
HAL Id: inria-00115556
https://hal.inria.fr/inria-00115556v3

Submitted on 26 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cut Elimination in Deduction Modulo by Abstract
Completion

Guillaume Burel, Claude Kirchner

To cite this version:
Guillaume Burel, Claude Kirchner. Cut Elimination in Deduction Modulo by Abstract Completion.
Symposium on Logical Foundations of Computer Science LFCS’07, Sergei Artemov, Jun 2007, New
York, United States. pp.115-131, �10.1007/978-3-540-72734-7_9�. �inria-00115556v3�

https://hal.inria.fr/inria-00115556v3
https://hal.archives-ouvertes.fr

in
ri

a-
00

11
55

56
, v

er
si

on
 3

 -
 2

6
Fe

b
20

07

Cut Elimination in Deduction Modulo by

Abstract Completion

Guillaume Burel1 and Claude Kirchner2

1 Université Henri Poincaré & LORIA3

guillaume.burel@ens-lyon.org
2 INRIA & LORIA3

Claude.Kirchner@loria.fr
3

UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP

Abstract. Deduction Modulo implements Poincaré’s principle by iden-
tifying deduction and computation as different paradigms and making
their interaction possible. This leads to logical systems like the sequent
calculus or natural deduction modulo. Even if deduction modulo is log-
ically equivalent to first-order logic, proofs in such systems are quite
different and dramatically simpler with one cost: cut elimination may
not hold anymore. We prove first that it is even undecidable to know,
given a congruence over propositions, if cuts can be eliminated in the
sequent calculus modulo this congruence.

Second, to recover the cut admissibility, we show how computation rules
can be added following the classical idea of completion a la Knuth and
Bendix. Because in deduction modulo, rewriting acts on terms as well as
on propositions, the objects are much more elaborated than for standard
completion. Under appropriate hypothesis, we prove that the sequent
calculus modulo is an instance of the powerful framework of abstract

canonical systems and that therefore, cuts correspond to critical proofs
that abstract completion allows us to eliminate.

In addition to an original and deep understanding of the interactions
between deduction and computation and of the expressivity of abstract
canonical systems, this provides a mechanical way to transform a se-
quent calculus modulo into an equivalent one admitting the cut rule,
therefore extending in a significant way the applicability of mechanized
proof search in deduction modulo.

Key words: Knuth-Bendix completion, automated deduction and in-
teractive theorem proving, cut elimination, deduction modulo, proof or-
dering, abstract canonical system

1 Introduction

The complementarity and interaction between computation and deduction is
known since at least Henri Poincaré, and deduction modulo [16] is a way to
present first-order logic taking advantage from this complementarity. Deduction

2 Guillaume Burel and Claude Kirchner

modulo is at the heart of proof assistants and proof search methods, either im-
plicitly or explicitly (see for instance [24,3,16,5]) and getting a deep understand-
ing of its logical behavior is of prime interest either for theoretical or practical
purposes.

In deduction modulo, computations are modeled by a congruence relation be-
tween terms and between propositions. The logical deductions are done modulo
this congruence that is often better represented by a rewrite relation over first-
order terms and propositions, leading to the asymmetric sequent calculus [14].

In the sequent calculus modulo, the Hauptsatz, i.e. the fact that cuts are not
needed to build proofs, is no longer true as one can see from an example derived
from Crabbé’s proof of the non-normalization of Zermelo’s theory [8] (see for
instance [16]). But we know that the admissibility of the cut rule is fundamental
for at least two related reasons: first, if a system admits the cut rule, then the
formulæ needed to build a sequent calculus proof of some sequent are subfor-
mulæ4 of the ones appearing in it, so that the search space is, in a sense, limited.
Such proofs are sometimes called analytic [14]. The tableaux method is based
on this fact, and for instance TaMeD [5], a tableaux method based on deduction
modulo, is shown to be complete only for cut-free systems. On the other hand,
it has been shown [21] that a proof search method for deduction modulo like
ENAR [16]—which generalizes resolution and narrowing—is equivalent to the
cut-free fragment of deduction modulo. ENAR is therefore complete if and only
if the cut rule is admissible.

So on the one hand, we like to have a powerful congruence but this may be
at the price of loosing cut admissibility. How can we get both? Gilles Dowek has
shown [14] that cut admissibility is equivalent to the confluence of the rewrite
system, provided only first-order terms are rewritten. It is no longer true when
propositions are also rewritten, and the cut admissibility is in that case a stronger
notion than confluence. Therefore he wanted to build a generalized completion
procedure whose input is a rewrite system over first-order terms and propositions
and that computes a rewrite system such that the associated sequent calculus
modulo admits the cut rule. Such a completion procedure was proposed for the
quantifier free case in [13], based on the construction of a model for the theory
associated with the rewrite system.

To fully solve this question, including unlimited use of quantifiers, we propose
here a quite different approach based on the notion of abstract canonical system
and inference introduced in [12,4]. This abstract framework is based on a proof
ordering whose goal is to apprehend the notion of proof quality from which the
notions of canonicity, completeness and redundancy follow up. It is shown to be
adapted to existing completion procedures such as ground completion [10] and
standard (a.k.a. Knuth-Bendix [23]) completion [6].

4 In the case of deduction modulo, the intuitive notion of subformula must of course
take into account the equivalence relation.

