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(15/7/2004, 11h38)

Arithmetic properties of

summands of partitions

Cécile Dartyge and András Sárközy∗

Abstract. Let d ∈ N, d > 2. We prove that for almost all partitions of an integer the parts are well

distributed in residue classes mod d.The limitations of the uniformity of this distribution are also studied.

1. Introduction

In this paper, we will study the distribution in arithmetical progressions of the summands
of a general partition of an integer. We expect that this distribution is uniform. When
the modulus is a fixed integer, we will show that this is true for almost all partitions. For
k, n, a, d ∈ N with 1 6 a 6 d and for a partition λ of n we will use the following notations:

p(n) denotes the number of partitions of n, pk(n) the number of partitions with at most
k parts, p(k)(n) with exactly k parts;

p(n; a, d) is the number of partitions of n all of whose parts are congruent to a (mod d),
pk(n; a, d) the number of such partitions with at most k parts and p(k)(n; a, d) the number
of such partitions with exactly k parts;

p̄(n; a, d) is the number of partitions of n none of whose parts is congruent to a (mod d),

pk,a,d(n) is the number of partitions of n such that the number of the parts congruent to
a (mod d) is at most k;
r(n, m) denotes the number of partitions of n whose parts are at least m, and r(n, {a, b})
the number of partitions of n whose parts are not in {a, b}.

The first result of this paper says that for almost all partitions of n the sum of the parts
congruent to a modulo d is close to n/d. For a partition λ = (λ1, . . . , λs) of n = λ1+· · ·+λs

with λ1 > · · · > λs we define

Sa,d(λ) :=
∑

16j6s
λj≡a (mod d)

λj ,

and

Fa,d(λ) :=
∑

16j6s
λj≡a (mod d)

1.

We write:

(1·1) C := π

√

2

3
.
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Theorem 1.1. Let 1 6 a 6 d and g a positive and non decreasing function such that

limn→+∞ g(n) = +∞ and g(n) 6 n1/12 for all n > 1. For almost all partitions λ of n we

have

(1·2) Sa,d(λ) =
n

d
+ O(n3/4g(n)).

The number of exceptional partitions is O(p(n)n2 exp(−Cg(n)2d2

8(d−1) )).

This result is sharp apart from the g factor as the following Theorem shows:

Theorem 1.2. For all d ∈ N, d > 2, ε > 0 there are n0 = n0(d, ε) and δ = δ(d, ε) so that

for n > n0, there are more than (1 − ε)p(n) partitions λ of n with

(1·3) |S1,d(λ) − n

d
| > δn3/4.

In 1941, Erdős and Lehner [2] proved that for k = C−1
√

n log n+x
√

n, limn→∞
pk(n)
p(n) =

exp
(−2

C e−
1
2
Cx

)

. Since this fundamental Theorem, many statistical results have been
obtained by Erdős, Szalay, Szekeres, Turán, etc. In particular Szalay and Turán proved
([8] Corollary 1 p. 135) :

for (log n)6 6 j 6

√
6

2π

√
n log n − 5

√
n log log n, the equality

λj = (1 + O((log n)−1))

√
6

π

√
n log

1

1 − exp
(−πj√

6n

)

holds uniformly with the exception of at most O(p(n)n−5/4 log n) partitions of n. In the
survey papers of Erdős and Szalay [4], [7] many other results are referred to.

In this paper we will start out from the proof of Erdős and Lehner. We will show that
it is possible to adapt it to deduce a result for pk,a,d(n) when a and d are fixed.

Theorem 1.3. Let 1 6 a 6 d and x ∈ R. For k = C−1
√

n
d log n + x

√
n

d , we have:

(1·4) lim
n→∞

pk,a,d(n)

p(n)
=

1

Γ(a
d )

∫ ∞

2
dC exp −Cx

2

e−tt
a
d−1dt,

where Γ is the Gamma function: Γ(s) =
∫ ∞
0

e−tts−1dt for <s > 0.

It follows that for all ε > 0 there is an w = w(ε) such that for all but εp(n) partitions
λ of n we have

|Fa,d(λ) − Fa′,d(λ)| < w
√

n

for all a, a′. This result is sharp as the following Theorem shows:

Theorem 1.4. Let d > 2. There exists n0 = n0(d) such that for any n > n0 and for any

0 < a < b 6 d, there are more than p(n)/6 partitions λ of n with

(1·5) |Fa,d(λ) − Fb,d(λ)| >
(a + b)

√
n

50ab
.

