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Abstract

We study the approximation by finite volume methods of the model parabolic-elliptic problem b(v); =
div (|Dv|P~2Dv) on (0,7) x @ C R x R? with an initial condition and the homogeneous Dirichlet
boundary condition. Because of the nonlinearity in the elliptic term, a careful choice of the gradient
approximation is needed.

We prove the convergence of discrete solutions to a solution of the continuous problem as the
discretization step h tends to 0, under the main hypotheses that the approximation of the operator
div (|Dv[P~2Dv) provided by the finite volume scheme is still monotone and coercive, and that the
gradient approximation is exact on the affine functions of = € 2. An example of such a scheme is given
for a class of two-dimensional meshes dual to triangular meshes, in particular for structured rectangular
and hexagonal meshes.

The proof uses the rewriting of the discrete problem under a “continuous” form. This permits us to
directly apply the Alt-Luckhaus variational techniques known in the continuous case.
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1 INTRODUCTION

Let Q be an open bounded polygonal domain in R%, d > 1 and T' > 0. We consider the initial boundary
value-problem for a system of nonlinear elliptic-parabolic equations:

b(v); = divay,(Dv) on Q= (0,T) x Q,
v=20 on £¥=(0,T) x 99, (1.1)
b(v)(0,-) = u° on

where 1 < p < 0o and diva,(Dv) = div (|Dv|P2Dv) is the N-dimensional p-Laplacian, N > 1, i.e.,

) p/2—1
ap : E = (Elv' .- 7£N) € (Rd)N = |€|p—2€ = (Z |'£z]|2> (517' .. a£N> € (Rd)N

We assume that i
b:RNY 5 RN s continuous cyclically monotone, i.e.,
{ there exists a convex differentiable function @ : RY — R such that b= V®, (12)
normalized by b(0) =0 and ®(0) = 0. Moreover, we assume
u® € LHQ)N  with  T(ug) € L1(Q), (1.3)

where ¥ is the Legendre transform of & given by

1
T:zeRY — sup / (z — b(so))ods = sup (0z — ®(0)).
o€RN JO o€RN

Equations of elliptic-parabolic type (1.1) arise as models of flow of fluids through porous media (cf., e.g.,
[5, 12]). They have already been studied extensively in the literature in the last decade from a theoretical
point of view (cf., e.g., [1, 21, 22, 12, 6, 26, 7, 10, 2]). Existence of weak solutions of general systems of
elliptic-parabolic equations has been proved in [1], using Galerkin approximations and time-discretization.
Similar results have been obtained later by other authors using different methods (e.g., using a semigroup
approach as in [6, 7] in the case N =1).

In particular, it is known that in the case of the system (1.1), for any wg satisfying (1.3), there exists
a weak solution of (1.1), where the weak solution is defined as follows. Denote by E the Banach space
Lr(0,T; Wol’p(ﬂ))N and by ' its dual; E' = L? (0, T; W1 (Q))N where p' = p/(p—1) is the conjugate
exponent of p. Denote by < -,- >p g the duality pairing between E' and E.

Definition 1 (Weak solution) A function v € E is a weak solution of Problem (1.1), if
b(v) € L®(0,T; L ()N, and b(v); € D'(Q)YN can be extended to a functional x on E satisfying

<X,¢>pE +// ap(Dv)-D¢p =0 forall ¢ € E, (1.4)
¢ for all € € E with
or a wi
<xvezme= - 06— [woeo) FEION 0

Note that if v is a weak solution of (1.1), then, by the “chain rule” lemma of [1], one has
B(v) € L®(0,T; L*(Q))N,  where

B:zeRN —b(z)z—@(2) = /Ol(b(z) —b(sz))zds = ¥(b(2)) € R (16)



From the results of [26, 10] it also follows that, in the scalar case N = 1, there is uniqueness of a weak
solution of (1.1). To our knowledge, the question of uniqueness is open in the case N > 2.

In this paper we study the convergence of time implicit approximations by finite volume numerical
schemes for the model nonlinear elliptic-parabolic problem (1.1). Finite volume methods are well suited for
numerical simulation of processes where extensive quantities are conserved, and they are popular methods
among engineers in hydrology where equations of this type arise. Therefore justification of convergence of
this numerical approximation process is of particular interest. In [17] the finite volume method has been
studied and convergence of this approximation procedure has been proved for Problem (1.1) in the particular
case p =2, N =1. The same method has also been studied for this equation (i.e., p =2, N = 1) in the
presence of an additional convection term (cf. [18, 14]), and for a nonlinear diffusion problem in [16]. To
our knowledge, in the case p # 2, only the convergence of finite element methods has been studied (cf.
[19, 11, 4, 20] and their references).

Let us emphasize that our main object is not only to prove the convergence of some finite volume
methods for (1.1), but also to develop a “continuous” approach for this proof. The main idea of this
adaptation is to rewrite the discrete finite volume scheme under an equivalent continuous form and to
apply known stability techniques for the continuous equation (cf. [1] and [2, Chap.V] for the version we
use) in order to get convergence of the discrete solutions to a solution of the continuous problem. The
“continuous” approach and the convergence result have already been presented in [3].

In Section 2, we describe the finite volume schemes and in particular the admissible flux approximations
we use. We show the existence and uniqueness of the solution of a finite volume scheme and give some
a priori estimates on discrete solutions. Then we state the convergence result. In Section 3, we show
in Proposition 2 that the solution of a finite volume scheme, originally satisfying a discrete system of
algebraic equations, also verifies a “continuous” formulation similar to (1.4),(1.5). This representation
makes clear in which sense finite volume schemes approximate the elliptic operator in (1.1); we prove that
this approximation is consistent. In Section 4 we prove the convergence theorem, passing to the limit in
the “continuous” formulation of Proposition 2. In Section 5, we analyze the two admissibility conditions
imposed in Section 2. For d = 2, we propose a scheme on meshes dual to triangular meshes which enter
into our framework; in particular, we have the convergence result on structured rectangular and hexagonal
meshes.

We consider the p-Laplacian as a prototype of a class of the so-called Leray-Lions-type operators; in
Section 6, we discuss the extension of the techniques presented above to a particular case of the p-Laplacian
operator with convection, studied in [12].

The Appendix A contains the proofs of the auxiliary results used in Section 4. In order to simplify the
notation, we restrict the exposition to the scalar equation case (N = 1).

2 THE NUMERICAL METHOD

In order to construct approximate solutions to Problem (1.1), we will use the implicit discretization in time
and a finite volume scheme in space.



2.1 FINITE VOLUME MESHES, DISCRETE GRADIENTS AND
FINITE VOLUME SCHEMES FOR PROBLEM (1.1)

Let Q be an open bounded polygonal subset of R¢. A finite volume mesh 7~ of Q is given by: a family of
open polygonal convex subsets of {2 with positive measure, called " control volumes”; a family of subsets of
Q contained in hyperplanes of R?, with positive (d—1)-measure (these are the interfaces between control
volumes); and a family of points of 2, one per control volume (these are the “centers” of the volumes). For
a volume K with center zx € K, the interfaces contained in 92 are considered as additional “boundary”
volumes, unless zx € 0N).

For the sake of simplicity, we shall denote by 7 the family (k)xec7 of control volumes; (zx)xeT
denotes the family of their centers. The set of all volumes K such that zx € 92 is denoted by Tc.:, and
the set of all volumes K with zx € Q is denoted by 7;,:. The set of interfaces KL such that K or L or
both belong to T;,: is denoted by £ , and KL denotes the interface between two neighbours K, € T .
For all ki, KL denotes the “diamond” over K, i.e., the smallest convex set of R? containing KL, zx
and z,. Whenever we use K, KL or n to index objects and make summations, we mean that Kk € T,
KL €& and n € {1,...,[T/k]+1}, where k is the time step of the scheme.

Following [15], we give the following definition.

Definition 2 (Finite volume mesh) We say that T is a finite volume mesh of Q if the following hold:

(2i) The closure of the union of all control volumes is Q2.

(2ii) For any (k,L) € (T)? with k # L, either the (d—1)-dimensional measure of KNT is0Qor KNT =G
for some o € £ (in which case we denote o = KL = 1K ).

(2iii) For any K € T, there exists a subset £, of € such that 0K = Uycg, 0. Furthermore, £ = Ugc1€k .
We will denote by Ny the set of volumes adjacent to k; i.e, Nx ={L €T, KL € Ex}.

(2iv) The family of points (zx)x is such that xx € K for all kK € T, and it is assumed that the straight
line joining x and x; is orthogonal to KL whenever L € Ny .

Denote by m(k) and 9(k) the d—dimensional measure and the diameter of Kk € T, respectively; and
denote by m(kL), the (d—1)—dimensional measure of kL € £. A mesh T is characterized, in particular,
by the following numbers:

size(T) = max d(x), ¢*(T) = min min S (x:9),

K o€k 0(K)
ming mingeg, dist (zx, o)

size(T)

M(T) = max card(€x), C(T) =

A finite volume method for (1.1) requires a family ((Th,kh))h of meshes and corresponding time

steps k" > 0 such that both the size of the mesh and the time step go to zero. We will assume in our
notation that the family is parametrized with h in some subset of (0,1) whose closure contains zero, and
size(Th) + k" < h. A couple (T, k") will be called a space-time grid.

In relation to a family ((Th, kh)>h, we define the numbers

M=supM(THeN, ("= i%fg*(Th) €eRT, and (= i%fg*(Th) € RT. (2.7)
h



Definition 3 (Proportionality of meshes)
We say that the family of meshes (T™);, is weakly proportional if M < oo and ¢* > 0. We say that the
family of meshes (T")}, is strongly proportional if, in addition, ¢, > 0.

Weak proportionality is standard (cf. [18]). Strong proportionality is a technical assumption which
ensures that (7);, has the interpolation property (cf. Sections 2.5 and 5.2).