Cut Elimination in Deduction Modulo by Abstract Completion 3

To present the general idea of our approach, let us consider the simple exam-
ple of Crabbé’s axiom [8] A ⇔ B ∧ ¬A.5 Can we find, for the sequent calculus
modulo the rewrite system A→ B∧¬A, a provable sequent without any cut-free
proof? Indeed, let us try to build a minimal example. We will show in Prop. 4
that such a proof, in its simplest form, is necessarily of the shape:

....
A, B ∧ ¬A ⊢

A ⊢
↑-l

....
⊢ B ∧ ¬A, A

⊢ A
↑-r

⊢
Cut(A)

where the rules labeled “↑-r” and “↑-l” allow to apply the oriented axioms re-
spectively on the right or on the left. In order to validate this proof pattern,
we have to check if it is possible to close both sides of the proof tree, possibly
adding informations in the initial sequent.

First, we can trivially close the left part as follows:

A, B ⊢ A
Axiom

A, B,¬A ⊢
¬-l

A, B ∧ ¬A ⊢
∧-l

.

Second, to close the right part, we must have a proof in the form:

⊢ B, A
A ⊢ A

Axiom

⊢ ¬A, A
¬-r

⊢ B ∧ ¬A, A
∧-r

.

To enforce the proof of ⊢ B, A, we must add either A or B to the left of the
sequent, and we only have to consider B, since we have cut around A. We obtain
the critical proof:

A, B ⊢ A
Axiom

A, B,¬A ⊢
¬-l

B, A, B ∧ ¬A ⊢
∧-l

B, A ⊢
↑-l

B ⊢ B, A
Axiom

B, A ⊢ A
Axiom

B ⊢ ¬A, A
¬-r

B ⊢ B ∧ ¬A, A
∧-r

B ⊢ A
↑-r

B ⊢
Cut(A)

.

We can also easily show that there is no cut-free proof of B ⊢, simply because no
inference rule is applicable to it except Cut. If we want to have a cut-free proof,
we need to make B reducible by the congruence, hence the idea to complete
the initial system with a new rule which is a logical consequence of the current
system. In our case, we must therefore add the rule B → ⊥.

5 In [8], A represents rs ∈ rs and B is rs ∈ s where rs

!
={x ∈ s : x 6∈ x}. Then, there

is a proof of rs 6∈ s in Zermelo’s set theory that is not normalizing.

4 Guillaume Burel and Claude Kirchner

With this new rule, we will show that there is no more critical proof and that
therefore the sequent calculus modulo the proposition rewrite system

{
A→ B ∧ ¬A
B → ⊥

admits the cut rule and has the same expressive power as the initial one.
The study of this question indeed reveals general properties of the sequent

calculus modulo and our contributions are the following:

– We provide an appropriate Noetherian ordering on the proofs of the sequent
calculus modulo a rewrite system; This ordering allows us to set on the proof
space of sequent calculus modulo a structure of abstract canonical system;

– We characterize the critical proofs in deduction modulo as simple cuts;
– By an appropriate correspondence between sequents and rewrite systems, we

establish a precise correspondence between the limit of a completion process
and a cut free sequent calculus;

– We show the applicability of the general results, in particular on sequent
calculus modulo rewrite systems involving quantifiers, therefore generalizing
all previously known results;

– We establish the limits of our approach by proving the undecidability of cut
admissibility and of the search for critical proofs.

As an important by-product of these results, we demonstrate the expressive
power of abstract canonical systems (ACS for short).

The next section will present the minimal knowledge needed on deduction
modulo and abstract canonical systems to make the paper self-contained, and
states the undecidability of the admissibility of the cut rule in deduction modulo.
In Sect. 3, we show how to set, on the proof space of sequent calculus modulo,
a structure of abstract canonical system. In particular we make precise why the
postulates of ACS are fulfilled. This allows us in Sect. 4 to characterize the
critical proofs of deduction modulo and to set-up the completion process as the
appropriate (and indeed non-trivial) instance of the abstract completion pro-
cess. We also provide an algorithm to systematically transform a set of sequents
into an appropriate set of proposition rewrite rules, therefore making the whole
framework operational. We conclude after presenting in more details Crabbé’s
example as well as several examples involving quantifiers. All proofs can be found
in the full version of this paper [7].

2 Prerequisites

2.1 Rewritings

We define here how propositions are rewritten in deduction modulo.
We use standard definitions for terms, predicates, propositions (with connec-

tors ¬,⇒,∧,∨ and quantifiers ∀, ∃), substitutions, term rewrite rules and term
rewriting, as can be found in [2,19]. The set of terms built from a signature Σ

Cut Elimination in Deduction Modulo by Abstract Completion 5

and a set of variables V is denoted by T (Σ, V), the replacement of a variable x
by a term t in a proposition P by {t/x}P , the application of a substitution σ in
a proposition P by σP .

An atomic proposition A(s1, . . . , si, . . . , sn) can be rewritten to the atomic
proposition A(s1, . . . , ti, . . . , sn) by a term rewrite rule l → r if si can be rewrit-
ten to ti by l → r.

A proposition rewrite rule is the pair of an atomic proposition A and a propo-
sition P , such that all free variables of P appear in A. It is denoted A → P .
A proposition rewrite system is a set of proposition rewrite rules. The set of all
proposition rewrite systems is denoted PRS.

An atomic proposition A can be rewritten to a proposition P by a proposition
rewrite rule B → Q if there exists some substitution σ such that σB = A and
σQ = P . Semantically, this proposition rewrite relation must be seen as a logical
equivalence between propositions.

Note that we do not define how to rewrite non-atomic propositions by propo-
sition rewrite rules, as in [16], because this can be simulated in the sequent
calculus modulo we present in the next section.

In the following, the term rewrite system used in addition to all the propo-
sition rewrite systems we will consider is fixed. It is supposed to be terminating
and confluent. It will be denoted RT (Σ,V).

