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Convergene et hoix optimal de la taille du bu�er durouteur pour le ontr�le de ongestion AIMDRésumé : Nous étudions l'interation entre le ontr�le de ongestion AIMD (AdditiveInrease Multipliative Derease) et le routeur ave le bu�er de type Drop Tail. Nousonsidérons e problème dans le adre des modèles hybrides déterministes. D'abord, nousprouvons que le modèle hybride de l'interation entre la �ntrole de ongestion AIMD etle routeur de goulot d'étranglement onverge toujours à un omportement ylique. Nousaratérisons les yles. Des onditions néessaires et su�santes pour l'absene des sautsmultiples de la fenêtre de ongestion dans le même yle sont obtenues. Puis, nous proposonsun adre analytique pour le hoix optimal de la taille du bu�er du routeur. Nous formulons leproblème du hoix optimal de la taille du bu�er du routeur omme problème d'optimisationmulti-ritère, dans lequel la fontion de Lagrange orrespond à une ombinaison linéairedu taux moyen de transmission et le délai moyen dans le bu�er. La solution au problèmed'optimisation fournit davantage d'évidene que la taille du bu�er du routeur doit êtreréduite en présene de l'agrégation du tra�. Nos résultats analytiques sont on�rmés pardes simulations e�etuées ave Simulink et le simulateur NS.Mots-lés : le modèle de TCP/IP, hoix optimal de la taille du bu�er, modèles hybridesdéterministes, l'optimisation multi-ritère



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 31 IntrodutionMost tra� in the Internet is governed by TCP/IP (Transmission Control Protool andInternet Protool) [1, 14℄. Data pakets of an Internet onnetion travel from a soure nodeto a destination node via a series of routers. Some routers, partiularly edge routers, expe-riene periods of ongestion when pakets spend a non-negligible time waiting in the routerbu�ers to be transmitted over the next hop. TCP protool tries to adjust the sending rate ofa soure to math the available bandwidth along the path. During the priniple CongestionAvoidane phase the urrent TCP New Reno version uses AIMD (Additive Inrease Multi-pliative Derease) binary feedbak ongestion ontrol sheme. In the absene of ongestionsignals from the network TCP inreases ongestion window linearly in time, and upon thereeption of a ongestion signal TCP redues the ongestion window by a multipliativefator. Congestion signals an be either paket losses or ECN (Expliit Congestion Noti�a-tions) [21℄. At the present state of the Internet, nearly all ongestion signals are generatedby paket losses. Pakets an be dropped either when the router bu�er is full or when AQM(Ative Queue Management) sheme is employed [10℄. Given an ambiguity in the hoie ofthe AQM parameters [7, 16℄, so far AQM is rarely used in pratie. On the other hand, inthe basi Drop Tail routers, the bu�er size is the only one parameter to tune apart of therouter apaity. In fat, the bu�er size is one of few parameters of the TCP/IP networkthat an be managed by network operators. This makes the hoie of the router bu�er sizea very important problem in the TCP/IP network design.The paper is omposed of two priniple parts. In the �rst part (Setions 2-5) we analyzethe interation between the AIMD ongestion ontrol and the bottlenek router with DropTail bu�er. This interation an be adequately desribed by hybrid modeling approah.There are several hybrid models of the interation between TCP and the bottlenek router[4, 6, 13℄. Here we analyze the model of [13℄. To our opinion, this model takes into aountall essential details of TCP and at the same time leads to a tratable analysis. We show thatthe system always onverges to a limiting behavior. In partiular, we demonstrate that twodi�erent limiting regimes an oexist and the onvergene to one or to the other depends onthe initial onditions. Then, we provide neessary and su�ient onditions for the abseneof subsequent paket losses. The absene of subsequent paket losses bene�ts the TCPperformane as well as the quality of servie for end users. We note that in [13℄ there is noharaterization of limiting regimes. Furthermore, in [13℄ only a su�ient ondition for theabsene of multiple jumps was obtained and the su�ient ondition of [13℄ is loose for somevalues of the derease fator.In the seond part of the paper (Setions 6-7) we study the optimal hoie of the bu�ersize in the bottlenek routers. There are some empirial rules for the hoie of the routerbu�er size. The �rst proposed rule of thumb for the hoie of the router bu�er size was tohoose the bu�er size equal to the BDP (Bandwidth-Delay Produt) of the outgoing link [23℄.This reommendation is based on very approximative onsiderations and it an be justi�edonly when a router is saturated with a single long-lived TCP onnetion. The next apparentquestion to ask was how one should set the bu�er size in the ase of several ompeting TCPonnetions. In [5℄ it was observed that the utilization of a link improves very fast withRR n° 6142