Both Theorem 1.3 and the proof of Theorem 1.4 seem to indicate that the uniformity
of the distribution of the parts in the residue classes a mod d (where now 0 < a 6 d ) is
limited by the fact that, probably, the residues classes with “small” a tend to occur slightly
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more frequently. Indeed, we expect that there is a positive absolute constant c = c(d) so
that for 0 < a < a′ 6 d, there are more than ( 1

2 + c)p(n) partitions λ satisfying

(1·6) Fa,d(λ) > Fa′,d(λ).

Let us call a partition λ “d-regular” if (1·6) holds for all 0 < a < a′ 6 d. Probably there
are “many” d-regular partitions of n. In a forthcoming paper we will prove that there are
more than c′(d)p(n) (where c′(d) > 0) d-regular partitions.

So far we have only studied unrestricted partitions. One might like to study the case of
partitions into unequal parts as well. We expect that in the latter case the preponderance
of the “small” residue classes disappears, or at least it is less significant.

One may also study other arithmetic properties of the parts in a “random” partition of
n. Is it true that the rate of the square-free parts to all the parts used is around 6

π2 for
almost all partitions of n? Is it true that the normal order of the number of prime factors
of the parts used is log log n for almost all partitions of n? If the answer to the last question
is affirmative, then do the parts of a “random” partition satisfy an Erdős-Kac type law?
Is it true that the order of magnitude of the frequency of the prime numbers amongst
all the parts used is 1

log n for almost all partitions? Perhaps this frequency is ∼ c 1
log n for

almost all partitions but the value of c can be different for unrestricted partitions, resp.
partitions into unequal parts (in the latter case, one would expect 1

log
√

n
= 2

log n ). We

hope to answer some of these questions in subsequent papers.

2. Some asymptotic formulas of Hardy, Ramanujan, Meinardus,

Dixmier, Erdős, Nicolas and Sárközy

In this part we will quote some formulas that we will use to prove our results.
First, by a Theorem of Hardy and Ramanjan [5] we have

(2·1) p(n) =
1

4n
√

3
eC

√
n(1 + O(n−1/2)).

We will also need some asymptotic formulas for p(n; a, d) and p̄(n; a, d). Such formula
may be derived from Meinardus’s Theorem (see Satz 1 and 2 of [6]), when (a, d) = 1:

(2·2) p(n; a, d) = A(a, d)n− 1
2
− a

2d eC
√

n
d (1 + O(n−1/4))

with
A(a, d) = Γ

(a

d

)

π
a
d−12−

3
2
− a

2d 3−
a
2d d−

1
2
+ a

2d ,

and

(2·3) p̄(n; a, d) = B(a, d)n− 5
4
+ a

2d eC
√

n(1− 1
d )(1 + O(n−1/4))

with

B(a, d) =
d

a
d− 1

2

Γ(a
d )

1

2
√

π

(

(1 − 1

d
)
π2

6

)
1
4
− a

2d .

The implicit constants in the Landau symbols of (2·2) and (2·3) are uniform in n but
depend strongly on a and d. Dixmier and Nicolas [1] proved that uniformly for m 6 n1/4

we have

(2·4) r(n, m) = p(n)(
1

2
Cn−1/2)m−1(m − 1)!(1 + O(m2n−1/2)).
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In the proof of Theorem 1.4 we will need an estimation of r(n, a, b). The following (2·5) is
a particular case of the Proposition page 159 of the article of Erdős, Nicolas and Sárközy
[3]. For 0 < a < b <

√
n, we have:

(2·5) r(n, {a, b}) = p(n)
abC2

4n
(1 + O(bn−1/2)).

This Proposition requires in fact that 0 < a < b ¿ √
n where the implicit constant is

absolute but in our particular case (with only two parts forbidden) their result holds under
the condition 0 < a < b <

√
n.

3. Proof of Theorem 1.1

First we suppose that (a, d) = 1. We start with the equalities:
(3·1)

p(n) =
∑

m6n

p(m; a, d)p̄(n − m; a, d)

=
∑

m6n

|m−n
d |6n3/4g(n)

p(m; a, d)p̄(n − m; a, d) +
∑

m6n

|m−n
d |>n3/4g(n)

p(m; a, d)p̄(n − m; a, d)

= S1 + S2,

by definition. To prove Theorem 1.1, in view of (2·2) and (2·3) it is sufficient to show that

S2 = O(p(n)n2 exp(−C
g(n)2d2

8(d − 1)
)).

