2, a)), but s(1.2, a)
in f(f(s(1.2, a)))). This raises the idea of relative positions describing paths
inside a term to the referenced subterms. The previous example would then
be written f(s(a,−1.1)), where −1 indicates one backward step inside the
term. This can be seen as a generalization of de Bruijn indices extended to
the count of all function symbols, not only abstractions.

In this section, we define more formally this notion of relative position
and terms with references before we present an implementation aimed to be
used by Tom. We finally discuss the relation between this formalism and
term-graphs as well as the associated technical solution.

2.1 Terms with references

As usual, a position is a finite sequence of natural numbers. The subterm u

of a term t at position ω is denoted t|ω, where ω describes the path from the
root of t to the root of u. To emphasize the difference with relative positions,
we will sometimes refer to positions as absolute positions.

Let us first define relative positions along with their meaning.

Definition 2.1 (Relative position) The set Rpos of relative positions is

the monoid (Z∗, .) with neutral element Λ where Z
∗ = Z \ {0}.

We note n, p the elements of Z
∗ and ωr, ω′

r, . . . the elements of Rpos.

Definition 2.2 (Referenced subterm) Given an absolute position ω and

a relative position ωr, the absolute position accessed by ωr from ω is written

pos(ω, ωr) and is defined as follows:

• if ωr = Λ, then pos(ω, ωr) = ω

• else, there exists p ∈ Z
∗ and ω′

r ∈ Rpos such that ωr = p.ω′
r and

2

Balland,Brauner

· if p > 0, then pos(ω, ωr) = pos(ω.p, ω′
r)

· if p < 0 and if there exists ω′ and ω′′ such that ω = ω′.ω′′ and |ω′′| = −p,

then pos(ω, ωr) = pos(ω′, ω′
r)

It is undefined everywhere else.

We note t|ω,ωr
the term t|pos(ω,ωr) for every ω and ωr such that pos(ω, ωr)

and t|pos(ω,ωr) are defined. We name it the subterm of t referenced by ωr from ω.

Intuitively, ωr describes a path back and forth inside t from ω to t|ω,ωr
. For ex-

ample, the relative positions −1.1 and −2.1.2.−1.1 reference the same subterm
a of f(s(a, b)) from the position 1.2.

We can now define the notion of first-order terms with references. It only
consists in extending an algebraic signature with an infinite set of constants
denoting relative positions.

Definition 2.3 (Term with references) For every set of first-order terms

T (F ,X), the corresponding set of terms with references Tref (F ,X) is the set

T (F ∪ Rpos,X) where elements of Rpos have arity 0.

As an example, f(s(a,−1.1)) is a term with references of Tref ({f, s, a}, ∅).
By abuse of notation, we will say that “−1.1 references a in f(s(a,−1.1))”,
without specifying it occurs at position 1.2.

Problems will inevitably occur when considering undefined relative posi-
tions. We define therefore validity as follows. We also forbid terms containing
relative positions referencing relative positions.

Definition 2.4 (Term with references validity) A term with references

t ∈ Tref (F ,X) is valid if for every leaf ωr = t|ω such that ωr ∈ Rpos, t|ω,ωr
is

defined and is not in Rpos.

2.2 Implementation of terms with references

Let us now see how this formalism can be transposed to the Tom language.
One characteristic of Tom is its data-structure independence. A term can be
represented by any Java object as long as the user provides a mapping to see
these objects as trees. For easier development, it comes up with a language
called Gom [13] which automatically generates from a signature the Java

implementation and the mapping. The resulting implementation is efficient
in space and time (constant time terms equality test) because of maximal
subterm sharing. Readers must pay attention to the difference between the
maximal sharing and the notion of sharing in term-graphs. In our case, the
maximal sharing is only at implementation level and does not lead to sharing
at the term level. A Gom signature contains sorts and their constructors.
For example, the signature below defines two sorts A and B along with their
constructors.