Given a grid (7" k"), to each time-space volume Q7 = 1" xk, 1" = (k(n — 1), kn) one associates
an unknown value v € RY . In order to obtain a finite volume scheme for (1.1), one “integrates” the
equation in (1.1) over each grid volume Q% . The time derivative in the left-hand side is approximated by
the corresponding finite difference. On the right-hand side, one uses the Green formula and then needs to
replace the flux on the lateral boundary of Q% by some function of the unknowns (v%)x . For Problem
(1.1), this amounts to finding a substitution for Dv in the expression fI”xKLLap(Dv) vk, (where vg 1 is
the unit normal vector to KL pointing from K into L). We will assume that this substitute is in L? on
each interface 1™ X KL, typically constant in time and piecewise constant in space. We therefore consider
“discrete gradient” operators D" of the form

{ D" : (Ugr)K,n = (DZ\L)KlL"'”

(2.8)
DY, € LP(1"x ki) for all KL, n.

It seems natural, though not necessary, to require that D" be a linear operator.

A finite volume scheme for (1.1) is defined by a grid (7",k") and a discrete gradient D" associated
with the grid. Finally, a finite volume method for (1.1) is given by a family ((Th,kh,Dh))h of grids and

associated discrete gradient operators D". In Sections 2.3 and 2.5 we state the admissibility conditions for
such methods.

Now we are able to write the equations for a scheme (77", k" D"):

b(’l)g) N b(Uﬁ—_l) / for all Kk € Tht,
m(K) — a Dn T dm v 7 m 29
i LEEA;K P N N 7 PR W e

The homogeneous Dirichlet boundary condition is taken into account by assigning
vt =0 forallk €TV, forallne{1,... [T/k"+1}. (2.10)

The initial condition is given by any values v% € b 1(u?), where

1
O=—— [ u® forall keTh,. 2.11
o= oo [ foral e T (211)
We denote by ul the piecewise constant initial function >, u% 1., where 1 is the characteristic function
of the set k. Other choices of u% are possible, provided one has u! — ug a.e. on Q and ¥(ul) — ¥(ug)
in L1(Q) as h — 0, where ¥ is defined in the introduction. These properties hold for u% given by (2.11),
due to the convexity of .

We denote by (S”) the system (2.9),(2.10),(2.11) corresponding to a given finite volume scheme (77, k", D").



2.2 MEMENTO ON NOTATION

In this section we collect the most used notation related to the finite volume schemes.

T : a finite volume mesh;

Text, Tint :  the set of exterior, interior control volumes;

£ :  the set of interfaces between control volumes;

K, L . control volumes of T;

KIL :  the interface between the two neighbours k and r;

Ex :  the set of all interfaces surrounding k;

Ni . the set of all neighbours of k;

Ty :  the “center” of k;

di 1 : the distance between zx and z;, dx, = |tk — Ts|;

di ki : the distance between xx and KIL; one has dy xp + dr s = di 1;

VgL : the unit normal vector to KL pointing from K to L;

KL . the smallest convex set of R? containing KL, zx and z.;

V(K), M(K) : the diameter and the d-dimensional measure of K, respectively;

size(T) . the size of the mesh T, size(7) = maxg 0(K);

m(KiL) :  the (d—1)-dimensional measure of Ki;

|R| . the (d+1)-dimensional measure of a set R C Rt x RY;

m : the time interval, 1" = ((n—1)k,nk);

4 : the time-space grid element, Q% =I1"XK;

7 : the lateral boundary of Q%, X7 = 1" x0k;

T (k) : the union of all control volumes of (7) that are separated from K by at
most (¢ — 1) other control volumes;

T4 1 the characteristic function of a set A;

(T" k" D) : a finite volume scheme (mesh, time step, discrete gradient);

(8h) : the corresponding system of equations (2.9),(2.10),(2.11);

h . the discretization parameter, h > size(7T"?) + k";

M,¢* :  the weak proportionality bounds for (T™n, M = sup, maxg card(Nx)
and ¢* = infy ming W;

Cx . the strong proportionality bound for (7%);, (. = inf}, mm}(,;;;\(r%dx,m;

v : the unknown of the scheme (S") corresponding to the volume Q%;

oh . a discrete solution for the scheme (7, k" D"), w* = >k Viclgn;

ub :  the discrete initial data, ul} =Y, u%1lx;

Dy, : the discrete gradient values on 1" x kL, DY, € LP(1" X KIL);

D :  the discrete gradient operator, D" : (v7)x , (D% ) xezmi

. . the value D7, = “6K featuring in the “discrete LP(0,T; W'?(Q))

norm” of T*;

Dh : the corresponding operator, D} : (vt)x;n = (D} 4 ) k-



It is convenient to extend D" (as well as ’D’i) to an operator acting from E into LP(Q). Let Ph be
the operator from Q to |JKIL which projects z € Kk on Ok along the ray joining zx to z. The lifting
operator £" is then defined by We define the appropriate lifting operator L and averaging operator Mh
by

h h
LM (D) | (t,2) = 3 Dita(PM(@) Tyn ez (8, @),
KIL,n

’ 1
M5y e LQ) = M) = () CBY, mi= 2
Q%I 2

We will abusively write D" for the operators D", £"* o D, and L£" o D? o M"; and the same for ’D’i.

The following notations, specific to the “continuous” approach, are introduced in Sections 2.5 and 3.1.

uP : the continuous in t interpolation of b(7"), affine on each time interval 17;

ol an interpolated solution in E for o" (cf. Definition 5);

Gh . the interpolated gradient operator produced by the scheme (7", k" D") (cf. Definition 6);

A : the elliptic operator in (1.1), A:n € E — —divay(Dn) € E';

AP . the finite volume approximation of A produced by the scheme (7", k" D?),

given by A" : p € E — —diva,(G"[n]) € E'.

2.3 ADMISSIBLE FLUX APPROXIMATIONS
For simplicity, we consider only the gradients that yield fully implicit schemes; in this case Dh,D’i act
independently on each set (v,ﬁ) , and the dependence on n does not matter for their definition.

K

Let us introduce the operator D’i, which appears naturally in the a prior: estimates of Section 2.4:

Uy — Uk

Djl_ (vk)x (DL,K\L)KlLa Dy g = eR (2.12)

dK,L

For ¢ € N, denote by T (x) the union of all control volumes of T that are separated from K by at most
(s —1) other control volumes; for instance, T1(k) = Urep, L- The choice of ¢ corresponds to the choice
of control volumes that are really involved in the construction of D" on Ok .

Now we can make precise the assumptions on discrete gradient operators of the form (2.8).

Definition 4 (Admissible gradient approximation) Let (Th, Dh)h be a family of finite volume meshes

and corresponding discrete gradient operators. The gradient approximation provided by D" is admissible
if the following hold.
(4i) D" is linear and injective;

N

(4ii) D" provides a strictly monotone scheme; i.e., for all (vx)x,(Vx)x C (R?)N that do not coincide,

é%((m—v,{) - (5L—5K)) /KIL(G’IJ(DKL(-'B)) - ap(ﬁm(a:))) dz - v, >0,
where (D) = D" [(UK)K] , (Dxp)sp = D" [(5K)K] .

(4iii) D" provides a scheme coercive at zero; i.e., there exists a constant C, > 0, independent of h, such
that for all (vi)x C (R)Y and (Dygy)iw = D" [(UK)K], one has

%%(UL - UK) /Kwap(Dm(x))dx vk, > Cs

D?_[(UK)K] Hiv(n);



and there exists ¢ € N, independent of h, such that the following hold.

(4iv) For each h, D" is consistent with affine functions. More exactly, assume that, for k € T" given,
there exists an affine function w on Q such that v, = ﬁ/jjw whenever L C Y¢(k). Then
Dy (z) = Dw = const for all z € KL for all L € N.

(4v) There exists a constant C*, independent of h, such that, for all K € T" and all sets of values (vx )«
P P
of B, [ [Pl <C* [ [Dh [t
K T (K)

Conditions (4ii) and (4iv) imply strong restrictions on the gradient approximation. We provide some
examples of methods with admissible gradient approximation in Section 5.1.

2.4 DISCRETE SOLUTIONS

Recall that we consider as unknowns the values v} on K € Ty, assigning vy to be zero in kK € Tgze. We
will repeatedly use the following “summation by parts” formula (cf., e.g., [15]).

Remark 1 (Summation by parts) Let T be a finite volume mesh of  in the sense of Definition 2. Let

(vk)xer C RV, (Fr,)(x,0)eT2 C RN . Assume vk = 0 for all K € Teyy and Fy , = —Fy x for all
KL € €. Then
ZUK Z FKL:Z _UL>FK,L-
LENK KIL

If (v7)x p, verifies (S"), we say that the function 7" = > xn U lgn is the corresponding discrete solution.
We prove the discrete version of the LP(0,T; Wol’p(Q))—a priori estimate on ©" (which is exactly the
estimate on D" [o"] in LP) and the discrete version of (1.6).

Proposition 1 (A priori estimates) Let ((Th kh)) be a family of finite volume grids. Let (’Dh) be
a family of correspondmg discrete gradient operators satlsfymg Property (4iii) of Definition 4. Then for

any solution 5" of the discrete problem (S"), there exists a constant C which depends only on p,d,Q, T,
on Cy in (4iii), and on ||¥(uo)|| () such that

0 [P g = 5 d,::Krso;
KL,n
0 56, z <c

PROOF: Take i € {1,...,[T/kh]+1} and multiply each term in (2.9) by vi . By (4iii), using Remark 1
and (2.10), one gets

Zm b)) ok + C’*k"d/Q o[ <o.

By the convexity of ®, one has (b(vi) — b(vic!)) vl > B(vi) — B(vi!). Summing over i from 1 to
n € {1,...,[T/k"4+1} and taking into account the convexity of ¥, we infer

n h
Zm(K)B(v,’g)+C*d/ k/ "Dj‘_[ﬁh]‘pé
= 0o Ja

< S mu¥l) = S muo¥(— [ ) < [ w) .

K



Next, let us prove the discrete version of the Poincaré inequality and of the compact embedding of
WLP(Q) in L}(Q2) and in LP(£2). Note that in (i) and (i), we do not need any proportionality assumptions
on the mesh.

