
HAL Id: inria-00132733
https://hal.inria.fr/inria-00132733

Submitted on 6 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intersecting biquadratic Bézier surface patches
S. Chau, M. Oberneder, André Galligo, B. Juttler

To cite this version:
S. Chau, M. Oberneder, André Galligo, B. Juttler. Intersecting biquadratic Bézier surface patches.
Computational Methods for Algebraic Spline Surfaces, 2005, Oslo, Norway. pp.61-79. �inria-00132733�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50398205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00132733
https://hal.archives-ouvertes.fr

Intersecting biquadratic Bézier surface patches

Stéphane Chau⋆, Margot Oberneder†, André Galligo⋆ and Bert Jüttler†

⋆ Laboratoire J.A. Dieudonn´e, Universit´e de Nice - Sophia-Antipolis, France
{chaus,galligo}@math.unice.fr

† Institute of Applied Geometry, Johannes Kepler University, Austria
{margot.oberneder,bert.juettler}@jku.at

Abstract. We present three symbolic–numeric techniques for computing the in-
tersection and self–intersection curve(s) of two B´ezier surface patches of bidegree
(2,2). In particular, we discuss algorithms, implementation, illustrative examples
and provide a comparison of the methods.

1 Introduction

The intersection of two surfaces is one of the fundamental operations in Computer
Aided Design (CAD) and solid modeling. Closely related to it, theelimination of self–
intersections (which may arise. e.g., from offsetting) is needed to maintain the correct-
ness of a CAD model.

Tensor–product Bézier surface patches, which are parametric surfaces defined by
vector–valued polynomialsx : [0, 1]2 → � 3 of certain bidegree(m, n), are extensively
used to model surfaces in CAD and solid modeling. However, even for relatively small
bidegreesm, n ≤ 3, the intersection and self–intersection loci of such patches can be
fairly complicated. Consequently, standard algorithms for surface–surface intersections
[27, 31] generally do not take the properties of special classes of such tensor–product
surfaces into account.

In the case of two general surfaces, abrute–force approachto compute the inter-
section curve(s) consists in (step 1) approximating the surface by triangular meshes and
(step 2) intersecting the planar facets of these meshes. Clearly, in order to achieve high
accuracy, a very fine approximation with a mesh may be needed. Alternatively, one may
consider to choose another, more complicated representation, where the basic elements
are capable of capturing more of the geometric features. Forinstance, quadratic trian-
gular Bézier patches were already studied in [2, 3, 13, 33, 34] and one might try to use
biquadratic patches. Clearly, this approach would need robust intersection algorithms
for the more complicated basic elements.

In this paper we address the computation of the intersection curve of two surface
patches of bidegree (2,2), i.e., biquadratic patches. Our aim is to compute the intersec-
tion by using – as far as possible –symbolictechniques, in order to avoid problems with
numerical robustness.

The remainder of the paper is organized as follows. After some preliminaries, Sec-
tions 3 to 5 present three different techniques for computing the intersection curves,
which are based onresultants, on approximate implicitization(which is an important

2 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

research topic in the GAIA II project), and onintersections of parameter lines, respec-
tively. Section 6 discusses the computation of self–intersections. We apply the three
techniques to three representative examples and report theresults in Section 7. Finally,
we conclude this paper.

2 Intersection and self–intersection curves

We consider the intersection curves of two biquadratic Bézier surfacesx(u, v) and
y(r, s), both with parameter domains[0, 1]2. They are assumed to be given by their
parametric representations with rational coefficients (control points). More precisely,
these representations have the form

x(u, v) =

2∑

i=0

2∑

j=0

ci,jBi(u)Bj(v) (1)

with certain rational control pointsci,j ∈ Q3 and the quadratic Bernstein polynomials
Bj(t) =

(
2
i

)
ti(1 − t)2−i (and similarly for the second patchy(r, s)).

The intersection curve is defined by the system of three non–linear equations

x(u, v) = y(r, s) (2)

which defines the intersection as a curve (in the generic case)in [0, 1]4. Similarly, self
intersections of one of the patches are characterized by

x(u, v) = x(ū, v̄). (3)

In this case, the set of solutions contains the 2–planeu = u∗, v = v∗ as a trivial
component.

While these equations could be solved by using numerical methods, we plan to ex-
plore how far it is possible to compute the intersections by usingsymboliccomputations,
in order to avoid rounding errors and robustness problems.

The “generic” algorithm for computing the (self–) intersection curve(s), consists of
three steps:

1. Find at least one point on each component of the intersection,
2. trace the segments of the intersection curve, and
3. collect and convert the segments into a format that is suitable for further processing

(depending on the application).

We will focus on the first step, since the second step is a standard numerical problem,
and step 3 depends on the specific background of the problem. Several parts of the
intersection curve may exist. Some possible types are shown in Fig. 1 in the parameter
domain of a Bézier surfacex(u, v). Points with horizontal or vertical tangent are called
turning points, and intersections with the boundaries of the patches generateboundary
points. Note that also isolated points (where both surfaces touch each other) may exist.

Intersecting biquadratic patches 3

u

v

boundary points

turning points

Fig. 1. Intersection curves in one of the parameter domains.

3 A resultant–based approach

In this section, we will use the resultant to compute the intersection locus between
x(u, v) andy(r, s). We consider the algebraic variety

C = {(u, v, r, s) | x(u, v) = y(r, s)} (4)

and we will suppose thatC ∩ [0, 1]4 is a curve.