With the estimations of Meinardus (2·2) and (2·3) we have

(3·2) S2 ¿a,d

∑

|m−n
d |>n3/4g(n)

(n − m)−
5
4
+ a

2d m− 1
2
− a

2d exp
(

C

√

m

d
+ C

√

(n − m)(1 − 1

d
)
)

.

Let f : [0, n] → R, u 7→
√

u
d +

√

(n − u)(1 − 1/d). This function is positive and concave,
its maximum is at u = n/d with f(n/d) =

√
n. Thus we may write:

(3·3) S2 ¿ n max(exp(Cf(
n

d
+ n3/4g(n))), exp(Cf(

n

d
− n3/4g(n)))).

By using the formula
√

1 + v = 1 + v/2 − v2/8 + O(v3) (for −1 < v), for −n
d < u <

n(1 − 1/d) we have:

(3·4) f(
n

d
+ u) =

√
n − u2

8n3/2

d2

d − 1
+ O(

d2u3

n5/2
),

where the implicite constant is absolute.
Then we apply this formula with u = ±n3/4g(n):

(3·5)

S2 ¿ n exp(C(
√

n − g(n)2d2

8(d − 1)
+ O(d2n−1/4g(n)3)))

¿ n2p(n) exp(−C
d2g2(n)

8(d − 1)
),

when |g(n)| 6 n1/12. This ends the case (a, d) = 1.
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If (a, d) > 1 we set δ := (a, d), a = a′δ and d = d′δ. It is obvious that

p(m; a, d) =
{

p(m
δ ; a′, d′) if m ≡ 0 (mod δ)

0 in the other cases.

The sum S2 arising in (3·1) is equal to

S2 =
∑

m6n
m≡0 (mod δ)

|m−n
d |>n3/4g(n)

p(
m

δ
; a′, d′)p̄(n − m; a, d).

Then we apply Meinardus’s Theorem, and with similar computations as before we obtain
an upper bound like (3·5) with an eventually different implicit constant in the Vinogradov
symbol ¿. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

If a partition λ does not satisfy (1·3) then we have

(4·1) S1,d(λ) = m

with m such that |m− n
d | 6 δn3/4. For fixed m the number of partitions λ satisfying (4·1)

is p(m; 1, d)p̄(n − m; 1, d). Thus it suffices to show that

(4·2) S :=
∑

m: |m−n
d |6δn3/4

p(m; 1, d)p̄(n − m; 1, d) < εp(n).

By (2·2) and (2·3), there are constants K1 = K1(d), K2 = K2(d) so that for n → ∞ and
uniformly for |m − n

d | 6 δn3/4 we have

(4·3)

p(m; 1, d)p̄(n − m; 1, d) = (1 + o(1))K1m
− 1

2
− 1

2d (n − m)−
5
4
+ 1

2d

× exp
(

C

√

m

d
+ C

√

(n − m)(1 − 1

d
)
)

= (1 + o(1))K2n
− 7

4 exp
(

C(

√

m

d
+

√

(n − m)(1 − 1

d
))

)

.

It follows from (3·4) that uniformly for |m − n
d | 6 δn3/4 we have

(4·4). C(

√

m

d
+

√

(n − m)(1 − 1

d
)) = C

√
n + O(n−3/2|m − n

d
|2) = C

√
n + O(δ2),

It follows from (2·1), (4·3), (4·4) that there is a K3 = K3(d) so that

(4·5) p(m; 1, d)p̄(n − m; 1, d) = (1 + o(1))K3n
−3/4p(n)(1 + O(δ2))

uniformly for |m − n
d | 6 δn3/4. If δ is small enough in terms of ε then (4·2) follows from

(4·5) and this completes the proof of Theorem 1.2.
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5. Proof of Theorem 1.3

As in the proof of Theorem 1.1 we suppose that (a, d) = 1 and in the last paragraph we
will consider the general case.
5.1. Preliminaries

The main idea is to adapt the arguments of Erdős and Lehner [2]. Like in the proof of
Theorem 1.1 we start with the splitting

pk,a,d(n)

p(n)
=

∑

m6n

pk(m; a, d)p̄(n − m; a, d)

p(n)

=
∑

m6n

|m−n
d |6n4/5

pk(m; a, d)p̄(n − m; a, d)

p(n)
+

∑

m6n

|m−n
d |>n4/5

pk(m; a, d)p̄(n − m; a, d)

p(n)

= S3 + S4.