The subformula relation ≻ is the least transitive relation such that:

– P ≻ Pi if P = P1 ∧ P2, P = P1 ∨ P2 or P = ¬P1;
– P ≻ {t/x}Q if P = ∀x. Q or P = ∃x. Q;
– P ≻ Q if P can be rewritten to Q by RT (Σ,V)

for all terms t, variables x and propositions P, Q, P1, P2. It is well-founded be-
cause of the termination of RT (Σ,V).

2.2 Sequent Calculus Modulo

Sequent calculus modulo can be seen as an extension of the sequent calculus of
Gentzen [20]. We will use the denominations of [19].

A sequent is a pair of multisets of propositions Γ, ∆. It is denoted by Γ ⊢ ∆.
The sets of all sequents will be denoted S. For a sequent Γ ⊢ ∆, if x1, . . . , xn

are the free variables of Γ, ∆, we will denote by P(Γ ⊢ ∆) the proposition
∀x1, . . . , xn. (

∧
Γ ⇒

∨
∆).

In Fig. 1 we present some inference rules of our sequent calculus modulo. They
differ from the ones of [14] because the congruence is externalized through specific
inference rules ↑-l and ↑-r (as can be found in [21]), but there is no contraction
or weakening rules. The other logical rules are the one of the standard sequent
calculus. For ∀-l and ∃-r, the quantified formula that is decomposed is kept.
Proofs are trees labeled by sequents built using these rules, and where all leaves
are Axioms. The root sequent is called the conclusion. A proof is said to be built
in the proposition rewrite system R if all ↑-l and ↑-r use only rules that appear
in R ∪RT (Σ,V). The set of all proofs will be denoted by SQM.

6 Guillaume Burel and Claude Kirchner

Identity Group: Γ, P ⊢ P, ∆
Axiom

Γ, P ⊢ ∆ Γ ⊢ P, ∆

Γ ⊢ ∆
Cut(P)

Logical Rules:

Γ ⊢ P, ∆

Γ,¬P ⊢ ∆
¬-l

Γ ⊢ P, ∆ Γ, Q ⊢ ∆

Γ, P ⇒ Q ⊢ ∆
⇒-l

Γ ⊢ {c/x}P, ∆

Γ ⊢ ∀x. P, ∆
∀-r

Γ ⊢ ∃x. P, {t/x}P, ∆

Γ ⊢ ∃x. P, ∆
∃-r

c free in Γ, ∆ t ∈ T (Σ, V)

Rewrite Rules: if A can be rewritten to P , either by a term or a proposition
rewrite rule (in one step),

Γ, A,P ⊢ ∆

Γ, A ⊢ ∆
↑-l

Γ ⊢ A, P, ∆

Γ ⊢ A, ∆
↑-r

Fig. 1. Some inference rules of the sequent calculus modulo.

Cut(P) permits essentially to extend the proof search space with the propo-
sition P . Logical Rules decompose some proposition which is called principal.
Rewrite Rules, that do not appear in Gentzen’s sequent calculus, introduce
proposition rewriting into the proof system. Note that only atomic propositions
are rewritten, and that we keep the original formula in the sequent.

A proposition rewrite system R is said to admit Cut if for all sequents s ∈ S,
s has a proof in R if and only if s has a proof in R without using Cut. It is well-
known (Gentzen’s Hauptsatz [20], or more accurately [14] because of RT (Σ,V))
that ∅ admits Cut.

It is important to be aware that free variables appearing in a sequent play
the same role as fresh constants, because no inference rules can modify them.
As a consequence, one can restrict oneself to closed sequents, as indicated in [16,
Proposition 1.5].

Proposition 1 (Equivalence). The sequent calculus modulo (partly) presented
in Fig. 1 is equivalent to the Asymmetric Sequent Calculus Modulo of [14].

In particular, our system has the weakening and the contraction properties:

– if there exists a proof of Γ ⊢ ∆, then for all propositions P there exist proofs
of Γ, P ⊢ ∆ and Γ ⊢ P, ∆;

– there exists a proof of Γ, P ⊢ ∆ if and only if there exists a proof of Γ, P, P ⊢
∆, and there exists a proof of Γ ⊢ P, ∆ if and only if there exists a proof of
Γ ⊢ P, P, ∆.

Our sequent calculus also satisfies Kleene’s Lemma:

Lemma 1 (Kleene Lemma [21, Lemme 3.3]). If a sequent, containing the
non-atomic formula P , has a proof (resp. cut-free proof) in R, then it has a
proof (resp. cut-free proof) in R whose first rule is a logical rule with principal
proposition P .

Cut Elimination in Deduction Modulo by Abstract Completion 7

We prove also the following new result:

Theorem 1 (Undecidability of the Cut Admissibility). Given a proposi-
tional rewrite system R, it is undecidable to know if R admits Cut.

2.3 Abstract Canonical Systems and Inference

The results in this section are extracted from [11,12,4], which should be consulted
for motivations, details and proofs.

Let A be the set of all formulæ over some fixed vocabulary. Let P be the set
of all proofs. These sets are linked by two functions: [·]Pm : P → 2A gives the
premises in a proof, and [·]Cl : P→ A gives its conclusion. Both are extended to
sets of proofs in the usual fashion. The set of proofs built using assumptions in
A ⊆ A is denoted by

Pf (A)
!
=

{
p ∈ P : [p]Pm ⊆ A

}
.

The framework described here is predicated on two well-founded partial
orderings over P: a proof ordering > and a subproof relation �. They are
related by a monotonicity requirement (postulate E). We assume for conve-
nience that the proof ordering only compares proofs with the same conclusion
(p > q ⇒ [p]Cl = [q]Cl), rather than mention this condition each time we have
cause to compare proofs.

We will use the term presentation to mean a set of formulæ, and justifica-
tion to mean a set of proofs. We reserve the term theory for deductively closed
presentations:

Th A
!
= [Pf (A)]Cl = {[p]Cl : p ∈ P, [p]Pm ⊆ A} .