3.1 Resultant basics

Let f1, f2 andf3 be three polynomials in two variables with given monomial supports
andN the number of terms of these 3 supports. For eachi ∈ {1, 2, 3} we denote by
coeffs(fi) the sequence of the coefficients offi. The resultant off1, f2 andf3 is, by
definition, an irreducible polynomialR in N variables with the property, that

R(coeffs(f1), coeffs(f2), coeffs(f3)) = 0 (5)

if and only if these 3 polynomials have a common root in a specified domainD. For a
more precise description of resultants, see e.g. [4, 10, 11].

In our application to surface–surface–intersections, theresultant can be used as a
projection operator. Indeed, iff1, f2 andf3 are the three components ofx(u, v)−y(r, s)
which are considered as polynomials in the two variablesr ands, then the resultant
of f1, f2 andf3 is a polynomialR(u, v) and it gives an implicit plane curve which
corresponds to the projection ofC in the(u, v) parameters. More precisely, iff1, f2 and
f3 are generic, then the two sets

{
(u, v) ∈ [0, 1]2 | R(u, v) = 0

}
(6)

and
{
(u, v) ∈ [0, 1]2 | ∃(r, s) ∈ D : x(u, v) = y(r, s)

}
(7)

are identical. Several families of multivariate resultants have been studied and some
implementations are available, see [7, 25].

4 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

3.2 Application to the intersection problem

A strategy to describe the intersection betweenx(u, v) andy(r, s) consists in projecting
C on a plane (by using the resultant). Many authors propose to projectC on the(u, v)
(or (r, s)) plane and then the resulted plane curve is traced (see [19] and [23] for the
tracing method) and is lifted to the 3D space by the corresponding parameterization.
Note that this method can give some unwanted components (the so called ”phantom
components”) which are not inx([0, 1]2) ∩ y([0, 1]2). So, another step is needed to cut
off the extraneous branches. This last part can be done with a solver for multivariate
polynomial systems (see [28]) or an inversion of parameterization (see [5]).

As an alternative to these existing approaches, we propose to project the setC onto
the(u, r) space. Note that, in the equationsx(u, v) = y(r, s), the two variablesv ands
are separated, so they can be eliminated via a simple resultant computation. It turns out
that such a resultant can be computed via the determinant of aBezoutian matrix (see
[18]). First, consider the(3, 3) determinant:

b = det

(

x(u, v) − y(r, s),
x(u, v) − x(u, v1)

v − v1
,
y(r, s) − y(r, s1)

s − s1

)

. (8)

The determinantb is a polynomial and its monomial support with respect to(v, s) is
S = {1, v, s, vs} and similarly for(v1, s1), whereS1 = {1, v1, s1, v1s1}. So, a mono-
mial of b is a product of an element ofS and of an element ofS1 . Then, we form
the4 × 4 matrix whose entries are the coefficients ofb indexed by the product of the
two setsS andS1. This matrix contains only the variablesu andr and is called the Be-
zoutian matrix. In our case, its determinant is a polynomialin (u, r) equal to the desired
resultantR(u, r) (deg(R)=24 and degu(R)=degr(R)=16) and it gives an implicit curve
which corresponds to the projection ofC in the(u, r) space.

Then, we analyse the topology of this curve (see [20] and [35])and we trace it (see
[19] and [23]). Finally, for each(u0, r0) ∈ [0, 1]2 such thatR(u0, r0) = 0, we can
determine if there exists a pair(v0, s0) ∈ [0, 1]2 such thatx(u0, v0) = y(r0, s0) (solve
a polynomial system of three equations with two separated unknowns of bidegree (2,2))
and thus we can avoid the problem of the phantom components (see Fig. 2). We lift the
obtained points in the 3D space to give the intersection locus. Note that this method can
also give the projection ofC in the(v, s) space by the same kind of computation.

4 Approximate implicitization by a quartic surface

In this section, we apply the technique of approximate implicitization to compute the
intersection of two biquadratic patches.

4.1 Approximate implicitization

The implicitization problem – which consists in finding an implicit equation (an alge-
braic representation) for a given parameterized rational surface – can be adressed by
using several approaches, e.g., using resultants or Groebner bases [10, 11, 21]. How-
ever, the implicitization is very time consuming because ofthe degree of the implicit

Intersecting biquadratic patches 5

r

u u

r

Fig. 2. Projection ofC in the (u, r) space with (left) and without (right) phantom components.
This curve corresponds to the example of Figure 6, page 14.

equation: for a generic parameterized surface of bidegree (n1,n2), the implicit equation
has degree2n1n2. Also, all rational parametric curves and surfaces have an algebraic
representation, but the reverse is not true; the relationship between the parametric and
the algebraic representations can be very complex (problemof ”phantom components”).
Thus, we can try to find an algebraic approximation of a given parameterized surface for
which the computation is more efficient and which contains lessphantom components.

Consider a polynomial parameterized surfacex(u, v) with the domain[0, 1]2, and
let d be a positive integer (the degree of the approximate implicit equation) andǫ ≥ 0
(the tolerance). Following [15], the approximate implicitization problem consists in
finding a non–zero polynomialP ∈ R[x, y, z] of degreed such that

∀(u, v) ∈ [0, 1]2, P (x(u, v) + α(u, v) g(u, v)) = 0 (9)

with |α(u, v)| ≤ ǫ and ||g(u, v)||2 = 1. Here,α is the error function andg is the
direction for error measurement, e.g., the unit normal direction of the surface patch.