A = a() B = g(A)

| f(A)

| s(A,A)

3

Balland,Brauner

With this signature, we can construct the terms a(), f(a()) or g(f(a()))

for instance. From this description, Gom generates a Java class hierarchy
attaching an abstract class to each sort, and a class extending this sort class
to each constructor.

Our goal is to generate an extended signature for terms with references
from an initial Gom one. To achieve this, for every sort T of a Gom module,
we generate a new constructor of rank posT(int*). The notation * is the
same as in [3, Section 2.1.6] and can be seen as a family of constructors with
arities in [0,∞[. The previous example is extended in this way:

A = a() B = g(A)

| f(A) | posB(int*)

| s(A,A)

| posA(int*)

As an example, we can now build the extended term s(−1.2.1, f(a)) with the
following syntax: s(posA(-1,2,1),f(a())). Then posA(-1,2,1) references
a() in the term s(posA(-1,2,1),f(a())).

This type of terms with references using explicit relative positions consti-
tutes a first extension of a Gom signature. In order to ensure type-preservation
and reference correctness, a second representation level consists in expressing
references with the help of labels. This notion of labelling can be seen as
an implementation of the addressed terms presented in [4]. We have added
new constructors to facilitate the use of labels and functions to transform a
term with labels into the low-level representation. For every sort T, we gen-
erate two constructors. The constructor labT(String,T) enables the user to
label a term with a string and refT(String) to reference a labelled term.
Thus the term s(refA("l"),f(labA("l",a()))) corresponds to the low-
level term s(posA(-1,2,1),f(a())). This notion of labels can be seen as
syntactic sugar for hiding positions to users in order to avoid bad manipula-
tions. Thereby, the constructors posT should be private so that users can only
construct terms with references by label usage. We provide functions which
generate the corresponding low-level terms after verifying that each refT cor-
responds to a labT of identical sort. This transformation is itself described
using strategic rewriting introduced in 4.

2.3 Correspondence with term-graphs

Let us see now how a representation of term-graphs can be obtained from the
terms with references introduced above. To ensure a bijection between term-
graphs and their representations, we need to establish equivalence classes be-
tween terms with references. For example, s(a,−1.1) and s(−1.2, a) should be
equivalent. They both correspond to the term-graph rooted by s whose two
children correspond to the shared subterm a. Moreover, we noticed that sev-
eral relative positions may reference the same subterm from a given position.
Hence, we define canonical relative positions.

4

Balland,Brauner

Definition 2.5 (Canonical relative position) Let ω1, ω2 be two abso-

lute positions, the canonical relative position cpos(ω1, ω2) from ω1 to

ω2 is the smallest relative position with respect to the length such that

pos(ω1, cpos(ω1, ω2)) = ω2.

Let us remark that cpos(ω1, ω2) = q.ω′ where ω′ ∈ (N∗, .) and q ∈ Z
∗∪{Λ}.

We can now define the canonical form of terms with references using an order
on absolute positions.

Definition 2.6 (Canonical term with references) Let ω1 = n1.ω
′
1 or Λ

and ω2 = n2.ω
′
2 or Λ be two absolute positions,

ω1 <Ω ω2 ⇔

ω1 = Λ

or n1 < n2

or n1 = n2 and ω′
1 <Ω ω′

2

A term t with references is then canonical if and only if t is valid and for every

leaf ωr = t|ω such that ωr ∈ Rpos, ωr is canonical and pos(ω, ωr) <Ω ω.

Typically, contrary to s(−1.2, a), the term s(a,−1.1) is a canonical represen-
tation of a term-graph.

The formalism presented all along this section has been implemented
through a plugin for Gom which generates an extended signature with new
constructors for positions and construction functions which offer different
levels of abstractions (from terms with explicit positions to term-graphs
with labels). As illustrated by the Figure 1, a user may provide a labelled
representation which is not a canonical form and use the provided con-
struction function to normalize it. Whatever the favored level of the user,

s

s s

f f

a a

s

s s

f

f

a

a

refArefA

labA

labA

”l1”

”l1””l2””l2”

Fig. 1. An example of term-graph and its representation as a labelled term.

the in-memory representation is always based on explicit relative positions.
Moreover, due to Gom design and in particular to the maximal sharing,
the efficiency in time and space is ensured. For example, the term-graph
presented Figure 1 is automatically translated during the construction into
the low-level term with positions depicted in Figure 2. The principle of

5

Balland,Brauner

maximal sharing is also illustrated by a schematic representation of the heap.

s

s s

f f

a a

posAposA

−2−1 1

s

s s

f

a
posA posA

-1 1
-2

Fig. 2. Generation of relative positions from the labelled representation and maxi-
mal subterm sharing in memory.