Presentations A and B are equivalent (A ≡ B) if their theories are identical:
Th A = Th B. In addition to this, we assume the two following postulates:

Postulate A (Reflexivity) For all presentations A:

A ⊆ Th A

Postulate B (Closure) For all presentations A:

Th Th A ⊆ Th A

We call a proof trivial when it proves only its unique assumption and has no
subproofs other than itself, that is, if [p]Pm = {[p]Cl} and p � q ⇒ p = q, where
� is the reflexive closure of the subproof ordering �. We denote by â such a
trivial proof of a ∈ A and by Â the set of trivial proofs of each a ∈ A.

We assume that proofs use their assumptions (postulate C), that subproofs
don’t use non-existent assumptions (postulate D), and that proof orderings are
monotonic with respect to subproofs (postulate E):

Postulate C (Trivia) For all proofs p and formulæ a:

a ∈ [p]Pm ⇒ p � â

8 Guillaume Burel and Claude Kirchner

Postulate D (Subproofs Premises Monotonicity) For all proofs p and q:

p � q ⇒ [p]Pm ⊇ [q]Pm

Postulate E (Replacement) For all proofs p, q and r:

p � q > r ⇒ ∃v ∈ Pf ([p]Pm ∪ [r]Pm). p > v � r

Postulate E essentially says that replacing one of its subproof by a smaller proof
makes a proof smaller. However, the proof v is not necessarily obtained by syn-
tactically replacing q by r in p.

We make no other assumptions regarding proofs or their structure and the
proof ordering > is lifted to a quasi-ordering % over presentations:

A % B if A ≡ B and ∀p ∈ Pf (A). ∃q ∈ Pf (B). p ≥ q .

We define what a normal-form proof is, i.e. one of the minimal proofs of
Pf (Th A):

Nf (A)
!
= µPf (Th A)
!
= {p ∈ Pf (Th A) : ¬∃q ∈ Pf (Th A). p > q}

The canonical presentation contains those formulæ that appear as assump-
tions of normal-form proofs:

A♯ !
= [Nf (A)]Pm .

So, we will say that A is canonical if A = A♯.

A presentation A is complete if every theorem has a normal-form proof:

Th A = [Pf (A) ∩ Nf (A)]Cl

Canonicity implies completeness, but the converse is not true.

We now consider inference and deduction mechanisms. A deduction mecha-
nism ; is a function from presentations to presentations and we call the relation
A ; B a deduction step. A sequence of presentations A0 ; A1 ; · · · is called
a derivation. The result of the derivation is, as usual, its persisting formulæ:

A∞

!
= lim infj→∞ Aj =

⋃
j>0

⋂
i>j

Ai .

A deduction mechanism is completing if for each step A ; B, A % B and
the limit A∞ is complete.

A completing mechanism can be used to build normal-form proofs of theo-
rems of the initial presentation:

Theorem 2 ([4, Lemma 5.13]). A deduction mechanism is completing if and
only if for all derivations A0 ; A1 ; · · · ,

Th A0 ⊆ [Pf (A∞) ∩ Nf (A0)]Cl .

Cut Elimination in Deduction Modulo by Abstract Completion 9

A critical proof is a minimal proof which is not in normal form, but whose
strict subproofs are:

Crit(A)
!
= {p ∈ µPf (A) \Nf (A) : ∀q ∈ Pf (A). p � q ⇒ q ∈ Nf (A)}

Completing formulæ are conclusions of proofs smaller than critical proofs:

Comp(A)
!
=

⋃

p∈Crit(A) ∧ p′ is some proof such that p>p′

[p′]Pm

In this paper, we use a completing deduction mechanism in the following
way:

A ; A ∪ C(A)

where Comp(A) ⊆ C(A) ⊆ Th A.

Proposition 2 ([11, Lemma 10]). This deduction mechanism is completing.

3 Deduction Modulo is an Instance of ACS

We want to show that the sequent calculus modulo can be seen as an instance
of ACS. For this purpose, we have to define what the formulæ, the proofs, the
premises and conclusions are, and to give the appropriate orderings. After this,
we need to check that the postulates are verified by the defined instance.

3.1 Proofs and Formulae

We aim to obtain cut-free proofs, so that the natural candidate for ACS proofs
are sequent calculus proofs. Because of the weakening and contraction proper-
ties, we can restrict ourselves to proofs using minimal sets of propositions in their
conclusions. More precisely, we can consider only proofs where all the proposi-
tions appearing in the conclusion are used as principal propositions somewhere
in the proof, or in one of the Axioms.

The completion procedure we want to establish deals with rewrite rules over
atomic propositions. Nevertheless, the conclusions of the proofs, from which we
want to generate the rewrite rules added by the completion mechanism, are
sequents. In other words, sequents must be identified with proposition rewrite
systems.

Therefore we suppose that there exists a function between sequents and
proposition rewrite systems Rew : S → PRS such that:

Property 1. For all sequents Γ ⊢ ∆, R = Rew(Γ ⊢ ∆) and P(Γ ⊢ ∆) are
strongly compatible :

(a) for all propositions P, Q, P
∗
←→

R
Q implies that there exists a proof of

P(Γ ⊢ ∆) ⊢ P ⇔ Q in ∅ (i.e. without rewrite rules);

10 Guillaume Burel and Claude Kirchner

(b) there exists a cut-free proof of ⊢ P(Γ ⊢ ∆) in R.

Property 2. For all proposition rewrite systems R, for all sequents s and s′, if
Rew(s) = Rew(s′), then s has a proof (resp. cut-free proof) in R iff s′ has a
proof (resp. cut-free proof) in R.