It follows from the proof of Theorem 1.1 (with g(n) = n1/20) that we have S4 = o(1).
The main problem is to estimate S3.

Since pk(m; a, d) = p(m; a, d) − ∑

r>k+1 p(r)(m; a, d), we have the equality:

S3 =
∑

|m−n
d |6n4/5

p(m; a, d)p̄(n − m; a, d)

p(n)
−

∑

|m−n
d |6n4/5

∑

k+16r

p(r)(m; a, d)p̄(n − m; a, d)

p(n)
.

The first term is 1 + o(1) by the proof of Theorem 1.1. For the second, to any partition
m = (a + λ1d) + · · · + (a + λrd) counted in p(r)(m; a, d) we can assign λ1 + · · · + λr a
partition of m−ar

d with at most r summands. This correspondance is one-to-one, so we

may write, when m − ar ≡ 0 (mod d), that p(r)(m; a, d) = pr(
m−ar

d ).
Next we use (like Erdős and Lehner ) the sieve identity :

pr(
m − ar

d
) =

∑

j>0

(−1)j
∑

16r1<···<rj

16r1+···+rj6
m−ar

d −jr

p(m−ar
d − jr − ∑j

`=1 r`)p̄(n − m; a, d)

p(n)
.

Finally

S3 = 1 + o(1) −
∑

j>0

(−1)jT (j)

with
(5·1)

T (j) =
∑

|m−n
d |6n4/5

∑

k+16r6m/a
m≡ar (mod d)

∑

16r1<···<rj

16r1+···+rj6
m−ar

d −jr

p(m−ar
d − jr −

∑j
`=1 r`)p̄(n − m; a, d)

p(n)
.

More precisely, by the principle of Brun’s “simple” sieve we have for all fixed ν > 1

1 + o(1) −
2ν
∑

j=0

(−1)jT (j) 6 S3 6 1 + o(1) −
2ν+1
∑

j=0

(−1)jT (j).

The integer ν will be fixed large enough, this is the main reason why the error term will
be only o(1).

In the next step, we will show that the contribution of the terms max(r, r1, . . . , rj) > n3/5

is o(1). We will prove the following
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Lemma 5.1. For j > 0, we have

(5·2)

V (j) :=
∑

|m−n
d |6n4/5

∑

k+16r
m−ar≡0 (mod d)

∑

16r1<···<rj

16r1+···+rj6
m−ar

d −jr

max(r,r1,...,rj)>n3/5

p̄(n − m; a, d)

p(n)
p
(m − ar

d
− jr −

j
∑

`=1

r`

)

= o(1).

Proof.

If max(r, r1, . . . , rj) > n3/5 then m−ar
d − jr − ∑j

`=1 r` 6
m
d − n3/5

d . By the estimations
(2·1) and (2·3) of Meinardus, Hardy and Ramanujan, we have (the implicit constants may
depend on a and d )
(5·3)

V (j) ¿
∑

|m−n
d |6n4/5

∑

k+16r
m−ar≡0 (mod d)

∑

16r1<···<rj

16r1+···+rj6
m−ar

d −rj

max(r,r1,...,rj)>n3/5

n(n − m)−5/4+ a
2d

m−ar
d − jr − ∑j

`=1 r`

× exp
(

C
√

(n − m)(1 − 1/d) − C
√

n + C

√

√

√

√

m − ar

d
− jr −

j
∑

`=1

r`

)

¿ n
∑

|m−n
d |6n4/5

∑

k+16r
m−ar≡0 (mod d)

∑

16r1<···<rj

16r1+···+rj6
m−ar

d −rj

max(r,r1,...,rj)>n3/5

exp
(

C
√

(n − m)(1 − 1/d)
)

× exp
(

− C
√

n + C

√

m − n3/5

d

)

.

Since
√

1 − t 6 1 − t/2 for 0 6 t 6 1, we have
√

m − n3/5

d
=

√

m

d

√

1 − n3/5

m
6

√

m

d
− n1/10

2
√

d
.