After defining terms with references rewriting, we will exhibit in the next
two sections how the Tom language offers strategic rewriting of these struc-
tures.

3 Term-graph matching

The originality of the previous approach is that pattern matching on terms
with references build upon T (F ,X) is simply defined as pattern matching
on terms of Tref (F ,X). There is therefore no need to extend the notion
of rewriting, which allows us to reuse existing results and rewriting tools.
However, the questions raised by this formalism are situated at another level:
we would like the rewrite system to rewrite only valid terms. Giving some
non-trivial criterion on rewrite rules implying this property remains an open
question for the moment. The next sections of this paper therefore focus on
technical aspects of the pattern matching problem implementation.

After introducing the Tom language, we discuss various presentations of
graph with references rewriting in this system. Although we cannot statically
check that patterns ensure the validity of matched terms, we also propose
several solutions to check this property at runtime.

3.1 Tom pattern matching

The first mechanism offered by the Tom language is pattern matching on al-
gebraic terms. This feature is similar to the constructs proposed by functional
languages like OCaml or Haskell. It is enabled by the %match keyword which
allows us to match a subject against some pattern and to get the values of the
pattern variables into Java ones:

A term = ‘s(f(a()),a());

%match(term) {

s(x,y) -> {

6

Balland,Brauner

System.out.println(

"First child: " + ‘x + ", second child: " + ‘y

);

return ‘f(x);

}

}

A subject is then any Java object which is an instance of a class whose
description has been provided to Tom via a mapping. This mapping indicates
to the Tom compiler how to match some class against a pattern, and how
to create new algebraic terms implemented by this class via the ‘ construct.
Here we are using the classes generated by Gom along with their mappings.
Tom also supports associative matching, a.k.a. list matching, as well as anti-
patterns [8] and non-linear matching.

Let us elaborate on the mapping mechanism. It provides an algebraic view
of some Java object (e.g. seeing integers as Peano natural numbers, or seeing
an XML tree as a term). It is divided into two parts: the destructive part and
the constructive one. The destructive part is used by the matching algorithm
and its main function is to describe how to query a term about its head symbol
and how to get its nth child. For instance, the mapping between integers and
Peano naturals would be similar to the following schematic code:

is_zero(n) { n == 0 }

is_successor(n) { n > 0 }

get_successor_child(n) { n - 1 }

On the other hand, the constructive part is used by the compiler to build an
algebraic term. It usually consists in calling the constructor of the Java class
implementing the term. Although our goal is to work as much as possible
on top of classes and mappings generated by Gom, we will punctually adapt
some mapping to our needs.

3.2 Matching terms with references

Given these language constructs and the terms described in Section 2.2, there
are many ways to express matching against patterns with references. As
for term construction, patterns can be expressed at low-level using directly
positions or by a syntax based on labelling. In each case, it refers to a
stated subterm whose position is well-known. To compare two references by
value instead of references, we will introduce a deref operator in patterns
implemented using Tom mappings.

The simplest way to handle Gom terms with references is to consider the
extended signature and perform some standard pattern-matching on it. Since
the posT(int*) constructors generate matchable terms, it is possible to write
patterns where relative positions are explicitly given. As an example, the

7

Balland,Brauner

term represented Figure 3 matches against the pattern s(a(),pos(-1,1)).
Notice that this type of pattern denotes exactly the structure of the term: e.g.

s(pos(-1,2),a()) would not match the same term. This method allows us
to match against any position, even those pointing to an upper term as shown
Figure 4. This may still be relevant in case of a procedure carrying some

s

a

Fig. 3. s(a(),pos(-1,1))

f

Fig. 4. f(pos(-n,...))

contextual information or fetching the position to perform some computation
later. It may also be useful to compare two positions, without knowing the
value of the subterms they are referencing. Figure 5 illustrates this situation.
Notice however that this is only possible if the two variables have the same
height in the term, as we are comparing relative positions.

s

Fig. 5. s(x,x)

f

Fig. 6. f(pos(-n,...))