Property 1 implies compatibility in the sense of Definition 1.4 of [16], which
is the same except that we need here a cut-free proof in b).

Section 4.3 provides an instance of such a function Rew.

With respect to the definitions of ACSs (see Sect. 2.3) deduction modulo can
be seen as an ACS, in the following way:

— P: proofs are sequent calculus proofs using minimal sets of propositions in
their conclusion:

P
!
= {p ∈ SQM : ¬ (∃q ∈ SQM. Weak(q, p))}

where Weak(q, p) says that the proof p can be obtained from q by weakening.
— A: formulæ are proposition rewrite systems corresponding to some sequent:

A
!
= Rew(S) ⊆ PRS .

— The conclusion of an ACS proof is the rewrite system associated by Rew
to the conclusion of the sequent calculus proof: for all proofs p,

[p]Cl

!
= Rew(Γ ⊢ ∆) when p =

...
...

Γ ⊢ ∆ .

— The premises of a proof are the rewrite systems consisting of the propo-
sition rewrite rules appearing in the proof or its subproofs: for all proofs p,

[p]Pm !
=

{
A→ P :

there exists a ↑-l or
↑-r using A→ P in q

}
:

q is a subproof of p

This definition implies that we consider only proofs using proposition rewrite
systems corresponding to some sequent.

3.2 Orderings on Proofs

We define the following (infinite, but Noetherian) precedence > : for all formulæ
P, Q, if P is greater than Q for the subformula relation, then Cut(P) > Cut(Q),
and for all other inference rules r of Fig. 1, Cut(P) > r.

We order proofs using the RPO [9] based on this precedence. Since the prece-
dence is well-founded, so is the RPO [9]. We restrict this ordering to proofs which
have the same sequent as conclusion, modulo weakening.

Because we work modulo weakening and contraction, it is important to note
that a proof and its weakened and contracted versions are equivalent with respect

Cut Elimination in Deduction Modulo by Abstract Completion 11

to the ordering we have just defined, because they have the same cuts and the
same labeled tree structure.

Notice also that with this ordering, a cut-free proof is always strictly smaller
than a proof with at least one cut at root.

Subproofs of a proof p are defined as the subproofs of p for the sequent
calculus, modulo weakening and contraction (subproofs may use less propositions
than their parents).

Unfortunately, this definition is not sufficient to define trivial proofs, because
if we use a premise through a ↑-l or ↑-r rule, there will always be a strict subproof,
so that there is no proofs using premises without strict subproofs.

To solve this problem, we can add manually the trivial proofs, i.e. P is in fact
P ∪ Â, where formulæ are identified with their trivial proof.

We have to extend the ordering > to trivial proofs: it can be simply done
by saying that they cannot be compared with other proofs. (> over P∪ Â is the
same relation as > over the original P.)

For Postulate C to be verified, we have to extend the subproof relation:

p � q if – q is a subproof modulo weakening of p in SQM, or

– if q = â with a ∈ [p]Pm .

This relation is well-founded because of the wellfoundedness of the subproof
relation in sequent calculus, and because trivial proofs cannot have strict sub-
proofs.

With these definitions we can prove the main theorem of this section:

Theorem 3 (Instance of ACS). The sequent calculus modulo is an instance
of ACS, with the definitions of A, P, [·]Pm , [·]Cl , > and � given above.

4 A Generalized Completion Procedure

We want to define a completion procedure through critical proofs. For this,
we first need some characterizations of the normal-form proofs and the critical
proofs. The limit of this completion procedure will be an equivalent rewrite
system which admits Cut.

4.1 Normal-form Proofs and Critical Proofs in Deduction Modulo

Proposition 3 (Characterization of Normal-Form Proofs). A proof in
deduction modulo is in normal form iff it is either a trivial proof or a cut-free
proof with no useless logical rules.

We give now a characterization of the critical proofs in deduction modulo.

12 Guillaume Burel and Claude Kirchner

Proposition 4 (Critical Proofs in Deduction Modulo). Critical proofs in
deduction modulo are of the form

π....
Γ, A, P ⊢ ∆

Γ, A ⊢ ∆
↑-l

π′
....

Γ ⊢ Q, A, ∆

Γ ⊢ A, ∆
↑-r

Γ ⊢ ∆
Cut(A)

where π and π′ are cut-free and do not use unneeded logical rules, and at least
one of A→ P or A→ Q is not a term rewriting.

Note 1. If we suppose, as in the order condition of [22], that the proposition
rewrite system is confluent, and that it is included in a well-founded ordering
compatible with the subformula relation, then we can take this ordering instead
of the subformula relation to compare cuts in the precedence. Doing this, we can
prove that there are no minimal proofs of this form, and consequently no critical
proofs. Therefore the admissibility of Cut is verified.

The main difference with [22] is that Hermant gives a semantic proof of
the cut admissibility, whereas we have here a cut-elimination algorithm, i.e. a
terminating syntactical process that transforms a proof into a cut-free one. It
remains to be investigated how this process is related with normalization, i.e.
β-reduction. (The last case corresponds in fact to an η-expansion.) It is proved
in [17] that such an order condition provides normalization in the quantifier-free
case.

This result was also independently found by [1], with the same kind of or-
dering over proofs.