Thus we have

(5·4) exp
(

C

√

m − n3/5

d

)

6 exp
(

C(

√

m

d
− n1/10

2
√

d
)
)

.

In the proof of Theorem 1.1 we have remarked that for 0 6 m 6 n we have

(5·5) exp
(

C(

√

m

d
+

√

(n − m)(1 − 1

d
) −

√
n)

)

6 1.

Inserting (5·4) and (5·5) in the upper bound (5·3) we obtain

V (j) ¿ nj+3 exp
(

− n1/10

2
√

d

)

,

this completes the proof of Lemma 5.1.

Now we will remove the condition 1 6 r1 < · · · < rj . We write

(5·6) T (j) = U(j) + V (j) + Ej ,

with

U(j) =
1

j!

∑

|m−n
d |6n4/5

∑

k+16r<n3/5

m−ar≡0 (mod d)

∑

16r1,...,rj6n3/5

p
(m − ar

d
− jr−

j
∑

`=1

r`

) p̄(n − m; a, d)

p(n)
.

We will prove that Ej = o(1) (n → ∞):
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Lemma 5.2. For any fixed j, uniformly in n we have

(5·7) Ej ¿j,a,d
exp(−Cx)

n
U(j − 1).

In the next paragraph, we will prove that U(j) = O(1) uniformly in n thus (5·7) is
sufficent to prove that Ej = o(1).

The term Ej contains the (r1, . . . , rj) such that there exist 1 6 k < ` 6 j with rk = r`

so that, by (2·1),

(5·8)

Ej ¿j

∑

|m−n
d |6n4/5

∑

k+16r<n3/5

m−ar≡0 (mod d)

∑

16r1,...,rj−1<n3/5

p
(m − ar

d
− jr − 2r1 −

j−1
∑

`=2

r`

)

× p̄(n − m; a, d)

p(n)

¿
∑

|m−n
d |6n4/5

∑

k+16r<n3/5

m−ar≡0 (mod d)

∑

16r1,...,rj−1<n3/5

p̄(n − m; a, d)

p(n)

d2

n

× exp
(

C(
m − ar

d
− jr − 2r1 −

j−1
∑

`=2

r`)
1/2

)

.

Then, since
√

u + h −√
u = h(

√
u + h +

√
u)−1, we have

(5·9)

√

√

√

√

m − ar

d
− jr − 2r1 −

j−1
∑

`=2

r` =

√

√

√

√

m − ar

d
− (j − 1)r − 2r1 −

j−1
∑

`=2

r`

− r

(m−ar
d − jr − 2r1 −

∑j−1
`=2 r`)1/2 +

√
r
.

Finally, since r > k =
√

n
d ( log n

C + x), we have:

(5·10) exp(
−rC

(m−ar
d − jr − 2r1 −

∑j−1
`=2 r`)1/2 +

√
r
) ¿ exp(−rC

√
d√

n
) =

1

n
exp(−Cx).

If we put (5·9) and (5·10) in (5·8), and using also (2·1) we obtain (5·7).

5.2. The final computations

Now we can begin the computation of the main term U(j). We will use the notation

U(j) =
1

j!

∑

|m−n
d |6n4/5

p̄(n − m; a, d)

p(n)
H(m),

with
(5·11)

H(m) :=
∑

k+16r<n3/5

m−ar≡0 (mod d)

∑

16r1,...,rj6n3/5

p
(m − ar

d
− jr −

j
∑

`=1

r`

)

=
∑

k+16r<n3/5

m−ar≡0 (mod d)

∑

16r1,...,rj6n3/5

d

m4
√

3
exp

(

C

√

√

√

√

m − ar

d
− jr −

j
∑

`=1

r`

)

(1 + O(
1

n1/2
)),
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by (2·1).
When v ¿ n3/4, we have

√

m

d
− v =

√

m

d
− v

√
d

2
√

m
+ O

(d3/2v2

m3/2

)

.

We apply then this formula with v = ar
d + jr +

∑j
`=1 r`:

H(m) ∼
∑

k+16r<n3/5

m≡ar (mod d)

∑

16r1,...,rj6n3/5

d

m4
√

3
exp

(

C

√

m

d
− C

2
(
ar

d
+ jr +

j
∑

`=1

r`)

√

d

m

)

.