Lemma 1 (Discrete Poincaré inequality) Let Q C R? be a polygonal domain of diameter (f2), and
let T be a finite volume mesh of Q. Let v" = 3 vx Iy such that (vg)xer C R and vk = 0 for all
K € Tegt. Then there exists a constant C which depends only on p and d such that

() 17|10y < Co(@)|[ DL 17"

Lr(Q)’

i) for all A > 0, sup M (z+Az) — T de < A x |Dh[o"
1
|az|<A /R4

Ll(n) '

(iii) there exists a constant C depending on p,d and on (,(T) such that
for all A >0,  sup T (z+Az) — " (2)[P dz < A(A + 2size(T))P~L x C HDS‘_[Eh]Hp .
Az|<A /R Lr(Q)

PrROOF: (i) For z € Q, set 9. (x) = 1, in the case that the orthogonal projection of KL on the
hyperplane {z; = 0} contains (0, z2,...,24), and set g (z) = 0 otherwise. One has

— v _ —
@) < 5 Zwm el = loxl?| < €3 inla) ) g 12— 0l ™ K|(|UK|P1+|vL|P Y.
,L

KIL

Since [¥xp () dz < m(xi) 2(Q), one has by the Holder inequality

L p=1
p p
()P — Uk ‘p 1 P p
v (z)|Pdz < Co(Q KL)d m(xiL)d V| + |v
[ @ de < (Zd e ) (%d (P + [0 P)
Denote h = size(7"). Assertion (i) will follow by the Young inequality if we show that
1 — vk |P
Z D),z ([vel? + vz?) < (1 +27) ) " m(m)|vk [P + 2(2R)P Y S y mED .| d 5 (2.13)
P KL K,L

since h < 9(2). Denote by R the left-hand side of (2.13). We have dx ;= di wxi+dL ki thus

R Zm(K |'UK|p + Z d ‘/UK| dL JKIL + |/UL| dK K\L)
Note that
oxlPd 2P| v, |Pdy, s if vk | < 2|vg),
vl e (2h)p‘”L ”K‘ dyk,, otherwise.
Indeed, i lv, — vk| > 1|vk| so that

|UK |de,K1L < |UK|de,L < 2p|UL - UKlde,L 2php

| des.
Using the same argument for |v|Pdx xz, we obtain the desired estimate (2.13).

(i) Now for x € R%, set 9, (x) = 1 in the case where the segment [,z + Axz] crosses KL, and set
Y (z) = 0 otherwise. Note that [, (z) dz < m(xr) A; hence (i) follows, since

UL_UK‘

dK,L

[T (z) — (x4 Az)|dx < / Z@Km(z‘)h}L —vg|de < AZm(KLL)dK,L
R4 R4 KL

KIL

10



(i) Proceeding as in (ii), we get
[o" () — 5" (e-+ Az) |de</ (Z%L Vin) (X P @) dic
KIL

It suffices to prove that

UL _UK p
‘ dz.

Rd dK,L

sup Z Yy (T) dic 1 < C (A + 2size(T)), (2.14)
z,Aa:EQ,\A:c|<A

with some constant C which depends on (,(7). Recall that size(T) is the maximum diameter of x € T
and each mesh contains a ball of the radius (.(7)size(7). Denote h = size(T). Let Z; 1Az be the
cylinder in R? of radius h, with the segment [z — h |2x|,x +Az+h2 A |] for the axis. If the segment
[,z + Az] crosses a control volume Kk, K is contained in Z; ;1 A,. Note that the d-dimensional measure
of 241z is estimated by C (|Az|+ 2h) R4 1. On the other hand, for all k, m(k) > C (¢«h)?, and the

greatest possible value of 7 - Vg (%) di,i is 2h. Therefore the left-hand side of (2.14) is estimated by
2h times the number of control volumes contained in Z; Az, i.e., by 2h %, which concludes
the proof. o
Remark 2 Calculating more carefully [, 9, (z) (cf. eg. [15, 17]), we can prove estimate (iii) in case

1 < p < 2 with a constant independent of (,.
Now we can state the result for existence and uniqueness of a discrete solution.

Theorem 1 (Existence and uniqueness) Let 7" be a finite volume mesh of Q, k" > 0, and let D" be
a discrete gradient associated to T . If D" satisfies (4iii), there exists a solution (V%) to the discrete
problem (S"). If D" satisfies (4ii), the solution is unique.

PROOF OF THEOREM 1: Fix n € {1,...,[T/k?]4+1}. Assume that the values (v,’fl)Kerht are already

found. We denote by V' a vector of R4 Tint) with entries (UIT:—)KETht. Let us consider the operator §
that associates to a given vector V the vector given by (2.9),

ny _ ,Un—l
SV) = (m(K)b(UK> kf( K ) _ Z /KLL ap(D%L(:L'))dl"VK,L) o

LENK int

We are looking for a solution to the equation S(V) = 0. Consider the scalar product (S(V),V) in
Reard(Tin) - We have

(SV),V) = T e () bR — 2 3 mi) blog Y -
(2.15)
Y 0 /KLL ap(D2 (2))dz - iz

In view of hypothesis (1.2), the first term on the left-hand side of (2.15) is non-negative. Since all the
norms are equivalent on R%r4(Tin:) for the second term on the left-hand side of (2.15) we have

0 Zm vk <Vl Zm(K =C |V|;

here and in the sequel of the proof, C,c denote positive constants independent of V, and |V| denotes
a norm of V. We then handle the last term on the left-hand side of (2.15), which we denote by R(V).
Using Remark 1, we get

“RY) =3 (@ — o) /KLL ap(D™y (2))de - vic s
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Thanks to hypothesis (4iii) and Lemma 1(i), we obtain

n n
Uy — Uk

—R(V) > ¢ di,m(Ki)
KL

b
> m(K) [vi[P >c|VP. (2.16)
K

dK,L
Returning to (2.15), we obtain for all 1 < p < oo that there exist constants ¢, C' > 0 such that
(SWV),V) = eV -C V| =0,

for |V| large enough. Therefore in view of the Brouwer fixed point theorem (cf., e.g., [25, Lemme 4.3]),
there exists a solution to S(V) =0.

Uniqueness is easily obtained by induction in n € {1,...,[T/k"]+1}, due to the monotonicity of b(-)
and the strict monotonicity (4ii) of the scheme. o

2.5 INTERPOLATION PROPERTY AND MAIN RESULT

Consider a family of finite volume schemes ((Th,kh,Dh))h such that h tends to 0. Let (v})xn be a
solution to the scheme (S”) and ©" the corresponding discrete solution.

We require the existence of what will be called “interpolated solutions” for ", denoted by v", such
that v" € E; these should be close to 7" (asymptotically as & — 0) and satisfy the a priori estimate in E
analogous to the estimate of Proposition 1(i) on ©". Moreover, the values (v%)x , should be recoverable
from v". To this end, we require M"[v"] = (v7)x .

Definition 5 (Interpolation property) A family of grids (Th, kh)h has the interpolation property in E

if, for any family (o")}, of functions such that Eh\Q% = v = const foreach k € T",n € {1,...,[T/kP)+1}

with o™ = 0 for k € T, and with HD’i[E”]HL o S forall h, there exists a family (v*), C B such
D

that

th — ﬁhHLp(Q) —0 as h— 0, (2'17)
Mh[Uh] = (V) ks (2.18)
|o"||g < I(C) with some function I : R* — RT independent of h. (2.19)

If T" is a solution to a finite volume scheme, we say that v" is an interpolated solution for T" .

The interpolation property is the main technical assumption required by the “continuous” approach. In
Section 5.2 we give two conditions ensuring this property.

We are now in position to state the main result of this paper.

Theorem 2 (Convergence) Let ((Th’", khm,Dhm)) N be a sequence of finite volume schemes, where
me

khm 4 size(T"m) < hy — 0 as m — oo. Assume that the family of meshes is weakly proportional, the
gradient approximation is admissible, and the interpolation property holds (cf. Definitions 3, 4 and 5).

For m € N, let v"™ be a discrete solution of (S"™). Then there exists a subsequence (hm,)icn such
that Th™ — v in LP(Q) as | — co, where v is a weak solution of Problem (1.1).

12



Note that it suffices to strengthen slightly assumption (4ii) of Definition 4 in order to get the strong
convergence of 3™ to v in LP(Q) (cf. Corollary 1 in Section 4). Moreover, in the case where N = 1
the whole sequence converges to the unique solution of (1.1). In this case error estimates can be proved
(cf., e.g., [15] for the linear case), but this is not the purpose of the present paper.

In what follows, we write k instead of k", omit subscripts in sequences (hm), (hm,) and simply write
that h tends to zero.

3 THE “CONTINUOUS” APPROACH

Take the discrete solution v = > xn Vxlgn produced by the finite volume scheme (8h). Let v" € E bea
corresponding interpolated solution. We will show that there exist functions u* € L'(Q) and G € LP(Q)
such that u”(0,-) = ul(-) and uP; = diva,(G") in the weak sense of Definition 1, and the functions
uP, G" can be recovered from the interpolated solution. More exactly, we prove in Proposition 2 below
that u”; € D' can be extended to x* € E’' and

<x"o>pp +// ap(G"[v") - Dp=0 forall ¢ € E, (3.20)
Q

with an operator G : E +— LP(Q) to be defined, and

h _ he hy. ) for all £ € E with
e e [dogo TEIOEN (3.2)

The analogy of (3.20),(3.21) with (1.4),(1.5) in Definition 1 plays the key role in the proof of the conver-
gence result of Theorem 2.