4.2 Approximate implicitization of a biquadratic surface

The main question of the approximate implicitization problem is how to choose the de-
gree. A key ingredient for this choice seems to be the topology, especially if the initial
surface has self–intersections. The use of degree 4 was suggested by Tor Dokken; after
several experiments he concluded that the algebraic surfaces of degree 4 provide suffi-
ciently many degrees of freedom to approximate most cases encountered in practice. In
the case of a biquadratic surface, where the exact implicit equation has degree 8, using
degree 4 seems to be a reasonable trade-off.

We describe two methods for approximate implicitization bya quartic for a bi-
quadratic surface. The approximate implicit equation is

P (x, y, z) =
4∑

i=0

4−i∑

j=0

4−i−j
∑

k=0

bijk xiyjzk (10)

6 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

Fig. 3.Characterization of a conic in a biquadratic patch by 9 points

with the unknown coefficientsb = (b000, b100, . . . , b004) ∈ R35. Let β(u, v) be the
vector formed by the tensor–product Bernstein polynomialsof bidegree (8,8).

Dokken’s method. This method, which is described in more detail in [15], proceeds
as follows:

1. FactorizeP (x(u, v)) = (Db)T β(u, v) whereD is a81 × 35 matrix.
2. Generate a singular values decomposition (SVD) ofD.
3. Chooseb as the vector corresponding to the smallest singular value of D.

Note that this method is general and does not use the fact that wehave a biquadratic
surface. Hereafter, we use an adapted method based on the geometry of the surface of
bidegree (2,2). Also, the computation of the singular value decomposition needs floating
point numbers.

Geometric method using evaluation: This approach consists in constructing some
pertinent geometrical constraints to give a linear system of equations (with the un-
knownsb000, b100, . . . , b004), and then solving the resulting system by a singular values
decomposition. In our method, we characterize some conics, especially the four border
conics and two interior conics:

C1 = x([0, 1] × {0}), C2 = x([0, 1] × {1})
C3 = x({0} × [0, 1]), C4 = x({1} × [0, 1])
C5 = x({ 1

2} × [0, 1]), C6 = x([0, 1] × { 1
2})

(11)

Lemma 1. If the quartic surface{P = 0} contains 9 points of any of the 6 conicsCi,
thenCi ⊂ {P = 0}, see Fig. 3.

Proof. Ci is of degree 2 andP is of degree 4, so by Bézout’s theorem, if there are more
than 8 elements inCi ∩ {P = 0}, thenCi ⊂ {P = 0}.

Using this geometric observation, we construct a linear system and solve it approx-
imately via SVD; this leads to an algebraic approximation ofx(u, v) by a degree 4
surface.

Intersecting biquadratic patches 7

4.3 Application to the intersection problem

In order to compute the intersection curves, we apply the approximate implicitization
to one of the patches and compose it with the second one. This leads to an implicit
representation of the intersection curve in one of the parameter domains, which can
then be traced and analyzed using standard methods for planar algebraic curves.

These two approximate implicitization methods are very efficient and suitable for
general cases, but the results are not always satisfactory.When the given biquadratic
patch is simple (i.e. with a certain flatness and without singularity and self–intersection)
the approximation is very close to the initial surface. So, to use this method for a general
biquadratic surface, we combine it, if needed, with a subdivision method (Casteljau’s
algorithm). The advantage is twofold, we exclude domains without intersections (by
using bounding boxes) and avoid some unwanted configurations with a curve of self-
intersection (use Hohmeyer’s criterion [22]). For more complicated singularities, the
results are definitively not satisfactory.

Note that even if we have a good criterion in the subdivision step, we still may
have problems with phantom components (but in general fewer),so we have to cut
off the extraneous branches as in the resultant method. Thishas to be done carefully
in order to not discard points which do not correspond to phantom components. As
another drawback – because of the various approximations – itis rather difficult to
obtain certified points on the intersection locus. The use ofapproximate implicitization
is clearly a numerical method, and it can give only approximate answers, even in the
case of exact input.

5 Tracing intersections of parameter lines

In order to be able to trace the (self–) intersection curve(s), we have to find at least one
point for each segment. We generate these points by intersecting the parameter lines of
the first Bézier surface with the second one (see also [22]).

5.1 Intersection of a parameter line

A parameter line ofx(u, v) for a constant rational valueu = u0 takes the form

p(v) = x(u0, v) = a0(u0) + a1(u0) v + a2(u0) v2

with certain rational coefficient vectorsai ∈ Q3. It is a quadratic Bézier curve, hence
we can represent it as the intersection of aplaneand aquadratic cylinder, see Fig. 4,
left. Since we are only interested in the intersection of these two surfaces in a certain
region, we introduce two additionalbounding planesπ1 andπ2. In the particular case
that the parameter line is a straight line, we represent it as an intersection curve of two
orthogonal planes.

In order to compute the intersection of the parameter line with the second surface
patchy(r, s), we use the following algorithm.

1. Describe the parameter line as the intersection of a plane and a cylinder.

8 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

x(u, v)
π

ζ

π1

π2

r

s
kπ1

kπ2

kπ2

r1

s0 s1

Fig. 4. Left: Representation of a parameter line as the intersection of a plane and a quadratic
cylinder. Right: Identifying the intervals with feasible values ofs.

2. Intersect the plane with the second patchy(r, s) and compute the intersectionI.
3. Restrict the intersection curve(s)I to the region of interest.
4. Intersect the cylinder with the restricted intersection curve(s).

The four steps of the algorithm will now be explained in some more detail.