We recall that k =
√

n
d ( log n

C +x). The sums over the variables r` are geometric progressions:

(5·12)

∑

16r1,...,rj6n3/5

exp
(

− C

2

√

d

m

j
∑

`=1

r`

)

=
(

∑

16r16n3/5

exp
(

− C

2
r1

√

d

m

))j

=
exp

(

− C
2 j

√

d
m

)

(

1 − exp(−C
2

√

d
m )

)j

∼
( 2

C

√

m

d

)j
.

For any m define u = u(m) by u ∈ {0, . . . , d− 1}, m−au ≡ 0 (mod d). Then the sum over
r = u + λd becomes:
(5·13)

∑

k+16r<n3/5

m≡ar (mod d)

exp
(

− C

2
(

ar√
dm

+ jr

√

d

m
)
)

=
∑

k+16u+λd<n3/5

exp
(

− C

2
(
a(u + λd)√

dm
+ j(u + λd)

√

d

m
)
)

∼ exp
(

− kC

2
(

a√
md

+ j

√

d

m
)
)(C

2

√

d

m
(a + jd)

)−1
.

Inserting (5·12) and (5·13) in the expression of H(m), we obtain

H(m) ∼ d

4m
√

3
exp(C

√

m

d
)
( 2

C

√

m

d

)j 2

C

√

m

d

1

a + jd
exp

(

− kC

2
√

md
(a + jd)

)

.

For k =
√

n
d ( log n

C + x), and m such that |m − n
d | 6 n4/5 we have

exp(− kC

2
√

md
(a + jd)) ∼ exp

(

− (
a

d
+ j)

log n

2
− Cx

2d
(a + jd)

)

.

It follows that

(5·14)

U(j) ∼ 1

j!

( 2

dC

)j
exp

(

− Cx

2
(
a

d
+ j)

) 2

C
(
a

d
+ j)−1 n− 1

2
− a

2d

4
√

3

×
∑

|m−n
d |6n4/5

exp(C

√

m

d
)
p̄(n − m; a, d)

p(n)
.
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Denote the sum over m in (5·14) by Σm. To estimate this sum again we use Meinardus ’s
result (2·2):

Σm ∼ 1

A(a, d)
(
n

d
)

1
2
+ a

2d

∑

|m−n
d |6n4/5

p(m; a, d)p̄(n − m; a, d)

p(n)

∼ 1

A(a, d)
(
n

d
)

1
2
+ a

2d .

Since the general term of the sum over j is convergent we have finally
(5·15)

S1 = 1 −
∑

j>0

(−1)j

j!

A(a, d)−1

4
√

3
d−

1
2
− a

2d

( 2

dC

)j 2

C

1

j + a
d

exp(−Cx

2
(j +

a

d
)) + o(1)

= 1 + o(1)

− A(a, d)−1

4
√

3
d−

1
2
− a

2d
2

C
(

2

dC
)−

a
d

∑

j>0

(−1)j

j!

( 2

dC

)j+ a
d exp

(

− Cx

2
(j +

a

d
)
) 1

j + a
d

+ o(1).

The last sum over j is the series expansion of the truncated gamma function, this sum is
equal to γ(a

d , 2
dC exp(−Cx

2 )) where we use the standard notation

γ(α, u) =

∫ u

0

e−ttα−1dt =
∞
∑

j=0

(−1)juα+j

j!(α + j)

for <α > 0. Inserting the expression of A(a, d) in equality (5·15) we obtain

S1 =
1

Γ(a/d)

∫ ∞

2
dC exp(−Cx

2
)

e−tt
a
d−1dt + o(1).

The proof of Theorem 1.3 in the case (a, d) = 1 is complete.

5.3. The case (a, d) > 1

As in the proof of Theorem 1.1, let δ := (a, d), a = a′δ, d = d′δ. The main difference
with the situation (a, d) = 1 is that the integer m must satisfy m ≡ 0 (mod δ). The proofs
of Lemma 5.1 and Lemma 5.2 are still valid, the first change appears in the computation
of H(m) (see (5·11)). Since m ≡ 0 (mod δ), the condition m−ar ≡ 0 (mod δ) is equivalent
to m

δ − a′r ≡ 0 (mod δ′). This has no consequence for the computation (5·12) of the sums
over the rj , 1 6 ` 6 j, but the sum over r (5·13) is a little different. This time u = u(m)
is the element of {0, . . . , d′ − 1} with m

δ − a′u ≡ 0 (mod d′), and we write r = u + λd′:

∑

k<r<n3/5

m
δ ≡a′r (mod d′)

exp
(−C

2

√

d

m
(
a′r

d′
+ jr)

)

=
∑

k+1−u

d′
6λ< n3/5

−u

d′

exp
(−C

2

√

d

m
(
a′

d′
+ j)(u + λd′)

)

∼
exp

(

− kC
2

√

d
m (a′

d′
+ j)

)

C
2

√

d
m (a′ + jd′)

.