3.1 INTERPOLATED GRADIENT AND THE “CONTINUOUS” FORM OF THE SCHEME

First define u” as the piecewise affine in ¢ interpolation of b(7"):

t—kn _
uh_ Z(b(v,’;) + (o) — (o 1))) Ton. (3.22)
K,n
Then (3.21) holds, since u”(0,-) = u?(-) and the piecewise constant function u"; extends to x" € E' by

< Xh,¢ >p E= // uhy ¢ forall ¢ € E. (3.23)
Q

Next, note that in (S") the numerical flux is prescribed on the boundary of each control volume; we
will extend it to @ as follows. For given k € T,,n and a function F7 : Ok — R, consider the following
Neumann problem in the factor space W(k) = W1P(k)/R:

1
diva,(Dw) = —— / F? on kK,
o) =i 3 [
ap(Dw) - vi|ax = Fy,

(3.24)

where vy is the exterior unit normal vector to dk. For k € T, with m(x) > 0 we drop in (3.24) the
Neumann boundary condition on 9k N AN and seek w € W1P(k) with w|axnaq = 0.
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Lemma 2 Let F? € [P (9x) (F2 € LP (9x\9Q), if kK € T),). Then (3.24) admits a unique solution.

T

int "

1/p
PROOF : Let us give the proof for k € T!,. Supply W with the norm |jwl)y = (fK |Dw|1’) (we will

ambiguously denote by the same symbol an element of W1P(k) and the corresponding equivalence class
as element of W). Consider the operator A : w € W +— AJw] € W' defined by

< Aul, ¢ >won= [ a(Dw)- Dy, (3.25)
K

for all ¢ € W, and the functional f € W' defined by

1
= —— F" F" 3.26
< f,o>ww m(K)/K(P/(aK K+/8K60 K> (3.26)

for all ¢ € W. Note that f is well-defined, since the right-hand side of (3.26) is invariant under translation
by a constant in W1P(k).

The operator A in (3.25) is bounded, hemicontinuous, strictly monotone on W, and

< Alw],w >y | Dw|P _1
’ ) S
Tl el

as ||w|lw — oo. Thus A is bijective (cf., e.g., [25, Chapitre 2, Théoreme 2.1]); we have Aw] = f for a
unique w € W, which was our claim.

The case kK € T, is similar, using in the place of W the space of functions of W1P(k) with zero
ext g

trace on Ok N O11. o

The function G*, which can be understood as a sort of gradient of 7", is defined by

Gh = ZDw,’i]lQ%, where wf solves (3.24) with
Kn (3.27)
Fl(z) = ap(D?qL(m)) -vg for z € KL € £ and (D%L)K,n = Dh[(v?{)K,n].

More generally, let us give the following definition.

Definition 6 (Interpolated gradient operator) The interpolated gradient operator G* : E — LP(Q)
maps 1 € E into G[n] given by

' G"nl = ZK,H Dnjelign, where ny € W(k) solves

_/Kap(DnZ)'D(‘O_'- Z /KIL‘P%(DZL)'VK:$/K<P Z /KLLap(D,’aL)-yK

LENK LENK
for all o € WYP(k) (for all ¢ € WYP(k) with p|oxroq =0, in case Kk € TI,)

ext

and the values D, (x) are given by (Dyy)xrn = Dhx).

\

We remark that G"* = G"[v"] by property (2.18) of interpolated solutions v". We show that (3.20)
follows from (3.23) and the conservation of fluxes.

Proposition 2 (The continuous form of the scheme) Assume that (v)y ., is a solution of (S"). Let
v" be a corresponding interpolated solution, let u® and x" be defined by (3.22) and (3.23), respectively,
and let G" be the interpolated gradient operator of Definition 6. Then (3.20),(3.21) hold.
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PROOF : It remains to check (3.20). By (3.22), for all Kk € 7" and n, we have

. b(v™) — b(vP L 1
uht o le(lp(Gh) — ( K) - ( K ) _ o Z
LENK

ap(Dig (%))dz - vk, =0
Je
everywhere on Q% because of (2.9). Therefore, using (3.23) and integrating by parts in each Q% , we have
< Xha¢ >E'\E +/Q ap(gh[vh]) D¢ ://Quht¢ + ap(Gh) D¢ :Z// n(“ht - divap(Gh))q5+
K,n K

o) e =00 3 [ 9P s ) =0

Km peNg™ I ©
3.2 PROPERTIES OF THE INTERPOLATED GRADIENT AND CONSISTENCY
In view of (3.20) and (1.4), it is natural to compare the elliptic operator in (1.1),
A:n€Ew —divay(Dn) € E, (3.28)
with the operators
AP i n € E s —divay,(Ghn)) € E'. (3.29)

Indeed, A" can be considered as the finite volume approximates of A, whence the following definition.

Definition 7 (Consistency of approximation) Let ((Th, kR, Dh))h be a family of finite volume schemes

for Problem (1.1), with size(T")+ k" < h — 0. We say that the approximation of (1.1) by these schemes
is consistent if, for all n € E, one has A"[n] — A[n] in E' as h — 0.

In this section we prove the following result.

Theorem 3 (Consistency) Let ((Th,kh,l)h))h be a family of finite volume schemes with a weakly

proportional family of meshes and an admissible gradient approximation (cf. Definitions 3 and 4). Then it
provides a consistent approximation of (1.1), in the sense of Definition 7.

The proof of Theorem 3 is based upon the following properties of the interpolated gradient operator G*.

Proposition 3 Let ((Th,kh,’Dh))h be a family of finite volume schemes with admissible gradient ap-
proximation and weakly proportional family of meshes.

(i) There exists a constant C' such that for all n € E and H C Q such that H = J;*, Q%..

[[Jewal’<c [[ e,
H Ter1(H)

where Yci1(H) =D, 1" x Yci1(k;). In particular, (G?)y, are uniformly bounded on E and

‘gh[n]HLp(Q) < Clinle- (3.30)

ii) The operators (G") are locally equicontinuous on E. More exactly, there exists a constant C(R
A y

such that N
o101 = "], o, < CE(In = nlz)", (3:31)
|G i) = @1 ., < ORI sle)’ (3.32)
whenever ||n||lg < R and ||u||g < R, where a = min{p -1, ﬁ} B = min{(p -1)2, }%}

15



In the statement above and in the rest of this section, C' denotes a generic constant that depends only
on p,d,Q, on M,(* of (2.7) and on C,,C*,< of Definition 4, unless the additional dependence on R is
specified. The proof uses the standard properties of the function a,(-) (cf. [19, 12]): for all y1,y2 € RY,

lap(y1) — ap(y2)F' < C ly1 — gol?, 1<p<2

, , p=2 (3.33)
lap(yn) — ap(®2) P < C lys — ol? (j1r P + |1al?)” P>
v =92l < O [(aplun) — ap(w)) - — )] " [P+ lwel?] T 1<p<n gy
ly1 — y2lP < C (ap(y1) — ap(y2)) - (y1 — v2), p>2

Before turning to the proofs of Proposition 3 and Theorem 3, note the following three lemmas.

Lemma 3 Let K C ]Rd be a bounded convex domain of R® of diameter d(k). Assume that K contains
a ball U of radius (*0(k) > 0. Then there exists a constant C' such that, assigning w = (lv) fv w for a
set V of d—dlmenSIonaI measure m(V') such that U C V C K, one has

(i) / w—wP < C (a(K))P/ DwP, (i) / w—wP < C (0 H/ |Dwf?
K K
for all w € WYP(K), where w|gx is understood in the sense of traces.

PROOF : Applying, e.g., the proofs of [13, Theorems 59,60,76] with p = 2 replaced by general p €
(1,+00), we obtain the claim of the lemma with C depending on p,d and (in the inequality (ii)) on the
Lipschitz continuity of k. Due to the convexity of k, C actually depends only on p, d, and (*. S

Lemma 4 Let (T"), be a weakly proportional family of meshes, and let (D");, be the operators defined
by (2.12). Then there exists a constant C such that for all k,n, for all n € E,

p
I [l <c [, 1o
n 1" (K)

PROOF: Let (nZ)Kn = M"[5] and New = //I" 7n in the sense of traces. By definition,

I

h p 1 7]2 B 7712 P
// DL[n]‘ :ngm(m)d,{,m . | S
n K,L
K KIL ’
1 |, — 1| i — 2
<C —km d + <
B %; d () e e ( (dx,xr)? dicrar (Ao )P~ )~
1 iy, — i [P 1 Maw — 1z |°
SCZEkm(KIL)dK,K\L “de +CZEkm(K1L)dL d
KL K,KIL KIL L,K|L

By the convexity of the function z — |z|P and Lemma 3,

m(KL) [N, — NP < //In 7 — nglP < CD(K)’A//Qn |Dnl?,

and the same holds if Kk and L are exchanged. Hence by (2.7) we have

//Q% il <c LEEA;K (// Dyl + // IDnl”) < C//Inle(K | Dnlf. .
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Lemma 5 Let ((Th, kh,’Dh))h be a family of finite volume schemes with a weakly proportional family of
meshes and an admissible gradient approximation. Then the following hold.

(i) For all R > 0 there exists a constant C(R) such that

Soou) [ [ana) - an(Di)|”

whenever ||n||lg < R and ||p||g < R.

) min{p,p'}

< O(R)(lln — ulle

(ii) There exists a constant C' such that for all n € E and H, Y _1(H) as in Proposition 3 one has

Ui b
o) [, ot < ff i
oK, Yot1(H)

pl
PROOF : First take Kk and consider ¥ = ‘ap(Dh[n]) - ap(’Dh[,u])‘ € L'(0k). Recall that the values

of D" have been extended from 9k inside kK by means of the projection operator P (cf. Section 2.2).
Hence by (2.7) we have

0(K
w0 [ lerl=om 3 [ ei=a 3 g0 [ jerepti< i [ e ort
Loy Sme JRINK ¢

LeNKk

If 1 <p<2,(3.35) and (3.33) yield

200 ] oo ~ s <0 3 [ [0 -2

In turn, (4i),(4iv), Lemma 4 and (2.7) imply that

3 [[ogloo -2 <cz// = <
K I (
CZ - C - P_ (O o p
: K,n//I"XnH(K) (m “ ‘< //Q|D7’ Dyl (||77 ,U“E),

which was the claim of (i) for 1 < p < 2. Furthermore, remark that (3.36) also holds for p > 2, in
particular with n = 0 or g = 0. Therefore for p > 2, using (3.35) and then (3.33) and the Holder
inequality, we get

ZD // ap(D"n]) — ap(D"[u] p <C (Z//n

Thus in case p > 2 (i) also follows from (3.36).