Defining the plane, the cylinder and the two bounding planes.The parameter line
and its three control points are coplanar. For computing thenormal vectorn of the
plane, we have to evaluate the cross product of two differencevectors of the control
points. The plane is given by the zero set of a linear polynomial

π(u0)(x, y, z) = e0(u0) + n1(u0)x + n2(u0) y + n3(u0) z. (12)

By extruding the parameter line in the direction of the normal vector of the plane, we
obtain the parametric form of the quadratic cylinder, which intersects the plane orthog-
onally,

w(u0)(p, q) = x(u0, p) + q · n. (13)

The implicitation of the cylinder is slightly more complicated. There exist two possibil-
ities: we can either use Sylvester resultants or the method ofcomparing coefficients. In
both cases we will get an equation of the form

ζ(u0)(x, y, z) := a0(u0) + a1(u0)x + a2(u0) y + a3(u0) z

+ a4(u0)x y + a5(u0)x z + a6(u0) y z

+ a7(u0)x2 + a8(u0) y2 + a9(u0) z2 = 0. (14)

Now we have both the plane and the cylinder in their implicit representation. Note that
this is a semi-implicit representation in the sense of [8].

Intersecting biquadratic patches 9

If the parameter line degenerates into a straight line, thenwe choose two planes
through it which intersect orthogonally. Note that we use exactrational arithmetic, in
order to avoid any robustness problems.

Finally, we create the two planesπ1(x, y, z) andπ2(x, y, z) which bound the pa-
rameter line. For instance, one may choose the two normal planes of the parameter line
at its boundary points; this choice is always possible, provided that the curve segment
is not too long (which can be enforced by using subdivision). Alternatively one may
use the planes spanned by the boundary curves, but these planes may have an additional
intersection with the parameter line in the region of interest.

Intersection of the plane and the second patchy(r, s). Substituting the second
Bézier surfacey(r, s) into the equation (12) of the plane leads to a biquadratic equation
in r ands. We can treat it as a quadratic polynomial inr with coefficients depending
ons.

π(y(r, s)) = a(s) r2 + b(s) r + c(s) = 0. (15)

For each value ofs, we obtain two solutionsr1(s) andr2(s) of the form

r1,2(s) = − b(s)

2 a(s)
±

√

d(s) with d(s) =
b(s)2

4 a(s)2
− c(s)

a(s)
. (16)

These solutions parameterize the two branches of the intersection curveI in the rs–
parameter domain of the second patch. By solving several quadratic equations we de-
termine the intervalsSi,j ⊂ [0, 1], whered(s) ≥ 0 and0 ≤ ri(s) ≤ 1 holds; this leads
to a (list of) feasible domain(s) (i.e., intervals) for eachbranch of the intersection curve.

By composing (16) withy we obtain the two branchesk1(s) and k2(s) of the
intersection curveI,

k1,2(s) = y(r1,2(s), s) =
1

a(s)2
h(s) ±

√

d(s)

a(s)
l(s) + d(s)m(s) (17)

where the components ofh(s), l(s) andm(s) are polynomials of degree6, 4, and2,
respectively.

Restriction to the region of interest. Since the region of interest is located between
the planesπ1(x, y, z) andπ2(x, y, z), the two inequalities

π1(x, y, z) ≥ 0 and π2(x, y, z) ≤ 0 (18)

have to be satisfied. By intersecting each bounding plane withthe second Bézier surface
y(r, s) in a similar way as described forπ(u0)(x, y, z), we obtain

kπ1
(s) := π1(y(r(s), s)) ≥ 0 and kπ2

(s) := π2(y(r(s), s)) ≤ 0 (19)

This leads to additional constraints for the feasible values of the parameters. For each
branch of the intersection curve we create the (list of) feasible domain(s) and store

10 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

it. The bounds of the intervals can be computed by solving three systems of two bi-
quadratic equations or – equivalently – by solving a system of three polynomials of
degree 8, which are obtained after eliminating the parameterr. Here, we represent the
polynomials in Bernstein–Bézier form and use a Bézier–clipping–type technique see
[17, 28, 29, 31], applied to floating point numbers.

Example 2.For a parameter lineu = u0 of two biquadratic Bézier surface patches
x(u, v) andy(r, s), Fig. 4, right, shows thers–parameter domain of the second patch.
Only the first branchr1(s) of the intersection curve is present. The bounds0 ≤ r ≤ 1
do not impose additional bounds ons in this case. However, the intersection with the
bounding planesπ1 andπ2 produces two additional curves, which have to be intersected
with the curves = r1(s), leading to two boundss0 ands1 of the feasible domain.

Intersection of the cylinder and the intersection curves.We substitute the parametric
representation of the intersection curve into the implicitequation (14) of the cylinder
and obtain

ζ(u0)(s) = p1(s) + p2(s)
√

d(s) + p3(s)
(√

d(s)
)2

+

+ p4(s)
(√

d(s)
)3

+ p5(s)
(√

d(s)
)4

= 0 (20)

where the polynomialspj(s) are of degree 12. In order to eliminate the square root, we
use the following trick. We splitζ(s, d(s)) = A − B, whereA andB contain all even
and odd powers of

√
d, respectively. The equationA − B = 0 is then replaced with

A2 · d(s)− (B ·
√

d(s))2 = 0. This leads to a polynomial of degree 24 in one variable.
After factoring out the discriminant, we obtain a polynomial of degree 16 ins. Note that
this agrees with the theoretical number of intersections of abiquadratic surface, which
has algebraic order 8, with a quadratic curve.

Finally, we solve this polynomial within all the feasible intervals ofs, which were
detected in the previous steps. Until this point we used symbolic computations. Now
– after generating the Bernstein–Bézier representation –we change to floating-point
numbers and use a Bézier–clipping–type method to find all roots within the feasible
domain(s). These roots correspond to intersection points of the parameter line of the
first patch with the second patch.