4 Avrahenkov, Ayesta & Piunovskiythe inrease of the bu�er size until a ertain threshold value. After that threshold valuethe further inrease of the bu�er size does not improve the link utilization but inreases thequeueing delay. Then, two ontraditory guidelines for the hoie of the bu�er size havebeen proposed. In [17℄ a onnetion-proportional bu�er size alloation is proposed, whereasin [3℄ it was suggested that the bu�er size should be set to the BDP of the outgoing linkdivided by the square root of the number of TCP onnetions. A rationale for the formerreommendation is that in order to avoid a high loss rate the bu�er must aommodateat least few pakets from eah onnetion. And a rationale for the latter reommendationis based on the redution of the synhronization of TCP onnetions when the number ofonnetions inreases. Then, [3, 17℄ were followed by two works [8, 11℄ whih try to reonilethese two ontraditory approahes. In partiular, the authors of [8℄ reommend to followthe rule of [3℄ for a relatively small number of long-lived onnetions and, when the numberof long-lived bottleneked onnetions is large, to swith to the onnetion-proportionalalloation. One of the main onlusions of [11℄ is that there are no lear riteria for theoptimization of the bu�er size. Then, the author of [11℄ proposed a general avenue forresearh on the router bu�er sizing: �Find the link bu�er size that aommodates bothTCP and UDP tra�.� We note that UDP (User Datagram Protool) [20℄ does not use anyongestion ontrol and reliable retransmission and it is mostly employed for delay sensitiveappliations suh as Internet Telephony. We refer the interested reader to [24℄ and referenestherein for more information on the problem of optimal hoie of bu�er size.All the above mentioned works on the router bu�er sizing are based on quite roughapproximations and stritly speaking do not take into aount the feedbak nature of TCPprotool. Here we propose a mathematially solid framework to analyze the interationof TCP with the �nite bu�er of an IP router. In partiular, we state a riterion for thehoie of the optimal bu�er size in a mathematial form. Our optimization riterion anbe onsidered as a mathematial formalization of the lingual riterion proposed in [11℄.Furthermore, the Pareto set obtained for our model allows us to dimension the IP routerbu�er size to aommodate both data tra� and real time tra�.All proofs are provided in the Appendix.2 Mathematial modelThe window based binary feedbak ongestion ontrol an be desribed by two funtions
f(w) and G(w). Funtion f(w) de�nes the inrease pro�le of the ongestion window andfuntion G(w) represents the redution of the ongestion window upon the reeption ofongestion noti�ation. Namely, in the absene of ongestion noti�ation the evolution ofongestion window w(t) is desribed by the di�erential equation

dw

dt
=

f(w)

T + x(t)/µ
, (1)where T is the two way propagation delay, x(t) is the amount of data in the bottlenekqueue and µ is the apaity of the bottlenek router. We note that T + x(t)/µ orrespondsINRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 5to the Round Trip Time (RTT) when the amount of the enqueued data in the bottlenekrouter bu�er is x(t) at time moment t. Thus, funtion f(w) determines the inrease of theongestion window per one Round Trip Time. The sending rate λ(t) of the window basedongestion ontrol is given by
λ(t) =

w(t)