(3.36)

o
p—2

D[] — DM ]‘p)p x (RP)"

The proof of (ii) is similar, using the identity |a,(y)[P' = |y|P instead of the inequalities (3.33). o
PROOF OF PROPOSITION 3: Recalling Definition 6, for all kK € T;,; and n, denote by n7t (respectively,

by pf%) a function in W'P(k) that solves (3.24) with FZ(x) = ap(Dp,(z)) - vk for @ € KL € &,
where (D%, )xzn = D[] (respectively, (D7, )xr,n = D*[u]). In other words, each of 7, uf verifies the
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integral identity corresponding to (3.24) with all test functions in W1P(k). Taking for the test function
(n% — %), subtracting the two identities and integrating in ¢ € 1™, we obtain

//Q?{ (ap(Dr) — ap(Du)) - (Dt — D) =

(3.37)
- /I"./BK (772_”Z N m) (aP(Dh[n]) - ap(Dh[#])) VK,

where it —u? = /nK u for a.a. t € 1". Summing over k,n, using the Holder inequality and
Lemmas 3(ii) and 5 (i), we have from (3.37)

//Q (ap(g" ) - ap(gh[u])) (9"t - 9" <

= R 1
< Z/ /a OK) | g —pe — M — i | X 0(K)7" |ap(D"[n]) —ap(Dh[u])‘ <
K
P\ (3.38)

SZ/In k)P e — uxl” ZB // )S

<(X / JDk - DUEP) I - mim‘“{”/”’”:Hg"[n—g"MHLp In — i@,

— ap(D"[u])

In the same manner, taking u = 0 and using Lemma 5(ii), we get

[ Jeral<e ([ [gml) //TH D)7,

Now if 1 < p <2, (3.34), (3.38) and the Holder inequality yield

which proves (i).

b 4

p 2

6"t =", o,

<o (Jorn-o

o= 412 ("]

[t

L2(Q) L,,(Q)>

Using (3.30), we obtain (3.31) with a = p—1. Now (3.32) with 8 = (p—1)2 follows by (3.33). If p > 2,
(3.34) and (3.38) readily yield (3.31) with @ = 1/(p—1); hence (3.32) with § = 1/(p—1) follows by
(3.33). o

—0as h— 0.

PROOF OF THEOREM 3: We have to prove that Hap(Dn) - ap(g"[n])‘ ()
b

Let us first prove the theorem for the case of n € E that is piecewise constant in ¢ and piecewise affine
in z. Let J C Q be the set of discontinuities of D7. Clearly, J is of finite d-dimensional Hausdorff
measure H4(J).

For ¢ given in Definition 4, let us introduce H" = Ux n | mr (x)ns20) @ Note that [H"| <
(s + 1)RHE(J) = 0 as h — 0; likewise, | Y. 1(H")| = 0 as h — 0. Therefore, by Proposition 3(i) we

have //Hh‘ap(pn) — ap(G"n]) v <C (//Hh|D77|P + //T<+1(Hh)|DmP) —0

as h — 0. Moreover, for all Q% such that Q% N H" = @, we have G"[n] = Dn on Q7. Indeed, we have
Din] = const on T¢y1(Q%). Therefore Dh[n]|Q7I} = Dn = const by property (4iv) of admissible gradient
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approximations. Hence Dw = Dn) satisfies the boundary condition in (3.24); the equation is also satisfied,

since diva,(Dn) =0 on K and ﬁ/g ap(DMn)) - vk = ap(Dn) -/a vg = 0.
K K

It follows that Hap(Dn) - ap(gh[n])HLp,(Q)% 0 as h — 0, which was our claim.

Now let us approximate an arbitrary function n in E by functions 7; that are piecewise constant in ¢
and piecewise affine in . Note that we can always choose this sequence 7; in E such that g > n in E
and a.e. on Q as [ — oo, and |Dmny|P are dominated by an L!(Q) function independent of . We have

|as(om) = apt@™ i), o, < ar(Pm) = ap(0m)|,, ., (3.39)

+an(Dm) —ap(@* )|, o, + [|ao(6" ) — an(G )|

7' (Q)

As [ — 0, the first term in the right-hand side of (3.39) converges to zero by the Lebesgue dominated
convergence theorem, independently of h. The second one converges to zero as h — 0 for all [ fixed.
Finally, by Proposition 3(ii), the third one converges to zero as I — oo uniformly in h. Hence the result
follows. o

4 PROOF OF THEOREM 2

In the context of continuous dependence upon the data of weak solutions to “general” elliptic-parabolic
problems (cf. [2, Chap.V]), the proof of convergence of weak solutions of approximating problems is based
upon the three essential arguments (A), (B) and (C) below.

(A) A priori estimates, using (1.2) and the Alt-Luckhaus chain rule lemma (cf. [1, 26, 10]).

(B) Strong compactness in the parabolic term, using a variant of the Kruzhkov lemma (cf. [23]):

Lemma 6 (cf. [2, Chap.V,Lemma 6]) Let 2 be an open domain in R?, Q = (0,T) x Q and let
the families of functions (uh)p,, (F)p o be bounded in L'(Q) and satisfy 2ut = > |a|<m DF} in
D'(Q). Assume that u” can be extended by zero outside @, and one has

sup // |uh(t, 2+ Ax)—ul(t, z)|dedt < w(A), with lim w(A) =0, (4.40)
|Az|<A JJ Ra+1 A—0

where w(-) does not depend on h. Then (u"), is relatively compact in L*(Q).
(C) Convergence in the elliptic term, using a variant of the Minty-Browder argument (cf., e.g., [25]):

Lemma 7 (cf. [2, Chap.V,Lemma 7]) Let E be a Banach space, E' its dual and < -,- > denote
the duality product of elements of E' and E. Let (v*), C E and v — v as h — 0. Let A" be a
sequence of monotone operators from E to E' such that AP[v"] = —x for some x € E'. Assume
that A" converge pointwise to some operator A, and A is hemicontinuous (i.e., continuous in the
weak- topology of E' along each direction). Assume that

liminf < A", 0" > < < —x,v > . (4.41)
h—0

Then x + Alv] =0, and (4.41) necessarily holds with equality.

19



For the sake of completeness, the proofs of Lemmas 6 and 7 are given in the Appendix, as well as the
proofs of the technical Lemmas T.1 and T.2 below.

Taking advantage of the “continuous” form (3.20),(3.21) of the discrete problem (S*), we can prove the
convergence of finite volume approximate solutions in the same way, using the discrete a prior: estimates
shown in Propositions 1 and 3(i), using next Lemma 6 and using finally Lemma 7 together with the essential
consistency result of Theorem 3.

PROOF OF THEOREM 2: Let " be the solution of (S"). Let v" be a corresponding interpolated
solution, and let A" be the finite volume approximate of the operator A in (1.1) (cf. (3.28),(3.29)). Note
that all the convergences we state below take place up to exstraction of a subsequence.

(A) By Proposition 1(i), || D% ["]]| (o

in E, by (2.19). Hence there exists a function v € E such that v» — v in E as h — 0. By (2.17), one
also has o — v in LP(Q).

< const uniformly in h so that the family (v?); is bounded

(B) We claim that the family (u”), given by (3.22) is relatively compact in L!(Q). Indeed, let us
check the assumptions of Lemma 6. We have u”; = diva,(G"[v"]) in D'(Q) by (3.20),(3.21), and the
family (ap(gh[vh]))h is bounded in L (Q) by Proposition 1(i), (2.19) and Proposition 3(i) (note that
(A"[v"]), is thus bounded in E'). Furthermore, (3.22) yields

||“h||L1(Q) < 2//Q|b(5h)| + kM Zm(K)|U?{|,
K

and one has

lb(2)| < B(2) + sup [b(C)| (4.42)
I¢/<1/é

for all § > 0 (cf., e.g., [1]). By Proposition 1(ii) and since ul = >~ m(x)[u%| — ug in L}(Q) as h — 0,
it follows that (u") is bounded in L'(Q). Finally, using Lemma 1(ii), we can prove the following result.

Lemma T.1 Let (7"), be discrete solutions to a family of problems (S");, satisfying the assumptions of
Proposition 1. Let (u®), be defined by (3.22). Then (4.40) holds with w(-) independent of h.

By Proposition 1, we can apply Lemma T.1 and then Lemma 6. Thus, there exists a function u € L}(Q)
such that u® — u in L'(Q) and a.e. on Q. In addition, due to the monotonicity of b(-), we can identify
u with b(v):

Lemma T.2 Let (v"), be discrete solutions to (S*);,, (v*)1, be corresponding interpolated solutions, and
(uh), be defined by (3.22). If v® — v in E and u"* — u in L}(Q) as h — 0, then u = b(v).

(C) By (A), we have v — v in E. We claim that v is a weak solution of (1.1).

By Proposition 2, x"* + A"[v"] = 0 in E’' and the initial condition (3.21) is verified for all h. The
family (A"[v"]), is bounded in E' (cf. (B)), thus (x")s is weak- relatively compact in E'. By (3.23),
(B), and Definition 1, we also have x"* = u”; — b(v); = x in D'(Q). Hence A*[v"] = —x* > —x in E'.

Moreover, passing to the limit in (3.21), using (B) and the convergence of ul! to ug in L1(Q), we get
(1.5). Consequently, by the chain rule argument [1, Lemma 1.5] we have

T(b(u(T, ) + / (). (4.43)

< =X,V >E.E= —/
Q

Q
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On the other hand, by (3.23),(3.22),(2.18), and the monotonicity of b(:), we have

< —x" 0" >p p= —12 (b(v) —b(v 1) // nvh = —Zm(x)(b(ug)—b(vg—l))v,’; <
<- Zm (oK) )+ D ‘,L):—/pr(b(ah(T,-))H/Q\y(ug).

Recall that ¥(ul) — ¥(ug) in L1(Q). Without loss of generality, we can assume that o*(T,-) — v(T,-)
a.e. on 2; hence by the Fatou lemma and (4.43) we get (4.41).