This solution presents two issues: the main one, depicted by Figure 6,
is that a relative position may be undefined. These patterns should there-
fore be considered as a kind of unsafe assembly language for matching
terms with references. The second one is that the explicit notation of po-
sitions is not mandatory and may be easily avoided with some syntactic sugar.

Thereby we propose to slightly modify the Tom compiler to address them.
The first change consists in integrating labels capturing and denoting positions
of subterms into the patterns syntax in order to avoid any explicit position
matching. As an example, the term represented on Figure 3 would match
against the pattern s(x:a(),x). The translation of this kind of patterns to
the former one is trivial: each occurrence of a label lab is replaced by the
relative position from its position to the position of the subterm labelled by
lab.

The second modification aims at reinforcing the patterns safety. As
explained in section 2.2, we do not want the user to be able to recover
a position by matching the term of figure 3 against s(_,x) for instance.

8

Balland,Brauner

This can be achieved by inhibiting the generation of mappings for position
constructors, so that the matching algorithm fails on such patterns. Another
less restrictive way of dealing with the undefined relative positions problem
would be to have the patterns similar to s(_,x) match only valid terms.
This could be achieved by checking at runtime that every relative position in
x references an accessible term. This is easily done with the help of strategies
presented in section 4. In both cases, we cannot avoid some modification of
the pattern-matching algorithm, thus of the compiler.

The two previous kinds of patterns focus on the positions themselves as
matchable objects. Another approach would be to have the patterns express
constraints about the value of the referenced subterms. The mapping mecha-
nism presented in Section 3.1 offers the necessary features to achieve this via
the writing of an ad hoc destructor. We wrote this deref destructor which
acts like a proxy between the pattern matching algorithm and the destructor
of the value referenced by a position. As an example, the term represented by

s

sa

f

s

sa

a

f

Fig. 7. deref(a()) ambiguity

Figure 3 matches against the pattern s(a(),deref(a())). It is important
to note that the patterns are now an abstraction of the term so we do not
match the graph structure anymore. For instance, the two terms of Figure 7
match against the same pattern s(a,s(f(deref(a())),_)). In particular, it
is not possible anymore to use non-linear pattern matching in order to check
that two positions are referencing the same sub-term, as depicted by Figure 8
which shows the ambiguity of the s(s(deref(x),deref(x)),_) pattern.
Again, matching terms with references in this way is not safe. Indeed the

s

s

s

ss

Fig. 8. deref(x),deref(x) ambiguity

subject may contain positions referencing terms above its root. However

9

Balland,Brauner

this time, checking the validity of a term does not require any change to the
compiler since the test can be transfered to the destructor. The later aborts
the matching process by returning false if accessing the pointed term raises
an exception.

3.3 Matching term-graphs

Contrary to Gom terms with references, the usual term-graph definition does
not differentiate two types of children. Therefore, it may be convenient to have
the patterns s(x:a(),x) and s(x,x:a()) match either s(a(),pos(-1,1)) or
s(pos(-1,2),a()). The normal form mentioned in Section 2.2 enables such
a feature: it is sufficient to maintain normalization of both terms at runtime
and patterns at compile time to ensure this behavior. It requires some minor
changes of the Tom compiler though.

As recalled in Section 2.2, one main application of term-graphs is the
representation of subterms sharing in the purpose of gaining space and com-
putation time. However, this structure (the sharing) does not reflect the
structure of the represented term (typically a λ-term) and it is therefore de-
sirable to manipulate it modulo this encoding. The basic idea is to interweave
deref constructors inside the patterns, so that s(a(),a()) is translated into
deref(s(deref(a()),deref(a()))) and thus matches the graph of figure 3.
It only requires to confer some lazy behavior to the deref destructor, which
should act as if not existing in case of a direct subterm (not a position).