T + x(t)/µ
. (2)We would like to emphasize that here the time parameter t orresponds to the loal timeobserved at the router.We study a Drop Tail bu�er with size B. If x(t) < B, the ongestion window w inreasesaording to (1). When x reahes B at time t∗, i.e. x(t∗) = B, the bu�er starts to over�ow.The over�ow of the bu�er will be notied by the sender only after the time delay δ = T+B/µ.Upon the reeption of the ongestion signal at time t∗ + δ, the ongestion window is reduedaording to

w(t∗ + δ + 0) = G(w(t∗ + δ − 0)). (3)As we shall see below, w (resp., λ) an represent either a ongestion window (resp., sendingrate) for a single TCP onnetion or a total window (resp., total rate) of several TCPonnetions.Consider n long-lived AIMD TCP onnetions that share a bottlenek router. Denote by
wi(t) the instantaneous ongestion window of onnetion i = 1, ..., n at time t ∈ [0,∞). Inthe ase of the AIMD ongestion ontrol, if x < B the evolution of the ongestion window wiis given by di�erential equation (1) with f(w) = mi = const. If we restrit ourselves to thesymmetri ase Ti = T = const and mi = m0 = const, the sum of all ongestion windows
w(t) =

∑n
i=1 wi(t) also satis�es di�erential equation (1) with f(w) = m, where m = nm0.Namely, we have

dw

dt
=

m

T + x(t)/µ
, (4)

dx

dt
=

{

λ(t) − µ, if 0 < x(t) < B, or x(t) = 0 and λ(t) ≥ µ, or x(t) = B and λ(t) ≤ µ;
0 otherwise, (5)where λ(t) is given by (2). And if x(t∗) = B at some time moment t∗, the ongestion windowis dereased multipliatively after the information propagation delay δ = T +B/µ as follows:

w(t∗ + δ + 0) = βkw(t∗ + δ − 0), (6)and onsequently, G(w) = βkw for the AIMD ase. Usually, k = 1, but sometimes it isneessary to send several ongestion signals in order to redue the sending rate below thetransmission apaity of the bottlenek router.Sine we onsider the ase of equal propagation delays, the synhronization phenomenontakes plae [10℄, and onsequently, the total sending rate is also redued by the fator βk.For instane, in TCP New Reno version the redution fator β is equal to one half.
RR n° 6142



6 Avrahenkov, Ayesta & PiunovskiyLet us make the hange of time sale aording to
ds

△
=

dt

T + x(t)/µ
.and the hange of variables:

v
△
= w/m, y

△
= x/m.The new time s an be viewed as a ounter for Round Trip Times. Now the dynamis ofthe system between the jumps is desribed by equations

dv

ds
= 1, (7)

dy

ds
=

{

v(t) − y(t) − q, if 0 < y(t) < b, or y(t) = 0 and v(t) ≥ q, or y(t) = b and v(t) ≤ q + b;
0 otherwise, (8)where q = µT/m is the maximal number of pakets that an be �t in the pipe, in otherwords Bandwidth-Delay Produt (BDP) in pakets, and b = B/m is the maximal numberof pakets that an be �t in the router bu�er. Let s∗ be the moment in the new time salewhen omponent y reahes value b. Then, equation (6) is transformed to

v(s∗ + 1 + 0) = βkv(s∗ + 1 − 0), (9)where k = min{i : βiv(s∗ + 1 − 0) < b + q}.Remark 1 Beause of the delay in the information propagation, the ongestion window isredued after the delay δ = T + B/µ in the original time sale, or, equivalently, after 1 timeunit in the new time sale s. The value of k is suh that, after sending k ongestion signals,the amount of data x (and y ) starts to derease.3 Convergene of the system trajetoriesThe dynamis is de�ned by three parameters β, q, and b, and the system trajetory remainsin the region Ω = {0 ≤ y ≤ b, v > 0}, provided the initial ondition is there.Suppose a trajetory starts at s = 0 from initial ondition y0 = b, β(q + b) ≤ v0 < b+ q,1and s∗ is the �rst moment when y(s∗) = b. Let v1 = v(s∗ + 1 + 0). We introdue mapping
ϕ suh that v1