4.2 The Completion Procedure

As we wrote in Sect. 2.3, we want to define a completing deduction mechanism
by adding to a presentation A a presentation C(A) such that Comp(A) ⊆ C(A) ⊆
Th A. So we have to find proofs smaller than critical proofs. Here, using Property
1(b) and Lemma 1, we can find for all sequents Γ ⊢ ∆ a cut-free proof in
Rew(Γ ⊢ ∆) with conclusion Γ ⊢ ∆, which will be smaller than any proof
containing a cut proving the same sequent, in particular any critical proof. The
premises of this proof are in Rew(Γ ⊢ ∆) = [p]Cl . The best procedure is thus to
add only the conclusions of critical proofs. Nevertheless, this is not possible:

Theorem 4 (Undecidability of Critical Proof Search). Given a proposi-
tional rewrite system R and a sequent Γ ⊢ ∆, it is undecidable to know if Γ ⊢ ∆
is the conclusion of a critical proof in R.

We must therefore add a superset of these conclusions. Here we will add the
conclusion of the proofs in the form of Proposition 4, except the one that we
know for sure that they are not minimal (for instance if A ∈ Γ ∪∆).

We must consider proofs of the form of Proposition 4. As π and π′ are cut-free
and do not use unneeded logical rules, they could be found using for instance a

Cut Elimination in Deduction Modulo by Abstract Completion 13

tableaux method modulo, like TaMeD [5], which is complete with respect to cut-
free proofs, if we knew Γ and ∆, hence the idea to apply the tableaux method
to A, P ⊢ and ⊢ Q, A, and to complete Γ and ∆ in order to close the remaining
tableaux. Because we work modulo weakening, we can restrict ourselves to the
minimal Γ and ∆ closing the tableaux. We can then sort the obtained Γ ⊢ ∆ to
remove sequents where A ∈ Γ ∪∆. The resulting rewrite system is obtained by
adding all Rew(Γ ⊢ ∆) to our rewrite system.

Theorem 5 (Cut Admissibility of the Limit). For all sequents Γ ⊢ ∆, for
all proposition rewrite systems R0, Γ ⊢ ∆ has a proof in R0 if and only if it has
a cut-free proof in R∞.

4.3 Sequents and Rewrite Systems

For deduction modulo to be an instance of ACS, we have to define some function
Rew having Properties 1 and 2. We also want to know how to build proofs that
use the rewrite system associated with some sequent, and therefore this function
has to be effective.

If we consider only propositional logic (i.e. without quantifiers), we can use
the following (non-deterministic) algorithm to transform a set of sequents Γ ⊢ ∆
into a set of rewrite rules:

Step 1. Choose a sequent. Push all negated formulæ on the other side of the
sequent. For instance, A,¬B ⊢ ¬C, D becomes A, C ⊢ B, D. If the new
Γ is empty, go to step 2. If the new ∆ is empty, go to step 3. If neither
is empty, go to either Step 2 or Step 3.

Step 2. Decompose the last proposition iteratively:
P1, . . . , Pn ⊢ Q1, . . . , Qm becomes P1, . . . , Pn,¬Q1, . . . ,¬Qm−1 ⊢ Qm

P1, . . . , Pn ⊢ Q1 ∧Q2 ” P1, . . . , Pn ⊢ Q1 ; P1, . . . , Pn ⊢ Q2

P1, . . . , Pn ⊢ Q1 ∨Q2 ” P1, . . . , Pn,¬Q1 ⊢ Q2

P1, . . . , Pn ⊢ Q1 ⇒ Q2 ” P1, . . . , Pn, Q1 ⊢ Q2

P1, . . . , Pn ⊢ A ” A→A ∨ ∃x1, . . . , xp. (P1 ∧ · · · ∧ Pn)
(A atomic, and the xi are the free variables appearing in P1, . . . , Pn but
not in A)
for P1, . . . , Pn ⊢ ¬Q, return to Step 1

Step 3. Decompose the first proposition iteratively, dually from step 2. For in-
stance,
P1 ⇒ P2 ⊢ Q1, . . . , Qm becomes P2 ⊢ Q1, . . . , Qm ; ¬P1 ⊢ Q1, . . . , Qm

A ⊢ Q1, . . . , Qm ” A→A ∧ ∀x1, . . . , xp. (Q1 ∨ · · · ∨Qm)
(A atomic, and the xi are the free variables appearing in Q1, . . . , Qm

but not in A)
for ¬P ⊢ Q1, . . . , Qm, return to Step 1.

This algorithm clearly terminates, because each time a step 2 or 3 begins,
either the rewrite rule is generated, or a formula is decomposed into subformulæ,
so that the number of connectors different from ¬ strictly diminishes. Of course,
we do not pretend that this algorithm is the most optimized for our purpose.

14 Guillaume Burel and Claude Kirchner

Rew(Γ ⊢ ∆) will be the function returning the rewrite system obtained by
applying the algorithm to

{
Γ ⊢ ∆

}
.

This algorithm can be extended to the case with quantifiers. In the case of
a ∀ on the left of the sequent, or a ∃ on the right, we will keep the formula in
the sequent, but will not decompose it further. We will therefore denote by P
the fact that P was already decomposed. Then we do not consider underlined
formulæ in Step 1 to choose between Step 2 or Step 3, and at the beginning of
Step 2 (resp. Step 3), one keep a non-underlined formula to the right (resp. left)
side.
We also have to add the following decomposition steps:

– (2) P1, . . . , Pn ⊢ ∀x. Q becomes P1, . . . , Pn ⊢ {y/x}Q where y does not ap-
pear in P1, . . . , Pn;

– (2) P1, . . . , Pn ⊢ ∃x. Q becomes P1, . . . , Pn,¬∃x. Q ⊢ {t/x}Q where t can be
any ground term;

– (3) ∃x. P ⊢ Q1, . . . , Qm becomes {y/x}P ⊢ Q1, . . . , Qm where y does not
appear in Q1, . . . , Qm.

– (3) ∀x. QP1, . . . , Pn ⊢ becomes {t/x}P ⊢ ¬∀x. Q, Q1, . . . , Qm where t can
be any ground term.