Even if the classical [2] representation of term-graphs by a labelled graph
is similar to ours, the conditions on rewrite rules are more restrictive (the left-
hand side of a rule is limited to trees). For now, term-graph rewriting in Tom

is expressed by syntactic term rewriting. Contrary to [2], there is no garbage
collection phase and referenced subterms can disappear or change, leading to
invalid terms. One solution would be to integrate this garbage collection phase
in the Tom matching. An other attractive approach would be to implement
the formalism presented in [5] where the right-hand side of the rewriting rules
consists in a set of actions on the pointers.

4 Strategic programming with term-graphs

Tom provides a powerful strategy language inspired by ELAN and Stratego.
The purpose of strategies is to describe how transformation rules should be
applied. In case of terms with references, the strategy language must be
extended in such a way that we can traverse them as graphs.

4.1 Tom strategy language

Elementary strategies are composed of the two basic strategies Identity()

and Fail() as well as type-preserving user-defined rewrite rules specializing

10

Balland,Brauner

their behaviour:

%strategy Eval() extends Fail() {

visit A {

s(x,a()) -> { return ‘f(x); }

s(x,y) -> { return ‘y; }

}

}

When applied to a node of sort A, a transformation is performed if one of the
patterns matches the node. Otherwise, the default Fail strategy is applied.

More complex strategies can be built on top of elementary ones, in-
volving basic combinators introduced in ELAN [7] and extended in [14]:
Sequence(s1,s2), Choice(s1,s2), All(s), One(s), etc. We can therefore
build strategies such as ‘Choice(Eval(),Identity()) which tries to apply
Eval() to the current node and returns it unchanged if Eval() failed (i.e.
none of the patterns matched the current node).

Besides, the strategy language allows the declaration of recur-
sive parametrized strategies, enabling the definition of higher-level con-
structs. For example, the fix-point operator can be expressed by
Repeat(s)

△

= µx.Choice(Sequence(s,x), Identity()), where µ denotes a
recursion operator, x a variable, and s a parameter of the strategy. In Tom,
we raised the recursion operator to the object level, allowing the definition of
complex strategies in a truly algebraic manner:

Strategy Repeat(Strategy v) {

return ‘mu(MuVar("x"),

Choice(Sequence(v,MuVar("x")),Identity()));

}

Finally, Gom generates a congruence strategy _f for each constructor f

of an algebraic signature. Using the notation s[t] to express the application
of the strategy s to the term t, f(s1,...,sn)[f(c1,...,cn)] returns
f(s1[c1],...,sn[cn]) and fails if the head symbol of the subject is not
f. This allows to perform pattern matching “on the fly” during term traversal.

One noticeable property of strategic programming with Tom is that it is
possible to get the current absolute position inside the visited term during a
traversal. This allows for instance to collect in one pass the set of reduced
forms of a term for a given rewrite system. In our case, we will make use of
this feature in the next section to collect the positions of bounded variables
occurences under an abstraction.

4.2 Extension of Tom strategy language

In order to traverse terms with references, we enrich the strategy language
of Tom with one new strategy combinator Ref whose semantics is defined as

11

Balland,Brauner

follows:

Ref(s)[t] =

s[t’] if t’ is the term referenced by t

s[t] otherwise

This new basic combinator can be used everywhere in a composed strategy.
One important characteristic of the Tom strategy language is that every com-
posed strategy is itself a term and therefore can be traversed and rewritten.
Adapting a strategy term for graphs with references consists in weaving the
Ref combinator ahead every elementary strategy inside a strategy term. For
example, Sequence(s1,s2) where s1 and s2 are elementary strategies will be
rewritten into Sequence(Ref(s1),Ref(s2)).