△
= ϕ(v0). Consider the iterations vi+1

△
= ϕ(vi), i = 0, 1, ....Theorem 1 There exists limi→∞ vi = V (v0) with

V (v) =

{

V1, if v ∈ [β(q + b), d];
V2, if v ∈ (d, q + b),

(10)for some onstant d. In partiular, one of the above intervals an be empty.1Initial onditions outside the region [β(q + b), q + b) are of no interest beause, after the very �rst(multiple) jump we have v(s∗ + 1 + 0) ∈ [β(q + b), q + b). INRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 7De�nition 1 Suppose the trajetory starting at s = 0 from initial ondition y0 = b, v0 <
b + q reahes the same point, for the �rst time, at some time moment S ≥ 1. Then this�nite trajetory is alled a yle. A yle with omponent y remaining zero for a positivetime interval is alled lipped (see Figure 1). If a yle touhes the axis y = 0 only at asingle point, we all suh yle ritial (see Figure 2).Corollary 1 (from Theorem 1) Any yle has a single time moment, when a (multiple)jump ours.The number k of instant jumps of omponent v is alled a yle order. We all suhyles k-yles for brevity. If one of the intervals in (10) is empty then only a single yleexists (Figure 1). Otherwise, two yles exist simultaneously (Figure 3); their orders aretwo subsequent positive integers. Aording to Theorem 1, whih yle is realized dependson the initial onditions.4 Properties of ylesIn this setion, we haraterize the shape of yles. In other words, for given parameters
β, q and b, we would like to know if the limit yles of the system trajetories are lippedor unlipped and what orders the yles have. For �xed values of β and q, we de�ne thefollowing quantities:

N
△
= min

{

i ≥ 1 :
βi

1 − βi
< q

}

; (11)
D

△
= ln(1 − βN ) +

2βN

1 − βN
; (12)

C
△
= − ln(1 − βN ) − βN ; (13)

θk is the single positive solution to equation
ln

θ

1 − e−θ
+

βkθ

1 − βk
= q − βk

1 − βk
, k = N, N + 1; (14)

b0,k
△
=

θk

1 − e−θk
− ln

θk

1 − e−θk
− 1. (15)Then, we de�ne the set of quantities whih do not depend on q:

τk is the single positive solution to equation
τ

1 + βk−1−βk

1−βk (τ + 1)
= 1 − e−τ , k = 2, 3, . . . (16)

A∗

k

△
=

βk−1(τk + 1)

1 − βk
; (17)

RR n° 6142



8 Avrahenkov, Ayesta & Piunovskiy
q∗k

△
=

βk

1 − βk
(τk + 1) + ln

τk

1 − e−τk
; (18)It is onvenient to put τ1, A

∗
1 and q∗1 equal to +∞. Finally, in ase q ≤ D one has to solveequation
e−r + r − 1 = βN (q + r + 1) − q. (19)It has no more than two positive solutions r ≤ r̄ whih de�ne

b
△
= e−r + r − 1; b̄

△
= e−r̄ + r̄ − 1, (20)Note that b ≤ b̄. If q ≤ q∗N+1 then q ≤ D and b̄ ≥ A∗

N+1 − q.We note that all the above de�ned quantities do not depend on b. Thus, from now onwe assume that β and q are �xed and we are going to desribe what kind of yles exist fordi�erent values of b. In other words, we study what e�et the router bu�er size has on thelimiting behavior of TCP/IP. There are three ases:Case A∗

N+1 < q.If b ∈
[

0, βN−1

1−βN−1 − q
] then only the yle of order N exists. In ase N = 1, we put

β0

1−β0 = +∞ for generality.Suppose N > 1. Then for b ∈
(

βN−1

1−βN−1 − q, A∗

N − q
] two yles, of orders N and N − 1exist simultaneously. For b ∈

(

A∗

N − q, βN−2

1−βN−2 − q
], there exists only a single yle of order

N − 1. And so on; for b > A∗
2 − q, only 1-yle exists (see Figure 13).The N -yle is lipped for b ∈ [0, b0,N). Cyles of lower orders are unlipped for all valuesof b, if they exist.The N -yle touhes the v-axis at a single point i� b = b0,N . Thus, if b = b0,N thereexists a ritial N -yle. No ritial yles of lower orders exist.Example 1 Let us illustrate this with a numerial example. If we take q = 0.9 and β = 1/2then N = 2, A∗

2 = 1.4965, A∗
3 = 0.3910. If b ∈ [0, 0.1] we have only 2-yles; if b ∈

(0.1, 0.5965] we have 1-yles and 2-yles (see Figure 3); and if b > 0.5965 we have only1-yles. For eah b < b0,2 = 0.0617, there exists only a lipped 2-yle (see Figure 1). Asone an see on Figure 2, when b = b0,2 = 0.0617, the 2-yle beomes ritial. All �guresfor this example have been plotted with MATLAB Simulink.Case q ≤ q∗N+1.If b ∈ [0, b), then only the N -yle exists. If b ∈ [b, A∗