Next, the operators A" are monotone. Indeed, take ¢ € E and (¢%)x, = M"[yp]. Arguing as in the
proof of Proposition 2, integrating by parts in Q" , and cancelling the boundary terms, we get

<MMW»m=ﬂ%wWWDw>§;ﬂw&ww%m=—2ﬂlw

Z/ ap(D ))dz - VKL:—kZ(pKZ/ ap(Dig, (T))dz - vk 1.

LGN LGNK

(4.44)

Substituting (4.44) and applying Remark 1, we infer by property (4ii) of Definition 4 that
< AMn] — AMa)n -7 >p E=

— %kg;n((n?—ﬂﬁ) - (ﬁ?—ﬁ}ﬁ)) /KlL(ap(D,’ﬁlL(a:)) - ap(f)gw(x))) iz v, > 0, (4.45)

where (N3 )kn = Mh[n],(DZIL)K‘L,n = Dh[n], and the same for 7.

Finally, by Theorem 3, A" converge pointwise to the hemicontinuous operator A- = —div ap(D-). By
Lemma 7 we conclude that x + A[v] =0 in E'. Thus (1.4) holds and v is a weak solution of (1.1). o

Note that in practice, due to (3.34), property (4ii) of Definition 4 can be satisfied with an inequality
which allows to minorate ||D} [(vy — EZ)K:"]HLP(Q)' In particular, this is true for the discrete gradients
proposed in Section 5. In this case we can improve the convergence result.

Corollary 1 Let us require instead of (4ii) that

(4ii’) forall R >0 there exists a function ZEg(-) such that %iII(l) Er(€) =0 and for all h,
%

H ékh;E;(Kvﬁ—vZ)—(5?—52>)Jaﬂ(ap(DZm(x»-—ap(52u(x»)dx~vKﬂa B

> [Pt (0 - 7

< R.

whenever HDL[ Vi )k ,n) Le(Q) =

<R, D@ xa]

Lr(Q) L?(Q)

Then 5" — v strongly in LP(Q) under the assumptions of Theorem 2.
PROOF: By (4ii"), Proposition 1(i) and (4.45), we have

DIk _ H <= R, b1 Ah R )

[Pt =], ) < Bol < AWM = AR 0"~ v e )

for some C > 0 and for all h. Coming back to (C) in the proof of Theorem 2, thanks to Lemma 7,

Theorem 3 and since v — v in E, we find that liminf,_,o < A"v?] — A*[v], v — v >p 5= 0. Hence
h [h h . 1 .

H'DJ_[U —v] 7(Q) — 0 as h — 0. Since ZK,n(W(K)// %U) Ign — v in LP(Q)

} 0" — ]
and by Lemma 1(i), we have |[v" — v||r(@) — 0 as h — 0. o

Lr(Q) - H
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5 EXAMPLES OF ADMISSIBLE METHODS

By an admissible method, we mean a method which provides an admissible gradient approximation and
weakly proportional meshes satisfying the interpolation property. Recall that in this case, we have the
convergence of the finite volume approximation (cf. Theorem 2). In this section, we prove that such
admissible methods exist.

5.1 ON DISCRETE GRADIENTS

In this section we construct an admissible gradient for a family (7), of finite volume meshes of the
Voronoi kind dual to a family (7"); of triangular meshes.

Let us introduce some notation. We use O to denote a triangle of the mesh Th: for all 6 € Th,
there exist k,L, M € T" such that 6 = Axxx,x, (the triangle with the corners xx,z;,x, ). The three
interfaces KL, [JM, MK intersect at point x5, which is the center of the circumscribed circle of triangle
0. We require it to be inside 0. Let us denote by S5, Sk 1, Si,m. Su,x the surfaces of Azxyx x,,
Azsrrry, AxsxiTy, ATsTyTx, respectively. One has S5 = Sk + Spu + Su,x. Recall that
Vi, = ;LTx,f/dK,L, Vi = M/dL,M, Vmx = :er—:v}/dM,K. Note the following elementary lemma.

Lemma 8 Let 0 = Axyxx,x, be a triangle in R?, let x5 be the center of its circumscribed circle, and
let x5 € Az iz x,, . With the above notation, for all v in R?, we have

2

r= ;{SK,L(T : VK,L)VK,L + SL,M(T : VL,M)VL,M + SM,K("' : VM,K)VM,K}-
19

This property can be generalized to any polygon in R? which admits the circumscribed circle.

Further, for 6 € Th such that 6 = Azgz iz, let vP0 : B2 — RN be the affine function that
takes the values vy, v., v, at the points z,,x;, ), respectively. The discrete gradient operator D0 =
L o D0 is defined by

DM (v ) Z Dv™05(z)15().
6eTh
In the case of structured hexagonal meshes, as well as that of structured rectangular ones, the family (D"0),,
is admissible (this will be proved in Proposition 4, as a particular case). In general, this construction does
not work. Indeed, if the points z, are not the barycenters of kK € 7", property (4iv) fails.

This can be overcome, for instance, in the following way. For all Kk € T", let yx be the barycenter of k
and set 0x = xx —yx. For 0 € Th such that 6 = Azgrrz)y, let Ug : R2 — RN be the affine function
that takes the values vy, v;, v, at the points yx,yr,ywn, respectively. The discrete gradient operator
Dh = L£h o D" is defined by

D" (vi)x = > Dvfi(@)1s(w); (5.46)
6eTh
i.e., the affine interpolation over the triangle Ayxy.y, is actually used in the triangle Azgz z), .

We will take advantage of considering D" as a perturbation of D0 For all 6 € T", let us define the

correction operators

2 _ — —
Ra :T€R2 |_> - SK,L T‘M VK,L+SL,M T‘M VL,M+SM,K T'M VM,K 9
Sa dK,L dL,M dM,K
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with the notation introduced above. We need to guarantee that the Euclidiean norm of R is less than
min{p — 1,1/(p — 1)} for all 6 € T".

Proposition 4 Assume that (T"), is a family of meshes dual to a family of meshes (?h)h such that all
O € Th are triangles with angles less than or equal to 7/2. Assume that for all h, for all 6 € T",

2 oz — ok |low — o4 lox — oul :
— S — —_— —_ —-1,1 -1
S5 { K,L dK,L +S; M dra + Su K o x < mln{p ) /(p )}7

where oy is the difference between the “center” xy of the volume K and its barycenter, etc.

Then the family of discrete gradient operators (D"), on (T");, defined by (5.46) is admissible in the
sense of Definition 4.

PROOF : Since, for any affine function w on Kk, one has ﬁ/ w(z)dr = w(yx), where yg is the
K

barycenter of k, property (4iv) holds for D" (with ¢ = 1, by construction). Next, (4i) is clear.

Let us establish the relation between D"? and D". Denote by D, D the values on & of DM0[(v )]
and D"[(v, )], respectively. Let us show that for all 6 € T*,

D} = (I - Rs)Ds. (5.47)
Indeed, if 0 = Azyxz.x,), One has

D _ Ug(mL>_Ug(xK) _(vu+Dp-0L) = (vk +Dp-0x)
o " I/K,L - d == dK . —
K,L s
vy, —

. — Ok 0 0 — Ok
= D“'iZDﬁ‘ .D"‘i.
d“ a s o Vet Por—g—

) ’

Writing the same relation for £, M and M, K, from Lemma 8, we get D5 — D3 = R5Ds, whence (5.47)
follows.

By Lemma 8 and the definition of D"* = £ o Di for all 6 € T? such that 6 = Azyxx.x,) we have

P l(we)il|” = So|PMl(ve)u]| <
© _ _ (5.48)
< C* {SK,L kL UK‘ + 5 M‘ d + Su K‘ d } cr f ‘,DJ_[ UK
K,L L,M M,K

with a constant C* that depends only on p. Since for given X € 7" and 6 € 7" we have kN6 # @
if and only if 6 € T1(K), it follows that property (4 v) holds for the discrete gradient D™0, with ¢ = 1.
Now set 65 = ||R5||. We have 5 < 1. One has |Dg| < ||(I — R5)7|| | D3| < :Z5=|DY|; therefore (4v)

also holds for D".

Next, each term in the sum in (4iii) splits into two terms corresponding to the two parts of the interface
KIL included in different triangles 01,05 € T". Let us write down all the terms corresponding to the same
triangle 6 € T", 6 = Axyxx, ), combine them using Lemma 8, and estimate using (5.47):

Sk,t(ap(Ds) * vie, L) (DS - vie,1) + Seae(ap(Ds) - vi,a) (DS - viar)+

S5 S5
+Su,x(ap(Ds) - Vu K)(D?S V) = Toap(Dé) : D?S = 7%(1) )-(I = R5)Dg >
> 5| DslP > ———2 55| DLP.
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— L=vk| _ ph

Property (4iii) for D" follows, because one has |D°| > |DY - v | = 5= [

so that

5 satoty = [, 2 ool

The proof of (4ii) is similar. Denoting the values 5%,55 of DMO[(vk)x] and D?[(vk )], respectively,
on O, one can rewrite the sum in (4ii) as

5> (e ((@n(Do) = ap(Bo) v ) (DY = B8) v ) +

6eTh

S ((ap(Da) ~ ap(Ds)) VL’M) ((Dg - Dg)- uL,M> -

Using (5.47) and denoting by H the Hessian matrix of the function = € R? %|m|p, we get

(ap(Ds) —ap(Do)) - (DY~ DY) = (Do~ D)’ [ || #Bo++(Do-Do))ar (I—R6>] (Do-Dy). (5.49)

Forall z € R?, z # 0, H(x) is a symmetric matrix with positive eigenvalues A;, Ao such that \;/)\s =
p — 1. Thus the condition |Rs|| < min{p —1,1/(p — 1)} ensures that, for all 7 € [0, 1],

t [H(ﬁa +7(Dg — Dg)) (I - Ra)] r>art [H(ﬁa +7(Dg — 56))] r>0 (5.50)

for all 7 € R%,r # 0, with some constant a > 0. Now (4ii) follows. Moreover, (4ii’) also follows from
(5.49),(5.50), due to the inequalities (3.34). For p > 2, one can take E(£) = const&M/P in (4ii’), and
for 1 < p < 2, using the inverse Holder inequality, one can take Zg(¢) = const (¢ R2P)'/2. o

Remark 3 In the three-dimensional case, for a family of meshes dual to a family of structured tetrahedrical
meshes, the gradient D"° constructed in the same way as above is admissible. The proof is the same,
using an easy symmetry observation instead of Lemma 8.