The analogue of (5·14) is

(5·16)

U(j) ∼ 1

j!
(

2

dC
)jn− a′

d′ exp(−Cx

2
(
a′

d′
+ j))

2
√

n

dC

1

a′ + jd′
d2

4n
√

3

×
∑

|m−n
d |6n4/5

m≡0 (mod δ)

exp(C

√

m

d
)
p(n − m; a, d)

p(n)
.
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When m ≡ 0 (mod δ), by Meinardus’s Theorem, we have p(m; a, d) = p(m
δ , a′, d′) ∼

A(a′, d′)
(

m
δ

)− 1
2
− a

2d exp(C
√

m
d ). The sum over m in (5·16) is ∼ A(a′, d′)−1( n

dδ )
1
2
+ a

2d .

Finally we remark that A(a′, d′) = A(a, d)δ
1
2
− a

2d and we can complete the computation
as in the end of paragraph 4.2.

The proof of Theorem 1.3 is now complete.

6. Proof of Theorem 1.4

Let P denote the set of partitions of n. Consider a partition λ of P :

(6·1) x1 + 2x2 + 3x3 + · · · + nxn = n

where x1, . . . , xn are non negative integers. Define ` = `(λ) by

(6·2) axa + bxb = `;

then we have

(6·3)
∑

j 6∈{a,b}
jxj = n − `.

Here (6·2) is a partition of ` into parts a and b, while (6·3) is a partition of n − ` into
parts not in {a, b}; denote these partitions by Φ = Φ(λ) and Ψ = Ψ(λ), respectively. For
fixed `, write P` = {λ : λ ∈ P, `(λ) = `}.

Let δ = (a, b). It is obvious that P` is empty if ` 6≡ 0 (mod δ). For ` ≡ 0 (mod δ) we write
` = δ`′, a = δa′ and b = δb′.

Since (a′, b′) = 1 there exists β ∈ {0, . . . , b′ − 1} and λ ∈ Z such that `′ = βa′ + λb′.

When ` is large enough it is clear that λ > 0, in fact we have λ = `′

b′ + O(1) = `
b + O(1),

where here and in the following, the terms O(1) depend on a and b.
The solutions of (6·2) are ` = a(β + b′µ) + b(λ − a′µ) with µ such that β + b′µ and

λ − a′µ are positive. The number of solutions of (6·2) is `′

a′b′ + O(1) = `
a′b + O(1), while

the number of solutions of (6·3) is r(n − `, {a, b}).
Thus we have for ` ≡ 0 (mod δ)

(6·4) |P`| =
( `

a′b
+ O(1)

)

r(n − `, {a, b}).

Now set
P
∗ = {λ : λ ∈ P, `(λ) <

√
n/10} = ∪`<

√
n/10P`

and
P̄ = P r P

∗ = ∪`>
√

n/10P`.

Then by (2·5) and (6·4) we have

(6·5)

|P∗| =
∑

`<
√

n/10

|P`|

=
∑

`<
√

n/10
`≡0 (mod δ)

( `

a′b
+ O(1)

)

r(n − `, {a, b})

=
∑

`<
√

n/10
`≡0 (mod δ)

( `

a′b
+ O(1)

)

p(n − `)
abC2

4(n − `)
(1 + O(n−1/2)).
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It follows from (2·1) for large n and ` <
√

n/10 that
(6·6)

( `

a′b
+ O(1)

)p(n − `)

n − `
(1 + O(n−1/2)) =

`

a′b
(1 + O(

1

`
))

eC
√

n−`

4(n − `)2
√

3
(1 + O(n−1/2))

6
`

4a′b
√

3n2
eC

√
n(1 + O(`−1 + n−1/2))

<
eC

√
n

40a′b
√

3n3/2
(1 + O(n−1/2)).