N+1 − q], then two yles of orders
N and N + 1 exist simultaneously. For b ∈ (A∗

N+1 − q, βN−1

1−βN−1 − q], again, only the N -yleexists.The N -yle is lipped for b ∈ [0, b0,N); the (N + 1)-yle is lipped for b ∈ [b, b0,N+1).These yles beome ritial at b = b0,N and b = b0,N+1, respetively. Cyles of lower orders
INRIA
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2 < q.are unlipped for all values of b, if they exist. If N > 1 then, similarly to the ase A∗

N+1 < q,the order of the yle dereases as b inreases above βN−1

1−βN−1 − q (see Figure 13).Case q∗N+1 < q ≤ A∗

N+1.If C ≤ A∗

N+1 − q 2 and q ≤ D, then everything is similar to the ase q ≤ q∗N+1. Thedi�erene is that the (N +1)-yle is lipped and annot be ritial; it exists simultaneouslywith the N -yle for b ∈ [b, b̄]. If b ∈
(

b̄, βN−1

1−βN−1 − q
], only the N -yle exists. The latterinterval is non-empty.If C > A∗

N+1 − q or D < q, then everything is exatly as in ase A∗

N+1 < q.2Atually C annot be equal to A∗
N+1

− q.
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10 Avrahenkov, Ayesta & Piunovskiy5 Conditions for the absene of multiple jumpsThe regime with multiple jumps is not desirable. The multiple jump orresponds to thelost of more than one paket in a single ongestion window. Subsequent paket losses anfore TCP to swith from the Congestion Avoidane TCP phase to the Slow Start phase andlead to lengthy timeouts. Furthermore, the absene of subsequent paket losses is bene�ialnot only for the TCP performane but also for the quality of servie provided to the endusers. In the next theorem we provide neessary and su�ient onditions for the absene ofmultiple jumps, namely, we haraterize all possible ases when only a single yle of order
1 exists.Theorem 2 The following mutually exlusive onditions fully haraterise all possible aseswhen only a single yle of order 1 exists:(a) β

1−β
≥ q and b + q > A∗

2;(b) A∗
2 < q (b an be arbitrary);() β

1−β
< q ≤ q∗2 and b /∈ [b, A∗

2 − q];(d) max
{

β
1−β

, q∗2

}

< q ≤ A∗
2 − C, q ≤ D and b /∈ [b, b̄];(e) max

{

β
1−β

, q∗2

}

< q ≤ A∗
2 − C, q > D (b an be arbitrary);(f) max

{

β
1−β

, q∗2 , A∗
2 − C

}

< q ≤ A∗
2 (b an be arbitrary).In the following orollary we provide a simple su�ient ondition for absene of multiplejumps.Corollary 2 Condition b + q > A∗

2 is su�ient for the absene of yles of orders k > 1.(See Figure 13 and Corollary 6.)Reall that A∗
2 depends only on β. In partiular, if β = 1/2, A∗

2 = 1.4965 .We would like to note that the above su�ient ondition is tighter than the su�ientondition for the absene of multiple jumps provided in [13℄: b + q > 2β/(1 − β). Toompare these two onditions, we plot A∗
2(β) and 2β/(1 − β) in Figure 4 and the di�erene

2β/(1 − β) − A∗
2(β) in Figure 5. Stritly speaking we haveProposition 1 The di�erene δ

△
= 2β

1−β
− A∗

2 is always positive and limβ→1 δ = +∞.Nevertheless, the simple su�ient ondition of [13℄ appears to be quite good exept forvalues of β that are too lose to one.
INRIA
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Figure 5: The value of 2β/(1 − β) − A∗
2(β).6 Pareto set for optimal bu�er sizingLet us study what e�et has the hoie of the bu�er size on the performane of TCP. Inpartiular, we are interested in optimal bu�er sizing. Towards this goal, let us formulate theperformane riteria. On one hand, we are interested to obtain as large goodput as possible.That is, we are interested to maximize the average goodput