5.2 Global structure of the intersection curve

For each valueu = u0, the parameter linex(u0, v) has a certain number of intersection
points with the second patch. Ifu0 varies continuously, then the number of intersection
points may change only if

(1) one of the intersection points is at the boundary of one ofthe patches (boundary
points) or

(2) the parameter line of the first patch touches the second patch (turning points).

Intersecting biquadratic patches 11

The algorithm for analyzing the global structure of the intersection curve proceeds in
two steps: First we detect those values ofu0 where the number of intersection points
changes, and order them. This leads to a sequence of criticalu0– values,

0 = u
(0)
0 < u

(1)
0 < . . . < 1 = u

(K)
0 . (21)

In the second step, we analyze the intersection of the parameter linesu0 = (u
(i)
0 +

u
(i+1)
0)/2 with the second patch. Since the number of intersection points between any

two critical values remains constant, we can now either tracethe segment using conven-
tional techniques for tracing surface–surface intersections (see [23]) or generate more
points by analyzing more intersections with parameter lines.

In the remainder of this section we address the computation ofthe criticalu0 values.

Boundary points.Such points correspond to intersections of the boundary parameter
lines of one surface with the other one. In order to compute them, we apply the algo-
rithm for intersecting parameter lines with a biquadratic patch to the2 · 4 boundary
parameter lines of the two surfaces.

Turning points.We consider the turning points ofx(u, v) in respect tou. Letyr andys

denote the partial derivatives ofy(r, s). Several possibilities for computing the turning
points exist.

1. The two surfacesx(u0, v) andy(r, s) intersect,x(u0, v) = y(r, s), and the tangent
vector of the parameter line lies in the tangent plane of the second patch,

xu · (yr × ys) = 0. (22)

These conditions lead to a system of four polynomial equations for four unknowns,
which has to be solved foru.

2. By using the previous geometric result, we may eliminate the variablev, as follows.
First, the plane spanned by the parameter line has to containthe pointy(r, s),

π(u0)(y(r, s)) = 0, (23)

which gives an equation of degree(6, 2, 2) in (u0, r, s). Second, the cylinder has to
contain the point,

ζ(u0)(y(r, s)) = 0, (24)

which leads to an equation of degree(16, 4, 4). Finally, the tangent vector of the
parameter line has to be contained in the tangent plane of thesecond patch. Since
the tangent of the parameter line is parallel to the cross product of the gradient of
the plane and the gradient of the cylinder, the third condition gives an equation of
degree(18, 5, 5),

det [yr, ys, ∇π(u0)(y(r, s)) ×∇ζ(u0)(y(r, s))] = 0. (25)

For solving either of these two systems of polynomial equations, we use again a Bézier–
clipping–type algorithm [17, 28, 31].

12 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

6 Self–intersections of biquadratic surface patches

In order to detect the self–intersection curves of any of thetwo patches, the methods
for surface–surface intersections have to be modified. Note that the computation of the
self–intersection locus by using the approximate implicitization was already treated in
[36].

6.1 Resultant-based method

In the parameter domain[0, 1]4, the self–intersection curve of the first patch forms the
set

{
(u1, v1, u2, v2) ∈ [0, 1]4 | (u1, v1) 6= (u2, v2) andx(u1, v1) = x(u2, v2)

}
. (26)

This locus is the real trace of a complex curve. We assume thatit is either empty or of
dimension 0 or 1. We do not consider degenerate cases, such asa plane which is covered
twice. In the examples presented below (see Section 7), the self–intersection locus is a
curve inR4.

We use the following change of coordinates to discard the unwanted trivial compo-
nent(u1, v1) = (u2, v2). Let (u2, v1) be a pair of parameters in[0, 1]2, (l, k) ∈ R2 and
let u1 = u2 + l, v2 = v1 + lk. If we suppose that we have(u1, v1) 6= (u2, v2), then
l 6= 0. Hencex(u1, v1) = x(u2, v2) if and only if x(u2 + l, v1) = x(u2, v1 + lk). We
suppose now that(u2, v1, l, k) verifies this last relation.

Let T̃ (u2, v1, l, k) be the polynomial1
l
[x(u2 + l, v1) − x(u2, v2 + lk)], its degree

in (u2, v1, l, k) is (2, 2, 1, 2) and the monomial support with respect to(l, k) contains
only k2l, k, l and1. We can decrease the degree by introducing

T (u2, v1, m, k) = mT̃ (u2, v1,
1

m
, k). (27)

Then inT (u2, v1, m, k), the monomial support in(m, k) consists only of1, m, k2 and
km. So, we can writeT in a matrix form:

T (u2, v1, m, k) =

a1(u2, v1) b1(u2, v1) c1(u2, v1) d1(u2, v1)
a2(u2, v1) b2(u2, v1) c2(u2, v1) d2(u2, v1)
a3(u2, v1) b3(u2, v1) c3(u2, v1) d3(u2, v1)

1
m
k2

km

(28)

By Cramer’s rule, we get

m =
D2

D1
, k2 =

D3

D1
, and km =

D4

D1
(29)

with

D1 =

∣
∣
∣
∣
∣
∣

b1 c1 d1

b2 c2 d2

b3 c3 d3

∣
∣
∣
∣
∣
∣

, D2 =

∣
∣
∣
∣
∣
∣

−a1 c1 d1

−a2 c2 d2

−a3 c3 d3

∣
∣
∣
∣
∣
∣

, D3 =

∣
∣
∣
∣
∣
∣

b1 −a1 d1

b2 −a2 d2

b3 −a3 d3

∣
∣
∣
∣
∣
∣

, D4 =

∣
∣
∣
∣
∣
∣

b1 c1 −a1

b2 c2 −a2

b3 c3 −a3

∣
∣
∣
∣
∣
∣

.