5.2 ON INTERPOLATED SOLUTIONS
First note that it is sufficient to prove the following interpolation property of (7"), in W(}’p(ﬂ):

Definition 5 A family of grids (T");, has the interpolation property in Wol’p(Q) if, for any family (v")p,
of functions such that v"|x = vx = const for each Kk € T", with vy = 0 for kK € T2, and with
H’Dﬁ[ﬁh]‘ < C for all h, there exists a family (v*);, C Wol’p(Q) such that

Lr(Q)
0" =" o) >0 as h—0, (2.17")
i/ " = vy forall k€T (2.18")
m(K) Jk
||Uh||W01,p(Q) <ecx HDME”]HLP(Q) with a constant ¢ independent of h. (2.197)
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Indeed, we obtain the interpolation property in E with the function I : C — ¢ x C by taking v" constant
on each 1" and summing in n € {1,...,[T/k"]+1}.

Lemma 9 Let (T?), be a strongly proportional family of finite volume meshes of Q C R?. Then it has
the interpolation property in Wy ().

PROOF : Take discrete solutions o* = ", il on each of 7" such that HD" HLF < C for

all h. Let C denote a generic constant depending only on p,d and Q. We first convolute " with a
standard mollifier, and then restore the average over each mesh volume. More exactly, let {, be the strong
proportionality constant in (2.7); set v = h({,/2 and

ol = /R )z~ y)dy, (5.51)

where supppp, C {y € R*||y| < v}, pn > 0 and [rapn(y)dy = 1. Note that we have [[v™~1 —
0} ||Lp — 0 as h — 0 (cf., e.g., [8, Th.IV.22]). Moreover, using [8, Prop.IX.3], by (5.51) and the Holder
mequallty we get

h,— . h,— h,—
1DV, q) = limsup rxg /le o+ Ar) P (2)P da <

< limsup \Awl" /Q (/Rd on(y) dy)pl/ w() [T (2 —y+Az) -7 (x—y) [P dy de <

Az—0
< limsup ﬁ/ ph(y)/ |5 (24 Az) —5"(2)|P dz dy = limsup ﬁ‘/ [T (24 Az) —7"(2)|P dz.
Az—0 R4 R4 Az—0 Rd

Hence, by Lemma 1(iii), we find, choosing A = h

1 p ~
Do, ) < limsup o A(A + 2 x C|| D <Cxce.
[ DV 2oy < limsup 75 A(A +2R)" % C|D} [o") oy = €%
Next, set 2_, = {z € Q|dist (z,9Q) > v} and
o 0, x¢Q
vlx) = 1 Q_,
(@) T ) dist (2,92 ), x €.
v
We have v"0 € Wy?(Q); moreover, |Dv™0| < [Dv™~!| + [vm~1|L1g . . Note that, since  is a

polygonal domain, we can split Q\Q_, into a finite number of domains, each one included in a strip of
thickness v. Hence by the Poincaré inequality, fQ\ TP < OwP fQ\Q_LDvh’_HP. Therefore we have

||”h0|| S C || DvP 1||Lp < C x C. Moreover,

”vh,O oM 1||L17(Q < /Q\ |Uh,—1|p < C’(hC*)plle HLI’(Q —0 as h — 0.

Now take a continuously differentiable function 7 : R2 — R* such that suppm = {x € R? | |z| < 1}
and fIRd m=1. Forall Kk € T2, set gy = (n’:(f))d ﬂ'(w;gK) (for boundary volumes K of non zero measure,
i.e., if zx € 0Q, an easy modification is needed in order to keep the trace on 9Q equal to zero). Set

1
h—ph0 E QpPr, with ax = v — —/ Pl (5.52)
K
K

int’

m(K)
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Since supp ¢k C K, by the choice of ay, the family (v"); verifies (2.18").
Denote by c a generic constant only depending on ¢, . Note that by the strong proportionality of (77)

hy
m,(lf) < ¢ for all Kk € T? for all h. Note that 7" = vy on K, so that by the construction of v™~1 ph0,
we have v"0(z) = vx whenever |z — x| < h(,/2. Moreover, since 3(k) < h, Lemma 3(i) yields
/ h0 _ ghpp — / M0y [P < chP / | DuPOp. (5.53)
K K K

y (5.52) and the Holder inequality
1 P m(K)\P
h_ k0P _ p/ P < ‘/—h_/ h,0 ( ) <
v v a © <ec v v m(K) <
J et =t = lel [ hpnb < 3| [ o [ .
1 ' —h _ . h0 zh _ yh,0
Sc;m(K)P ) /K|v —v \pm(K):c/Q|v —v"P =0
as h — 0. Thus (v"), satisfies (2.17"). In the same manner, using (5.53) we have
JRCEE I D SR LD ED DF [ 1o = oo
Q K
Xm(K)(hd-i—l Z / o — PO < ¢ /Q|Dvh’°|p-

Hence ||vh||W01,p(Q) <ec ||Uh’0||W01,p(Q) <ex C x C, so that (v")y, satisfies (2.19'). Thus (v"), can be

chosen as interpolated solutions for (T")4. o

Remark 4 The interpolation property can fail on weakly proportional meshes, at least for p > 2.

Indeed, consider Q = (0,1)?. For s > 2, let T° be the finite volume mesh of  such that 7%, =
{K*,L°} where k* = {(z,y) € Q|z+y < 1/s} with 2x» = (£, 7)., and L° is the interior of the
complementary of k° with z,s = (%,%) Take 7° such that 7° = s'/P on x* and ©° = 0 on °.
Then [, | D" [5°]|” < const uniformly in s. If there exist v* € W, P(2) interpolated solutions for ©*, we

have |v* ||W1,p (o) < const. Hence by the standard embedding theorem, v* are uniformly bounded. This
0

contradicts the fact that gy [av® = s1/P — +00 as s — +oo.

Nevertheless, we have the following result in the situation close to that of Proposition 4.

Lemma 10 Assume that (T"); is a weakly proportional family of meshes of Q C R? dual to a family of
meshes (T™")y, such that all 6 € T" are triangles with angles less than or equal to w/2. Then (T");, has
the interpolation property in W, (S2).

PROOF : Take discrete solutions " =3 v, 1 on each of T" such that | D" [v ||Lp(Q < C for all

h. Let v be the continuous piecewise affine function on € that interpolates the values vy, v., vy at
the points xx,x.,x, over O, for all 6 € 7\'}‘, 0 = Azgx,x, (we use the construction and notation of
Section 5.1). We have v"? € W, (Q) and Dv™0 = D"0[5"], so that (5.48) yields || Dv" o) < exC,
where ¢ denotes a generic constant that depends only on p and on (*. Note that for all x € K eTh,

|vh’0(:z:) — 6h(x)| = |Uh’0(.'17) — vh’o(wK)| < V(K) |Dvh’0(x)\. (5.54)

Hence ||v™0 — vh||L )y < h ||DUh0||LP — 0 as h— 0.
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T—TK

Next we proceed as in Lemma 9. Using the weak proportionality of (77);, we set o = (C,f%((lf{)))z T (

for all Kk € T, and we define v by (5.52). Note that %{5)1 <c, forall Kk € T", for all h. We end the
proof as in lemma using (5.54) instead of (5.53). o

In conclusion, recall that in case 1 < p < 2, property (iii) of Lemma 1, which is important for the proof
of Lemma 9, holds for families of meshes without any proportionality property (cf. Remark 2). Thus it is
natural to ask the following question.

Open problem Is weak proportionality sufficient to have the interpolation property in W(}’p(Q) for
1<p<2?

6 GENERALISATION TO A CASE WITH CONVECTION

The problem
b(v); = divay,(Dv — Z(v)e) + f(t,z,v) on Q= (0,T) x Q,
v=20 on ¥ =(0,T7) x 09, (6.55)
b(v)(0,-) = u° on ,

where a given vector e € R? prescribes the direction for convection, can be treated in the same way. In
the scalar case, Problem (6.55) appears as a model of certain turbulent flows (e.g., in porous media with
nonlinear Darcy law; cf. [12] and their references). Bounded weak solutions of (6.55), for N = 1, have
been studied in [12]. Here, we take assumptions that ensure existence of a weak solution to (6.55) by the
Alt-Luckhaus variational approach (cf. [1]), that is

|f(t,2,2)F +|Z(2)]P < Cl2|% + Mi(t)B(=2)° + Ma(t, z),

6.56
with some 6 < 1, M; € L(0,T) and M, € L}(Q); (6:56)
Z =Z0b, where Z is continuous; (6.57)
f(t, @) = f(t,z,-) o b(-), where f is a Caratheodory function. (6.58)
The scheme takes the form
4 b ny _ b n—1
mg NRLZHE ) S (DR (o) — ZRy(@)e)de vy + w1
LENK KLL b A
forall Kk € T2y, n€{1,...,[T/k"]+1},

v =0 forall kK € 7;{,‘8“ n e {1,...,[T/kh]+1},
1
0

_ h
| Uk = ) /Kuo for all kK € T;p;.

Here the values (fZ)xn are given by an operator f* : (v%)kn — (fR)xn. We take for instance
o= @ff@&f(r,y, b(vi)) dydr. Further, the values (Z}, )k, are given by a “discrete convection”
operator Z" : (v)k;n — (23, (¢))xe,n. We assume that Z7, belongs to LP(KL) and takes values
intermediate between Z(b(v})) and Z(b(v})), i-e., max{|Zg, (x) — Z(b(v}))],|Z%. (x) — Z(b(v}))[|} <
|Z(b(v)) — Z(b(v?))| for all z € KL. This includes in particular the upwinding choice, usual in numerical
implementation (cf. e.g. [17]).
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Under assumptions (6.56),(6.57),(6.58), the solutions of (6.59) converge to a weak solution of (6.55),
provided the family of schemes satisfy the admissibility conditions in Theorem 2. Let us just give the
appropriate “continuous” formulation of (6.59).