ḡ = lim
t→∞

1

t

∫ t

0

g(s)ds,where the instantaneous goodput g(t) is de�ned by
g(t) =

{

λ(t), if x(t) < B,
µ, if x(t) = B.On the other hand, we are interested to make the delay of data in the bu�er as small aspossible. That is, we are also interested to minimize the average amount of data in thebu�er

x̄ = lim
t→∞

1

t

∫ t

0

x(s)ds.Clearly, these two goals are ontraditory. In fat, here we fae a typial example of multi-riteria optimization. A standard approah to it is to onsider the optimization of oneriterion under onstraints for the other riteria (see e.g., [19℄). Namely, we would like tomaximize the goodput given that the average amount of data in the bu�er does not exeeda ertain value
max{ḡ : x̄ ≤ x̄∗}. (21)
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12 Avrahenkov, Ayesta & PiunovskiyOr we would like to minimize the average delay given that the average goodput is not lessthan a ertain value
f min{x̄ : ḡ ≥ ḡ∗}. (22)The solution to the above onstrained optimization problems an be obtained from thePareto set. As is known, see e.g. [19℄, the Pareto set an be onstruted by solving theoptimization problem

max

{

lim
t→∞

1

t

∫ t

0

c1g(s) − c2x(s)ds

}

. (23)To be more preise, the Pareto Set is formed by the pairs of objetives (ḡ, x̄) that solve (23)for di�erent (c1, c2) ∈ R2
+. An example of Pareto set is given in Figure 6. Eah point of thePareto set orresponds to a solution of optimization problem (23) for some hoie of c1 and

c2. One we obtain the Pareto set, it is very easy to dedue solution of problems (21) and(22). For instane, if one wants that the utilization of the bottlenek router will be not lessthan, say, 95%, one has to be ready to aept the delays that are equal or greater than x∗.
0

xx

µ
µ

0.95

g

*Figure 6: Pareto set. 0
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b

q

A D

C

E

Figure 7: Phases of the lipped yle.All three optimization problems (21), (22) and (23) an be regarded as mathematialformulation of the lingual riterion ��nd the link bu�er size that aommodates both TCPand UDP tra�� given in [11℄. Sine UDP tra� does not ontribute muh in terms of theload, for the design of IP routers one an use for instane optimization problem (21) wherethe delay onstraint is imposed by the UDP tra�.We note that here we deal with the optimal impulse ontrol problem of a deterministisystem with long-run average optimality riterion. To the best of our knowledge there areno available results on suh type of problems in the literature. In priniple, the ontrolpoliy in our model an depend on the urrent values of x and λ. In pratie, however, allurrently implemented bu�er management shemes (e.g., AQM, DropTail) send ongestionsignals based only on the state of the bu�er. Thus, we also limit ourselves to the ase whenthe ontrol depends only on the amount of data in the bu�er. Furthermore, we restrit the
INRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 13ontrol ation only to the hoie of the bu�er size. Thus, the ontrol signal is only sent atthe moment when the bu�er gets full.The following theorem provides expressions for the average sending rate, goodput andqueue size under ondition q > A∗
2, whih guarantees the absene of multiple jumps for anyvalue of the bu�er size. Remember that A∗

2 depends only on β (see (16),(17)). In partiular,the expressions allow us to plot the Pareto set parameterized by the bu�er size.Theorem 3 Let the ondition µT/m > A∗
2 be satis�ed. Then, for B ∈ [0, mb0,1] the averagesending rate, goodput and bu�er oupany are given by

λ̄ =
m(1 − β2)

2Tcycle

(

1 +
µT

m
+ SCD

)2

,

ḡ =
m

Tcycle

[

1

2

(

µT

m
+ SCD

)2

− β2

2

(

1 +
µT

m
+ SCD

)2

+
µT + B

m

]

,

x̄ =
1

Tcycle

[

mT

(

∫ SAB

0

yAB(s)ds +

∫ SCD

0

yCD(u)du

)

+
m2

µ

(

∫ SAB

0

y2
AB(s)ds +

∫ SCD

0

y2
CD(u)du +

B(µT + B)

m2

)]

,respetively, where Tcycle is the yle duration given by
Tcycle = (1 − β)(1 +

µT

m
+ SCD)T +

B

µ
+

m

µ

(

∫ SAB

0

yAB(s)ds +

∫ SCD

0

yCD(u)du

)