Let Q(u2, v1) be the polynomialQ = D2
4D1 − D2

2D3.

Intersecting biquadratic patches 13

Fig. 5. A self–intersection of a surface with a cuspidal point

Lemma 3. The implicitly defined curve
{
(u2, v1) ∈ [0, 1]2 | Q(u2, v1) = 0

}
is the pro-

jection of the self–intersection locus (given by the set (26) but inC4) into the parameters
domain(u2, v1) ∈ [0, 1]2.

Proof. Q(u2, v1) = 0 is the only algebraic relation (of minimal degree) betweenu2 and
v1 such that∀(u2, v1) ∈ [0, 1]2, Q(u2, v1) = 0 ⇒ ∃(m, k) ∈ � 2, T (u2, v1, m, k) = 0.

This lemma provides a method to compute the self–intersection locus, we just have
to trace the implicit curveQ(u2, v1) = 0 and for every point(u2, v1) on this curve,
we obtain by continuation the corresponding point(u1, v2) ∈ [0, 1]2 if it exists (see the
results on Fig. 9). So it suffices to characterize the bounds of these segments of curves.

6.2 Parameter-line-based method

For computing the self–intersection curves, we use the same algorithm as described
in Section 5. We intersect the surfacex(u0, v) with itself x(r, s). In this case, both the
”plane” equation (23) and the ”cylinder” equation (24) contain the linear factor(r−u0),
which has to be factored out. The computation of turning points as in section 5.2 leads
us to two different types: the usual ones and cuspidal points(see Fig. 5).

7 Examples

The three methods presented in this paper (using resultants, via approximate implici-
tization, and by analyzing the intersections with parameterlines) work well for most
standard situations usually encountered in practice. In this section, we present three
representative examples. Additional ones are available at [24].

14 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

Fig. 6.First example. Left and center: Result of the resultant method after and before eliminating
phantom branches. Right: result of the approach using approximate implicitization.

u

v
x(u, v)

r

s
y(r, s)

Fig. 7. First example. The intersection curves in the parameter domains of both surface patches,
generated by the parameter–line based technique. Boundarypoints and turning points have been
marked by grey circles.

7.1 First example

We consider two biquadratic surfaces with an open and a closedcomponent of the
intersection curve. The two surfaces have the control points

(
1
7 , 0, 3

5

) (
3
5 , 1

5 , 3
4

) (
1, 0, 7

10

)

(
3
8 , 4

9 , 2
3

) (
2
3 , 3

4 , 1
3

) (
6
7 , 3

8 , 5
7

)

(
1
5 , 6

7 , 4
7

) (
3
4 , 7

8 , 3
4

) (
7
8 , 7

9 , 5
8

)

︸ ︷︷ ︸

x(u,v)

and

(
2
7 , 1

7 , 2
5

) (
3
5 , 1

10 , 2
3

) (
1, 0, 4

5

)

(
3
8 , 4

9 , 2
3

) (
1
3 , 1

2 , 1
) (

5
7 , 3

8 , 2
7

)

(
1
5 , 6

7 , 3
7

) (
3
4 , 7

8 , 5
8

) (
7
8 , 4

7 , 1
2

)

︸ ︷︷ ︸

y(r,s)

.

By using theresultant method, a phantom component appears (see Fig. 6, center). It can
be cut off as described in Section 3.2 (see Fig. 6, left).

Similar to the resultant method, theapproximate implicitizationproduces a phantom
component (see Fig. 6, right). However, when we cut it off, we obtain only very few
certified points on the intersection locus as described in section 4.3.

Theparameter-line-based approachfinds both parts of the intersection curve, but
no phantom components. One segment is closed and has two turning points with respect

Intersecting biquadratic patches 15

to each parameteru, v, r ands. The other segment has two boundary pointsu = 0 and
s = 1 and also possesses a turning point with respect tov and another one with respect
to r (see Fig. 7).

7.2 Second example

The control points of the two biquadratic surfaces

(
501
775 , 388

775 , 588
775

) (
347
775 , 276

775 , 479
775

) (
309
775 , 604

775 , 498
775

)

(
553
775 , 454

775 , 293
775

) (
336
775 , 382

775 , 469
775

) (
1, 426

775 , 137
775

)

(
337
775 , 308

775 , 258
775

) (
517
775 , 0, 367

775

) (
533
775 , 492

775 , 564
775

)

︸ ︷︷ ︸

x(u,v)

(
492
775 , 67

155 , 522
775

) (
543
775 , 322

775 , 117
775

) (
346
775 , 13

155 , 4
5

)

(
113
155 , 392

775 , 58
155

) (
632
775 , 469

775 , 413
775

) (
307
775 , 514

775 , 564
775

)

(
602
775 , 129

775 , 274
775

) (
669
775 , 692

775 , 53
155

) (
488
775 , 219

775 , 412
775

)

︸ ︷︷ ︸

y(r,s)

were generated by using a pseudo–random number generator.
The resultant–based techniqueleads to several phantom components (see Fig. 8,

center), which can be cut off as described previously (see Fig. 8, left).
The combined use ofsubdivisionand approximate implicitizationproduces even

more phantom components (see Fig. 8, right). This is due to the fact that the subdivi-
sion generates more implicitly defined surfaces. Eventually we obtain sufficiently many
points to draw the correct intersection curves.

We also computed the self–intersection curve (see Fig. 9) with the help of the
method described in Section 6.1.