Set Zh(t,z) = > Kkim Z%L(Ph(x))]llnxﬁ(t,x), where P" is the projection from K to K as defined
in Section 2.2. Further, set f(t,z) = Yo frlgn (t,@).

For the sake of simplicity, assume that all the boundary volumes are of zero d-dimensional measure.
The operator G* that maps € E into G*[n] € L?(Q) defined by

( Gty = ZKn Dnjlgn, where ny € W'P(k) solves
1
divap(Dw — Z(t,2)e) = —— 3 / ap(D2 (z) — 20 ()e)dz v on K,
m(K) LENK
ap(Dw — Z(t,z)e) - vk|ox = ap(Dyy (x) — Zg,(v)e) -vx  for x € KL € &k,

the values of Dy, () are given by (Dyy)xrn = Dh[y], and Zyo(®) = Z| ;o 57

\

is the appropriate interpolated gradient operator for Problem (6.55).

Taking (v"), a family of interpolated solutions for (o), we can write the interpolated formulation of
problem (6.59) as
uty = diva,(G"[v" — Z"e) + f* in B,
A T (6.60)
u (Oa ) - uO(')v

understood in the same sense as in (3.20),(3.21).

Slight changes in the proof of existence of discrete solutions and interpolated gradients, as well as in the a
priori estimates and the compactness for the parabolic part are needed. Like in [2, Chap.V], under hypothe-
ses (6.57),(6.58) we can prove that Z"(t,z) — Z(b(v(t,z))) in LP(Q) and f(t,z) — f(t,, b(v(t,z)))
in L’ (Q). Adding the convection term leads us to define the consistency as the convergence in E' of
Al = —diva,(G*[n] — Z"e) to A[n] = —diva,(Dn—Z(v)e), for all n € E. As in Theorem 3, the idea
of the proof of consistency is to approach both Dy and Z(v) by piecewise constant functions in LP(Q).
We obtain in this way the analogs of Theorems 3 and 2 for Problem (6.55).

One could consider more general operators in the elliptic part, of the form diva(¢, z,b(v), Dv). We
need the coercivity, monotonicity and growth assumptions of Leray-Lions-type (cf. [24, 1, 2]) on @, and
some analogs of the inequalities (3.33),(3.34) are required. There is a choice in constructing interpolated
gradients, since the dependence of @ on ¢,z and b(v) in the analog of (3.24) and (6.60) can be taken
into account in various ways. The same proof of consistency can be applied in case A", G are defined by
APn) = —diva(t,2,G"n)), G"[n] = X, DnfTgn , where 7t solves

Z / ar (Dgy(z))dz - v, on K
KL

LENK
ah(taanw) ’ VK,L|K1L = a%L(DZIL(x)) "Vk,L

1
diva®(t,z, Dw) = —
m(K)

with (DR )ien = D', al(t,z,) = > xon W ()n 77 (t,2), the functions (aﬁm(-))m,n being
chosen so that a”(t,z,-) approach a(t,z,b(@"(t, x)),-).
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A APPENDIX: PROOFS OF AUXILIARY RESULTS

PROOF OF LEMMA 6: We adapt the proof from [23]. Here, we only need to find a function @ on R*
such that

T—1
1::/ P (¢4 At, 2) —uh (¢, o) dedt < B(r) and Tim &(r) = 0 (A.61)
0 Q

7—0

for all At € [0,7] and all h. The relative compactness of (u), in L([0,T] x Q) will follow by the
Kolmogorov theorem. Note that without loss of generality, we can assume that 2 is bounded.

Let us construct w(-) verifying (A.61). First fix h and fix At € [0,7]. For ¢t € [0,T — 7] set
wt(-) = uP(t + At,-) — u(t,-). For all ¢ € D(Q) we have

t+At
/Qw (m)go(x)dx:/t /QZaEm F™8,2)D*p(x)dzds. (A.62)

For each t € [0,T — 7], take for the test function ¢(-) a regularisation of signw!(-). More ex-
actly, take d > 0, set Q_5 = {z € Q : dist(x,00) > §} and denote by XQ,‘;(') its charac-
teristic function. Choose p € C§°([-1,11V), p > 0 such that [p(c)do = 1 and take in (A.62)
ol(z) =N [p(%Y) signw'(y)xq_,(y)dy. Itis clear that for [a] < m,
uniformly in ¢ and h.

Write I = I, + I, where I; = [T [ w!(z)¢(z)dwdt and T, = Q(|wt( )| — wt(z)et (2 ))dmdt
Using (A.62), we get |I;| < const- T5_m2\a|<m ||F 21 (jo,rx0) < C’QT/J ™ . By the assumptions of the

Da90t||L1([0,T]><Q) < const-6—™

lemma and the Kolmogorov theorem the family (fo [uP( ,-)|dt)h is relatively compact in L'(€2). There-

fore these functions are equiintegrable on 2, so that fOTfQ\m% [uP(t, z)|dzdt < &(8) with lims_.o (8) = 0
uniformly in h. Hence

T—7 T—7
|Iz] < 2/ / z)|dzdt + / / lw ()] — w'(x /5 N ( >signwt(y)‘dyda:dt <
K\Q_o5 Q_25
T—1
<48 / / /5 N ( > ‘\w z)| — w'(x) signwt(y)‘dydxdt.
Q_2s

Since for all a,b € R we have ||a| — asignb| < 2|a — b|, it follows that

L] < 46(5) +2/TT/M/5N( ) fot(e) — w' (o) dydedt <

< 40(8) + 4 / o(o) /0 / Wt (t, 2) — uh(t, & — 60)|dadtdo < 4(8) + 4w(5).

The function w(7) = inf {Cozm + 4@(0) + 4w(d) } majorates I and tends to 0 as 7 — 0, which ends
550 L0

the proof. o

PROOF OF LEMMA 7: The proof is standard (cf., e.g., [25]). For all n € E one has
< —x,v — 71 >> liminf < A"o"], 0" — 9 > > liminf < A"], 0" —n>=< Alpl,v —n > .
h—0 h—0
Taking n = v+ A with A € R, ¢ € E and letting A increase to zero, one gets < x + A[v],{ > < 0. As

A decreases to zero, the inverse inequality follows, so that < x + A[v],{ >=0 forall { € E. o
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ProoOF oF LEMMA T.1: It is a modification of the corresponding proofs in [1] and [2, Chapter V].
First note that
h( h
u(t,z + Az) — u"(t,z)| dedt <
/ | ) (t,)] (A.63)
< kP [ |ub(z + A:c) —ug(z)|dz + 2 [,|b(@"(t, 2 + Az)) — b(W"(t, 2))|.

Since ul — g in L}(Q), the set {ul}; is compact in L1(Q), so that

sup [ Juba + Aa) - uf(o)] de < W(4),
[Az|<AJQ

with w9 : RT +» RT such that w%A) — 0 as A — 0, uniformly in h. Moreover, note that b(v") are
equiintegrable on Q. Indeed, for all set F C @, by (4.42) and Proposition 1(ii), one has

/|b ) < inf /‘ M +IF sup (80)]) < int (6 -+ |F] sup [6(0)]) = wA(IF),

I¢I<1/é I¢I<1/6
with w! : RT — Rt such that w!(|F|) = 0 as |F| — 0.

For M > 0 let us introduce R, = {(t,z) € Q s.t. [P"(¢,z)| < M, |v"(t,z+ Az)| < M}. It follows by
Proposition 1(i) and Lemma 1(i) that ||§h||L1(Q) < C uniformly in h. Hence, by the Chebyshev inequality,
|Q\ RY,| < C/M for all h. Let wpa(-) be the modulus of continuity of b(-) on [—M, M|N . Integrating
separately over @ \ R, and R%, in the last term in (A.63), we get, for h < 1,

/|M@x+A@—Mﬂwﬂ§
wO(|Az|) + 4wl (|Q \ RY,|) —I—th wp,m ([P (t,  + Az) — v (¢, 2)|) dzdt.

It follows by the concavity of ws as(-), by Lemma 1(ii) and Proposition 1(i) that

sup / lul(t, z + Az) — ul(t, z)| dedt <

|Az|<A
1
< 0 1 L —h _—h _
< it {e0018D + 4@/ + @l (5 /Q|v (t,@ + Az) - T"(t,2)| ddt ) |
_ 0 1 _
= it {0(8) + 40! (C/M) + [Qluna(CA) | = wn(A),
and wz(A) — 0 uniformly in h as A — 0. o

PROOF OF LEMMA T.2: We claim that o® — v in L(Q) and b(@") — u in L'(Q), and then apply
the monotonicity argument of [9].

Since v" — v also in L*(Q), the first claim follows from (2.17). Further, by (3.22) we have
|l — b(ih)HL:l(Q) < Z“// |u(t + kP, z) — u(t, )| dzdt. (A.64)
K,n eré

By the compactness of (u”); in L'(Q), the right-hand side of (A.64) vanishes as h — 0.

Without loss of generality, we can assume that (") — u a.e. on Q. For each ¢ > 0, choose a set
R. C Q, with |R.| < ¢, such that v € L®(Q \ R.) and b(®") — u in L®(Q \ R.). This is always
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possible, by the Chebyshev inequality and the Egorov Theorem. Consequently, we have b(v+A{) — b(v) in
L*(Q\ R:) as A € R tends to zero, for all { € L*(Q). Then for all n € L*(Q), using the monotonicity

of b(-), we get // //
u(v = lim v -n)
Q\R. . ’lll—% //:\ 0 Q\Iz . // . (A.65)

Now it is sufficient to take n = v+A{ with A 10 and A | O in order to deduce that :I:fQ\RE (u—b(v))-¢ > 0.
Since ¢ € L*°(Q) and € > 0 are arbitrary, u = b(v) a.e. on Q.
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