5 Application to the lambda-calculus

Let us see now some application of our programming framework through the
implementation of a basic λ-calculus interpreter. The graph with references
will encode variable bindings, acting as de Bruijn indices, while the strategy
language will translate the usual evaluation strategies of λ-calculus.

We work with a minimalist Gom signature:

LT = App(LT, LT)

| Abs(LT)

The chosen representation of λ-terms makes use of terms with references
by replacing variables with positions pointing to the corresponding binder.
For instance, the term λf.λx.(f x) will be encoded by the Gom term
Abs(Abs(App(posLT(-3),posLT(-2)))). This encodes a kind of de Bruijn
indices counting not only abstractions but also every node in the syntactic
tree of the λ-term.

Let us write a beta strategy wich performs one β-reduction step on a redex.
As mentioned in the previous section, it is possible to get the current position
inside a visited term during its traversal by a strategy. Thereby, knowing the
position of λ inside the visited redex (λx.f a) will allow us to find all the
occurences of x in f , i.e. relative positions pointing to λ. The beta strategy
then simply consists in four steps when applied to an application (λx.f a):

(i) collecting the position of λ;

(ii) collecting a;

(iii) replacing all the occurences of relative positions pointing to λ by a in f ;

(iv) replacing the redex by the modified f .

Assuming we have a mutable structure info (a Java class here) which can
store both informations of the first and second steps, this is achieved by the

12

Balland,Brauner

following strategy:

Strategy beta = ‘Sequence(

_App(Identity(),collectTerm(info)),

_App(

Sequence(

collectPosition(info),

_Abs(µx.Choice(substitute(info),All(x)))),

Identity()),

clean());

We can notice the presence of four user defined strategies: collectTerm,
collectPosition, substitute and clean. They respectively perform the
four steps described above. Their code is obvious and one line long, except
for the substitute strategy which has to compute the absolute position
referenced by the current term to compare it with the position of λ stored in
info. Then it performs the necessary shifts on bounded variables (relative
positions) inside a before returning it. The whole strategy itself is an overlap-
ping of congruence strategies. The µx.Choice(substitute(info),All(x))

construct means that we do not go down further inside the term if the
substitution succeeded.

We shall now apply this beta strategy on a λ-term with some evaluation
strategy until we reach a fixpoint. beta being a strategy, it can be combined
with other strategies to perform reductions. In particular, the TopDown and
Innermost strategies respectively encode call-by-name and call-by-value eval-
uation strategies modulo some fixpoint computation encoded by the provided
RepeatId strategy. They are themselve expressed using elementary strategies:

TopDown(s) = µx.Sequence(s,All(x));

Innermost(s) = µx.Sequence(AllRL(MuVar(x)),Try(Sequence(s,x)))

Where AllRL applies s to all the childs of the current node from right to
left. Substituting s by beta inside one these enables the expected evaluation
behaviour.

Let us finally see how a typical use of term-graphs, namely sub-
terms shared evaluation, can be implemented by a slight modification
of the previous example. We now assume that many bounded vari-
ables are represented by shared subterms where “shared” is meant in
the sense of term-graphs semantics. For example, the λ-term λx.(x x)
will be represented by Abs(App(posLT(-2),posLT(-1,1))) instead of
Abs(App(posLT(-2),posLT(-2))). The previous beta strategy is then
still mainly valid since this modification only affect the situations where
the second child of an application is a variable, i.e. a relative position.
Hence, changing the line _App(Identity(),collectTerm(info)) by

13

Balland,Brauner

_App(Identity(),Ref(collectTerm(info))) suffices to adapt the strategy
to the new λ-terms representation. This modification is of course relevant in
case of a call-by-name strategy.

The discussed implementation is available in the Tom subversion
repository 1 , under the examples/termgraph path.

6 Conclusion

To the best of our knowledge, we have presented here a new way of representing
terms with references which presents strong similarities with the term-graph
formalism. Using the Tom language as a programming background, we have
discussed the various advantages and drawbacks of such an approach at differ-
ent levels: memory representation, pattern matching and strategic traversal.
We finally presented an application of this framework via the writing of a
simple λ-calculus interpreter making an heavy use of strategies.