Of course, at the end, the underlines are removed.

Proposition 5. The function Rew has the Properties 1 and 2.

This algorithm does not allow all rewrite systems to be considered as formulæ.
Nevertheless, one can transform all rewrite systems to equivalent rewrite systems
that are images of sequents by Rew, by splitting the rules: A → P becomes
A→ A ∨ P and A→ A ∧ P . This is equivalent to the polarized rewrite systems
of [13].

This algorithm can be seen as the attempt to build a cut-free proof of the
conclusion of a critical proof, adding rewrite rules to close the branches were an
atomic formula appears.

4.4 Examples

In the case of Crabbé’s example presented in the introduction, the input is the
rewrite system A→ B∧¬A and the completion procedure generates B → B∧⊥
which is equivalent to B → ⊥.

With this new rule, we can show that there is no more critical proofs. There-
fore, the proposition rewrite system

{
A→ B ∧ ¬A
B → ⊥

admits Cut.
The next example deals with quantifiers and is extracted from [22]:

R ∈ R → ∀y. y ≃ R⇒ y ∈ R⇒ C

Cut Elimination in Deduction Modulo by Abstract Completion 15

where y ≃ z
!
= ∀x. (y ∈ x ⇒ z ∈ x). It is terminating and confluent, but

does not admits Cut.

The critical proofs have the form

....
R ∈ R, ∀y. y ≃ R⇒ y ∈ R⇒ C ⊢

R ∈ R ⊢
↑-l

....
⊢ R ∈ R, ∀y. y ≃ R⇒ y ∈ R⇒ C

⊢ R ∈ R
↑-l

⊢
Cut(R ∈ R)

The left part can be developed as

R ∈ R, C ⊢ R ∈ R ⊢ t1 ∈ R

R ∈ R, t1 ∈ R⇒ C ⊢
⇒-l

R ∈ R, t1 ∈ c1 ⊢ R ∈ c1

R ∈ R ⊢ t1 ∈ c1 ⇒ R ∈ c1
⇒-r

R ∈ R ⊢ t1 ≃ R
∀-r

R ∈ R, t1 ≃ R⇒ t1 ∈ R⇒ C ⊢
⇒-l

R ∈ R, ∀y. y ≃ R⇒ y ∈ R⇒ C ⊢
∀-l

and the right part as

R ∈ t0, c0 ∈ R ⊢ R ∈ R, C c0 ∈ R ⊢ c0 ∈ t0, R ∈ R, C

c0 ∈ t0 ⇒ R ∈ t0, c0 ∈ R ⊢ R ∈ R, C
⇒-l

c0 ≃ R, c0 ∈ R ⊢ R ∈ R, C
∀-l

c0 ≃ R ⊢ R ∈ R, c0 ∈ R⇒ C
⇒-r

⊢ R ∈ R, c0 ≃ R⇒ c0 ∈ R⇒ C
⇒-r

⊢ R ∈ R, ∀y. y ≃ R⇒ y ∈ R⇒ C
∀-r

.

To close the proofs, we can for instance have t0 = R = t1, and C in the right
part of the sequent (to close R ∈ R, C ⊢). One can see that other choices will
not produce critical proofs. The resulting sequent is therefore ⊢ C, and the
added rule is C → C ∨ ⊤. This rule does not generate new critical proofs, and
consequently, the proposition rewrite system

{
R ∈ R → ∀y. y ≃ R⇒ y ∈ R⇒ C
C → C ∨ ⊤

admits Cut.

One can also think of another example, where there remains quantifiers
in the conclusion: consider the following rule derived from Crabbé’s example
A→ (∃x. ∀y. B ∧ P (x, y)) ∧ ¬A where A and B are atomic propositions, and P
a predicate of arity 2. For more convenience we will denote by Q(x) the formula
∀y. B ∧ P (x, y). We have exactly the same critical proof than in the case of
Crabbé, but where B is replaced by ∃x. Q(x). The sequent of its conclusion is
transformed into a rewrite rule:
∃x. Q(x) ⊢ becomes Q(z) ⊢

becomes B ∧ P (z, a) ⊢ ¬Q(z)

becomes B ⊢ ¬P (z, a),¬Q(z)

becomes B→B ∧ ∀z. (¬P (z, a) ∨ ¬Q(z)) .

16 Guillaume Burel and Claude Kirchner

Then, the resulting systems admits Cut, and a cut free proof of ∃x. Q(x) ⊢
can be:

Q(c), B, P (c, a) ⊢ P (c, a)
Axiom

Q(c), B,¬P (c, a), P (c, a) ⊢
¬-l

Q(c), B, P (c, a) ⊢ Q(c)
Axiom

Q(c), B,¬Q(c), P (c, a) ⊢
¬-l

Q(c), B,¬P (c, a) ∨ ¬Q(c), P (c, a) ⊢
∨-l

Q(c), B, ∀z. (¬P (z, a) ∨ ¬Q(z)) , P (c, a) ⊢
∀-l

Q(c), B, B ∧ ∀z. (¬P (z, a) ∨ ¬Q(z)) , P (c, a) ⊢
∧-l

Q(c), B, P (c, a) ⊢
↑-l

Q(c), B ∧ P (c, a) ⊢
∧-l

Q(c) ⊢
∀-l

∃x. Q(x) ⊢
∃-l

It remains to be investigated, as for Knuth-Bendix completion, for which con-
ditions the completion procedure we have defined is terminating. We conjecture
that it is the case if the original proposition rewrite system is confluent.

5 Conclusion and Perspectives

We have shown how, by setting the right abstract canonical system structure
on the proof space of a sequent calculus modulo, we can use abstract comple-
tion to obtain an equivalent theory modulo which deduction admits Cut. This
abstract completion is precise enough to be operational, and it is actually imple-
mented. It also reveals an original and deep logical correspondence between the
sequent calculus, proof orderings and rewriting completion. This opens several
new challenging questions.