When using theparameter–line based approach, this example does not lead to
any difficulties. The intersection curve consists of three segments (see Fig. 10). The
first Bézier surface patchx(u, v) has one self–intersection curve, while the second one
y(r, s) intersects itself three times and has two cuspidal points.

7.3 Third example

The two biquadratic surface patches with the control points

(
0, 1

7 , 4
5

) (
3
5 , 1

13 , 1
3

) (
1, 0, 4

5

)

(
1
8 , 4

9 , 11
40

) (
1
3 , 34

65 , 3
4

) (
6
7 , 3

8 ,− 16
35

)

(
1
5 , 6

7 , 4
5

) (
3
4 , 443

520 , 3
8

) (
7
8 , 1, 14

15

)

︸ ︷︷ ︸

x(u,v)

and

(
0, 1

7 , 1
5

) (
3
5 , 1

10 , 1
3

) (
1, 0, 1

5

)

(
1
8 , 4

9 , 7
8

) (
1
3 , 1

2 , 3
4

) (
6
7 , 3

8 , 1
7

)

(
1
5 , 6

7 , 1
5

) (
3
4 , 7

8 , 3
8

) (
7
8 , 1, 1

3

)

︸ ︷︷ ︸

y(r,s)

touch each other along a parameter line.
Theresultant-based approachleads to an implicitly defined curve which describes

the intersection. Due to the special situation, it contains the square of this equation. A

16 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

Fig. 8.Second example: Left and center: result of the resultant method after and before eliminat-
ing phantom branches. Right: result obtained by using approximate implicitization.

Fig. 9. Second example: Self intersections, computed with the method described in Section 6.1.

u

v x(u, v)

r

s y(r, s)

Fig. 10.Second example: Intersection (solid, black) and self–intersection (dashed, grey) curves in
the parameter domains of both surface patches, generated bythe parameter–line based technique.
Boundary points and turning points have been marked by grey circles.

Intersecting biquadratic patches 17

direct tracing of the curve is difficult, since the use of a standard predictor/corrector
method is numerically unstable. However, one may factorize the equation, and apply
the tracing to the individual factors without probems. This leads to the curve shown in
Fig. 11, left.

The technique ofapproximate implicitizationis not well suited to deal with this
very specific situation: the approximation produces eitheran empty intersection or two
curves which are close to each other (see Fig. 11, right).

Fig. 11. Third example. Left: Result of the resultant method and of the parameter–line based
approach. Right: result of the use of approximate implicitization.

The parameter-line-based approachfinds two boundary points and it produces –
for each value ofu = u0 – the correct intersection point of the parameter line with the
other patch. The convergence of the Bézier clipping slows down to a linear rate, due to
the presence of a double root. Also, it is difficult to trace theintersection curve by using
a geometric predictor/corrector technique. Instead, we computed the intersection points
for many values ofu0 and arrived at a result which is very similar to Fig. 11, left.

8 Conclusion

We presented three different algorithms for computing the intersection and self–inter-
section curves of two biquadratic Bézier surface patches.We implemented the methods
and applied them to many test cases. Three of them have been presented in this paper.

Theresultant–based techniquewas able to deal with all test cases. It may produce
additional ‘phantom’ branches, which have to be eliminated by carefully analyzing the
result of the elimination. As an advantage, one may – in the case of two surface patches
that touch each other – factorize the implicit equation of the intersection curve, in order
to obtain a stable representation, which can then be traced robustly.

After experimenting withapproximate implicitizationwe arrived at the conclusion
that this method is not to be recommended for biquadratic patches. On the one hand, it
is not suited for avoiding problems with phantom branches. On the other hand, the use
of an approximate technique introduces inaccuracies, whichmay cause problems with

18 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

singular and almost singular situations. We feel that this price for using a lower degree
implicit representation is too high.

Theparameter–line based approachadds some geometric interpretations to the pro-
cess of eliminating variables from the problem. As an advantage, it is possible to cor-
rectly establish the region(s) of interest. This avoids problems with unwanted branches
of the (self–) intersection curves. In the case of two touching surfaces, using this ap-
proach becomes more expensive, since standard techniques for tracing the intersection
cannot be applied.

Acknowledgment This research was supported by the European Union through project
IST 2001–35512 ‘Intersection algorithms for geometry based IT applications using ap-
proximate algebraic methods’ (GAIA II), by the Austrian Science Fund through the
Joint Research Programme FSP S92 ‘Industrial Geometry’, andby Aim@Shape (IST
NoE 506766).

References

1. L. ANDERSSON, J. PETERS, AND N. STEWART, Self-intersection of composite curves and
surfaces,Computer Aided Geometric Design, 15 (1998), pp. 507–527.

2. F. ARIES, B. MOURRAIN AND J.P. T́ECOURT Surfaces Parametrized in Degree 2: Al-
gorithms and Applications,Geometric Modeling and Computing: Seattle 2003. Nashboro
Press.

3. F. ARIES AND R. SENOUSSI, Approximation de surfaces param´etriques par des carreauxra-
tionels du second degr´e en lancer de rayons,Revue internationale de CFAO et d’Informatique
Graphique, 1997.

4. L. BUSÉ, Etude du r´esultant sur une vari´et´e alg´ebrique,PhD thesis, University of Nice,
December 2001.

5. L. BUSÉ AND C. D’A NDREA, Inversion of parameterized hypersurfaces by means of sub-
resultants,Proceedings ACM of the ISSAC 2004, pp. 65–71.

6. L. BUSÉ, M. ELKADI , AND B. MOURRAIN, Using projection operators in Computer Aided
Geometric Design,In Topics in Algebraic Geometry and Geometric Modeling, pp. 321–342,
Contemporary Mathematics, AMS, 2003.