Although a major part of the presented propositions has been imple-
mented, the solutions requiring a modification of the compiler as described
in section 3.2 are still theoretical. The syntactic sugar constituted by the la-
belled notation is a matter of few lines of code. On the other hand it may
be interesting to look closely at an efficient way of checking the validity of
references contained by a given subterm at runtime. Another field of investi-
gation would be the writing of Ref strategies aborting infinite loops appearing
during the traversal of a graph with cycles. This could be achieved by some
map associating counters to visited nodes.

As shown by the last section, this model has interesting applications and
opens promising perspectives in terms of program transformation and code
analysis. Besides, the normal form described in section 2.2 makes it a solid
basis for experimenting transformations on term-graphs in a concise and ex-
pressive manner.

References

[1] Ariola, Z. M. and J. W. Klop, Equational term graph rewriting, Fundam. Inf.
26 (1996), pp. 207–240.

[2] Barendregt, H. P., M. van Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer
and M. Sleep, Term graph rewriting, in: PARLE Parallel Architectures and
Languages Europe, Lecture Notes in Computer Science 259 (1987), pp. 141–
158.

1 Compilation instructions are detailed in the Tom documentation at http://tom.loria.
fr/docs.php

14

http://tom.loria.fr/docs.php
http://tom.loria.fr/docs.php

Balland,Brauner

[3] Comon, H. and J.-P. Jouannaud, Les termes en logique et en programmation
(2003), master lectures at Univ. Paris Sud.
URL http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/

articles/cours-tlpo.pdf

[4] Dougherty, D. J., P. Lescanne and L. Liquori, Addressed term rewriting systems:
Application to a typed object calculus, Mathematical Structures in Computer
Science 16 (2006), pp. 667–709.

[5] Echahed, R. and N. Peltier, Narrowing data-structures with pointers., in: ICGT,
2006, pp. 92–106.

[6] Kennaway, R., On graph rewritings, Theoretical Computer Science 52 (1987),
pp. 37–58.

[7] Kirchner, C., H. Kirchner and M. Vittek, Designing constraint logic
programming languages using computational systems, in: F. Orejas, editor,
Proceedings of the 2nd CCL Workshop, La Escala (Spain), 1993.

[8] Kirchner, C., R. Kopetz and P. Moreau, Anti-pattern matching, in: Proceedings
of the 16th European Symposium on Programming, 2007.

[9] Lacey, D. and O. de Moor, Imperative program transformation by rewriting,
in: Proceedings of the 10th International Conference on Compiler Construction
(2001), pp. 52–68.

[10] Löwe, M., Algebraic approach to single-pushout graph transformation,
Theoretical Computer Science 109 (1993), pp. 181–224.

[11] Moreau, P.-E., C. Ringeissen and M. Vittek, A Pattern Matching Compiler
for Multiple Target Languages, in: G. Hedin, editor, Proceedings of the 12th
International Conference on Compiler Construction, LNCS 2622 (2003), pp.
61–76.

[12] Plump, D., “Handbook of Graph Grammars and Computing by Graph
Transformation,” World Scientific Publishing, 1999 pp. 3–61.

[13] Reilles, A., Canonical abstract syntax trees, in: Proceedings of the 6th
International Workshop on Rewriting Logic and its Applications, 2006, to
appear.

[14] Visser, E. and Z.-e.-A. Benaissa, A core language for rewriting, in: C. Kirchner
and H. Kirchner, editors, Second International Workshop on Rewriting Logic
and its Applications, Electronic Notes in Theoretical Computer Science 15

(1998).

15

http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/articles/cours-tlpo.pdf
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/articles/cours-tlpo.pdf

	Introduction
	Term-graph representation
	Terms with references
	Implementation of terms with references
	Correspondence with term-graphs

	Term-graph matching
	Tom pattern matching
	Matching terms with references
	Matching term-graphs

	Strategic programming with term-graphs
	Tom strategy language
	Extension of Tom strategy language

	Application to the lambda-calculus
	Conclusion
	References