It follows from (2·1), (6·5) and (6·6) that for large n we have

|P∗| <
C2

4

∑

`<
√

n/10
`≡0 (mod δ)

δeC
√

n

40
√

3n3/2
(1 + O(n−1/2))

<
C2

1600
√

3n
eC

√
n(1 + O(n−1/2))

<
C2

400
p(n)(1 + O(n−1/2)) <

1

50
p(n)

so that

(6·7)

|P̄| =
∑

`>
√

n/10

|P`| = |P| − |P∗|

> p(n) − 1

50
p(n) =

49

50
p(n).

Now let Q denote the set of those partitions λ of n wich satisfy (1·5). We will show that
for all

(6·8) ` >

√
n

10
satisfying ` ≡ 0 (mod δ),

a positive proportion of the partitions in P` belongs to Q. In order to prove this, we fix
an ` satisfying (6·8), and then we introduce an equivalence relation in P` : we say for λ,
λ′ ∈ P` that λ ∼ λ′ if and only if Ψ(λ) = Ψ(λ′), i.e, in λ and λ′ the parts not in {a, b}
are the same. Consider such an equivalence class E , wich is uniquely determined by the
partition Ψ in (6·3). Then |E| is equal to the number of partitions Φ of form (6·2), so that

(6·9) |E| = (1 + o(1))
`

a′b

(note that ` is large by (6·8)). Let Φ0 denote the partition (6·2) with xb = λ − a′
[

`
2a′b

]

:

(6·10) a(β + b′
[ `

2a′b

]

) + b(λ − a′
[ `

2a′b

]

) = `,

and define the partition λ0 ∈ E by Φ(λ0) = Φ0 (while Ψ(λ0) = Ψ is the same for every
element of E). Next define the subset E+ of E in the following way:

(i) if Fa,d(λ0) > Fb,d(λ0) then let E+ denote the set of the partitions λ ∈ E such that
xb 6 `/4b in (6·2),

(ii) if Fa,d(λ0) < Fb,d(λ0) then let E+ denote the set of the partitions λ ∈ E such that
3`
4b 6 xb 6

`
b in Φ(λ) in (6·2). Since xb = λ − a′µ, with λ = `

b + O(1), in the first case we
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have λ − `
4b + O(1) 6 a′µ 6 λ and in the second we have O(1) 6 a′µ 6 λ − 3`

4b + O(1).
Then, by (6·9), in both cases we have

(6·11) |E+| =
`

4a′b
+ O(1) >

1

5
|E|.

Moreover, for all λ ∈ E+ we have

Fa,d(λ) = xa + (Fa,d(λ0) − (β + b′
[ `

2a′b

]

)) = −bxb

a
+ Fa,d(λ0) +

`

2a
+ O(1)

and

Fb,d(λ) = xb + (Fb,d(λ0) − λ + a′
[ `

2a′b

]

) = xb + Fb,d(λ0) −
`

2b
+ O(1)

whence

Fa,d(λ) − Fb,d(λ) = Fa,d(λ0) − Fb,d(λ0) + `
(a + b)

2ab
− xb

(a + b)

a
+ O(1).

It follows that in case (i) we have

Fa,d(λ) − Fb,d(λ) > (a + b)
( `

2ab
− `

4ab

)

+ O(1) = (1 + o(1))
(a + b)`

4ab
>

(a + b)`

5ab

while in case (ii),

Fa,d(λ) − Fb,d(λ) < (a + b)
( `

2ab
− 3`

4ab

)

+ O(1) = −(1 + o(1))
(a + b)`

4ab
< − (a + b)`

5ab

(recall that ` is large by (6·8)). Thus by (6·8) in both cases we have

|Fa,d(λ) − Fb,d(λ)| >
(a + b)`

5ab
>

(a + b)
√

n

50ab

whence

(6·12) E+ ⊂ Q.

By (6·11) and (6·12) we have

(6·13)

|P` ∩ Q| =
∑

E
|E ∩ Q|

>
∑

E
|E+|

>
1

5

∑

E
|E| =

1

5
|P`|

(for all ` >
√

n/10). It follows from (6·7) and (6·13) that

|Q| > |P ∩ Q| =
∑

`>
√

n/10

|P` ∩ Q|

>
1

5

∑

`>
√

n/10

|P`| >
49

250
p(n) >

p(n)

6

wich completes the proof of Theorem 1.4.
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