The ordering on proofs we are using is adapted to consider cut admissibility
as a normal-form property of an ACS, but produces many critical proofs, in par-
ticular when quantifiers are involved. This is because some of the rules produced
by the completion procedure subsumes others: for instance A→A ∨ ∃x. P (x)
subsumes A→A∨P (t) for a particular t ∈ T (Σ, V). It is therefore a challenging
goal to understand if this ordering could benefit of refinements allowing to target
the more relevant critical proofs.

Our saturation procedure only guarantees cut admissibility, not normaliza-
tion. For instance, with Crabbé’s rule, once the system is completed, the initial
proof of B ⊢ can still be constructed, and it is still not normalizing, i.e. the λ-
term that is associated to the proof can be infinitely β-reduced. In other words,
we do not have a process that transforms proofs with cuts to cut-free ones. The
introduction of simplification rules as in standard completion may allow us to
suppress the possibility to build non-normalizing proofs. Moreover, with such
simplification rules, the canonical presentation of the system may be obtained.

Let us finally remark that as an interesting consequence of our results, our
procedure can be used to determine if a system admits Cut. Indeed, if a proposi-
tion rewrite system is a fixpoint of this procedure, then we know that it admits

Cut Elimination in Deduction Modulo by Abstract Completion 17

Cut. The converse is not true, essentially because the procedure uses a superset
of the critical proofs. It will be interesting to check what results this procedure
will give on systems that are proved to admit Cut, like Higher Order Logic [15]
or arithmetic [18].

References

1. Aiguier, M., Boin, C., Longuet, D.: On generalized theorems for normalization
of proofs. Technical report, LaMI - CNRS and Université d’Evry Val d’Essonne
(2005)

2. Baader, F., Nipkow, T.: Term Rewriting and all That . Cambridge University Press
(1998)

3. Barendregt, H., Barendsen, E.: Autarkic computations in formal proofs. Journal
of Automated Reasoning 28 (2002) 321–336

4. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Trans. Com-
put. Logic 8 (2007)

5. Bonichon, R.: TaMeD: A tableau method for deduction modulo. In: Basin, D.A.,
Rusinowitch, M. (eds.): IJCAR. Lecture Notes in Computer Science, Vol. 3097.
Springer-Verlag (2004) 445–459

6. Burel, G., Kirchner, C.: Completion is an instance of abstract canonical system
inference. In: Futatsugi, K., et al. (eds.): Algebra, Meaning and Computation.
Lecture Notes in Computer Science, Vol. 4060. Springer-Verlag (2006) 497–520

7. Burel, G., Kirchner, C.: Cut elimination in deduction modulo by abstract comple-
tion (full version). Research report (2007) http://hal.inria.fr/inria-00132964.

8. Crabbé, M.: Non-normalisation de la théorie de Zermelo. Manuscript (1974)

9. Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Sci-
ence 17 (1982) 279–301

10. Dershowitz, N.: Canonicity. In: Dahn, I., Vigneron, L. (eds.): FTP. Electronic
Notes in Theoretical Computer Science, Vol. 86. Elsevier Science Publishers B. V.
(North-Holland) (2003)

11. Dershowitz, N., Kirchner, C.: Abstract saturation-based inference. In: LICS. IEEE
Computer Society (2003) 65–74

12. Dershowitz, N., Kirchner, C.: Abstract Canonical Presentations. Theoretical Com-
puter Science 357 (2006) 53–69

13. Dowek, G.: What is a theory? In: Alt, H., Ferreira, A. (eds.): STACS. Lecture
Notes in Computer Science, Vol. 2285. Springer-Verlag (2002) 50–64

14. Dowek, G.: Confluence as a cut elimination property. In: Nieuwenhuis, R. (ed.):
RTA. Lecture Notes in Computer Science, Vol. 2706. Springer-Verlag (2003) 2–13

15. Dowek, G., Hardin, T., Kirchner, C.: HOL-λσ an intentional first-order expression
of higher-order logic. Mathematical Structures in Computer Science 11 (2001)
1–25

16. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-
mated Reasoning 31 (2003) 33–72

17. Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic
Logic 68 (2003) 1289–1316

18. Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.): RTA.
Lecture Notes in Computer Science, Vol. 3467. Springer-Verlag (2005) 423–437

http://hal.inria.fr/inria-00132964

18 Guillaume Burel and Claude Kirchner

19. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem
Proving. Computer Science and Technology Series, Vol. 5. Harper & Row, New
York (1986) Revised On-Line Version (2003), http://www.cis.upenn.edu/~jean/
gbooks/logic.html.

20. Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische
Zeitschrift 39 (1934) 176–210, 405–431 Translated in Szabo, editor., The Collected

Papers of Gerhard Gentzen as “Investigations into Logical Deduction”.
21. Hermant, O.: Méthodes Sémantiques en Déduction Modulo. PhD thesis, École

Polytechnique (2005)
22. Hermant, O.: Semantic cut elimination in the intuitionistic sequent calculus. In:

Urzyczyn, P. (ed.): TLCA. Lecture Notes in Computer Science, Vol. 3461. Springer-
Verlag (2005) 221–233

23. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.): Computational Problems in Abstract Algebra. Pergamon Press, Oxford
(1970) 263–297

24. Peterson, G., Stickel, M.E.: Complete sets of reductions for some equational the-
ories. Journal of the ACM 28 (1981) 233–264

http://www.cis.upenn.edu/~jean/gbooks/logic.html
http://www.cis.upenn.edu/~jean/gbooks/logic.html