7. L. BUSÉ, I.Z. EMIRIS AND B. MOURRAIN, MULTIRES, http://www-sop.inria.fr/galaad/
logiciels/multires.

8. L. BUSÉ AND A. GALLIGO , Using semi-implicit representation of algebraic surfaces, Pro-
ceedings of the SMI 2004 conference, IEEE Computer Society, pp. 342–345.

9. E.W. CHIONH AND R.N. GOLDMAN , Using multivariate resultants to fi nd the implicit equa-
tion of a rational surface,The Visual Computer 8 (1992), pp. 171–180.

10. D. COX, J. LITTLE AND D. O’SHEA, Ideals, Varieties and Algorithms,Springer-Verlag,
New York, 1992 and 1997.

11. D. COX, J. LITTLE AND D. O’SHEA, Using Algebraic Geometry,Springer-Verlag, New
York, 1998.

12. C. D’ANDREA, Macaulay style formulas for sparse resultants,Trans. Amer. Math. Soc.,
354(7) (2002), pp. 2595–2629.

13. W.L.F. DEGEN, The types of triangular b´ezier surfaces,The Mathematics of Surfaces VI,
G. Mullineux, ed. Oxford 1996, pp. 153–170.

14. T. DOKKEN, Aspects of Intersection Algorithms and Approximation,Thesis for the doctor
philosophias degree, University of Oslo, Norway 1997.

Intersecting biquadratic patches 19

15. T. DOKKEN, Approximate implicitization,Mathematical Methods for Curves and Surfaces,
T. Lyche and L.L. Schumaker (eds.), Vanderbilt University Press, 2001, pp. 81–102.

16. T. DOKKEN AND J.B. THOMASSEN, Overview of Approximate Implicitization,Topics in
Algebraic Geometry and Geometric modeling, ed. Ron Goldman and Rimvydas Krasauskas,
AMS series on Contemporary Mathematics CONM 334, 2003, pp. 169–184.

17. G. ELBER AND M-S. KIM , Geometric Constraint Solver using Multivariate Rational Spline
Functions,The Sixth ACM/IEEE Symposium on Solid Modeling and Applications, 2001, pp.
1–10.

18. M. ELKADI AND B. MOURRAIN, Some applications of Bezoutians in Effective Algebraic
Geometry,Rapport de Recherche 3572, INRIA, Sophia Antipolis, 1998.

19. G. FARIN , J. HOSCHEK AND M-S. KIM , Handbook of Computer Aided Geometric Design,
Elsevier, 2002.

20. L. GONZÁLEZ -VEGA AND I. NECULA, Effi cient topology determination of implicitly de-
fi ned algebraic plane curves,Comput. Aided Geom. Design, 19(9) (2002), pp. 719–743.

21. C.M. HOFFMAN, Implicit Curves and Surfaces in CAGD,Comp. Graphics and Appl. (1993),
pp. 79–88.

22. M. E. HOHMEYER, A Surface Intersection Algorithm Based on Loop Detection,ACM Sym-
posium on Solid Modeling Foundations and CAD/CAM Applications, 1991, pp. 197–207.

23. J. HOSCHEK AND D. LASSER, Fundamentals of Computer Aided Geometric Design,A.K.
Peters, 1993.

24. http://www.ag.jku.at/∼margot/biquad
25. A. KHETAN, The resultant of an unmixed bivariate system,J. of Symbolic Computation, 36

(2003), pp. 425–442. http://www.math.umass.edu/∼khetan/software.html
26. S. KRISHNAN AND D. MANOCHA, An Effi cient Surface Intersection Algorithm Based on

Lower-Dimensional Formulation,ACM Transactions on Graphics, 16(1) (1997), pp. 74–106.
27. L. KUNWOO, Principles of CAD/CAM/CAE Systems,Addison-Wesley, 1999.
28. B. MOURRAIN AND J-P. PAVONE, Subdivision methods for solving polynomial equations,

Technical Report 5658, INRIA Sophia-Antipolis, 2005.
29. T. NISHITA , T.W. SEDERBERG ANDM. K AKIMOTO , Ray tracing trimmed rational surface

patches,Siggraph, 1990, pp. 337–345.
30. N.M. PATRIKALAKIS , Surface-to-surface intersections,IEEE Computer Graphics and Ap-

plications, 13(1) (1993), pp. 89–95.
31. N. PATRIKALAKIS AND T. MAEKAWA , Chapter 25: Intersection problems, Handbook of

Computer Aided Geometric Design (G. Farin and J. Hoschek and M.-S.Kim, eds.),Elsevier,
2002.

32. J-P. PAVONE, Auto-intersection des surfaces param´etr´ees r´eelles,Thèse d’informatique de
l’Université de Nice Sophia-Antipolis, D´ecembre 2004.

33. T.W. SEDERBERG AND D.C. ANDERSON, Ray Tracing of Steiner Patches,Computer
Graphics, 18, (3) (1984), pp. 159–164.

34. T.W. SEDERBERG ANDD.C. ANDERSON, Steiner surface patches,IEEE Comput. Graphics
Appl. 5(5) (1985), pp. 23–36.

35. J.P. T́ECOURT, Sur le calcul effectif de la topologie de courbes et surfaces implicites,PhD
thesis in Computer Science at INRIA Sophia-Antipolis, D´ecembre 2005.

36. J.B. THOMASSEN, Self-Intersection Problems and Approximate Implicitization, Computa-
tional Methods for Algebraic Spline Surfaces, Springer, pp. 155–170, 2005.