,with
yCD(u) = e−u + (u − 1),

yAB(s) = [
B

m
+ (1 − β)(1 +

µT

m
) − βSCD]e−s + (s − 1) + β(SCD + 1) − (1 − β)

µT

m
,where SCD and SAB are the solutions of the equations

e−SCD + SCD − 1 =
B

m
,

[

B

m
− βSCD + (1 − β)(1 +

µT

m
)

]

e−SAB + SAB + βSCD − (1 − β)(1 +
µT

m
) = 0.For B ∈ (mb0,1,∞), we have

λ̄ =
m

2Tcycle

1 + β

1 − β
(s1 + 1)2,
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14 Avrahenkov, Ayesta & Piunovskiy
ḡ = µ,

x̄ =
1

Tcycle

[

mT

∫ s1

0

y(s)ds +
m2

µ

(
∫ s1

0

y2(s)ds +
B(µT + B)

m2

)]

,where
Tcycle = T (s1 + 1) +

m

µ

(
∫ s1

0

y(s)ds +
B

m

)with
y(s) =

[

1 +
µT + B

m
− v0

]

e−s + (s − 1) + v0 −
µT

m
,where v0 and s1 are de�ned by (28) and (29) with k = 1.Example 2 Let us illustrate the Pareto set for a benhmark example of the TCP/IP networkreated with the help of NS-2 simulator [18]. The network onsists of a single bottlenek linkof apaity µ = 10Mbps whih is shared by n long-lived TCP onnetions. The propagationdelay for eah onnetion is T = 0.24s and β = 1/2. The paket size is 4000bits. Thus,we have that m0 = 4000bits as well. In Figure 8 we plot the Pareto set for n = 10 (and

m = nm0 = 40, 000) using the formulae of Theorem 3 and measurements obtained from NSsimulations. As one an see, two urves math well. In Figure 9, again using the formulaeof Theorem 3, we plot the average goodput and the average sending rate as funtions of thebu�er size for n = 60.We note that ḡ ≤ µ always, but the average sending rate λ̄ an exeed the router apaity
µ (see Figure 9). Nevertheless, as the next Proposition 2 states, the di�erene between theaverage sending rate and the router apaity goes to zero as B inreases. In partiular, thismeans that when the Drop Tail router is used, the rate of lost (and then retransmitted)information eventually diminishes to zero as the bu�er size inreases.Proposition 2 When B → ∞, the di�erene ∆ = λ̄ − µ approahes zero from above.7 Minimal bu�er size for the full system utilizationIn the ase of multiple TCP onnetions ompeting for resoure of the bottlenek router wehave m = nm0. Here n is the number of ompeting TCP onnetions. Let us study how theminimal bu�er size for the full system utilization, B0,N , depends on n or, equivalently, on
m. B0,N is the bu�er size orresponding to senario when the Pareto set touhes the level
µ (see Figure 6). It orresponds also to the ritial yle of minimal order.Proposition 3 (a) For a �xed N , the value of B0,N = mb0,N dereases as m inreases.
(b) The value of B0,N inreases as N inreases.
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Figure 9: Non-monotoniity of the averagesending rate.Corollary 3 The bu�er size B0,N of the minimal order ritial yle is a piee-wise di�er-entiable funtion of m, dereasing on the intervals [mi, mi+1);
lim

m→mi+1−0
B0,N (m) < B0,N (mi+1), i = 0, 1, 2, . . .Here mi

△
= µT (1− βi)/βi; the value of N equals i + 1 on the interval [mi, mi+1) (see (11) ).Moreover, limm→mN−0 B0,N = 0, limm→mN−0

dB0,N

dm
= 0, limm→0+ B0,1 = µT (1− β)/β,

limN→∞ mN−1B0,N (mN−1) = 0.5(µT (1 − β))2 and hene limm→∞ B0,N = 0.Example 2(ntd.) In Figure 10 we plot the bu�er size B0,N of the minimal order ritialyle and the urve f(m) = (1 − β)2(µT )2/(2m) for µT = 2.4 × 106bits (600packets). Theurve f(m) indeed approahes fast the loal maxima of B0,N as m inreases. In Figure 11we make a zoom on the interval with smaller values of m. As one an see, when m goes tozero, the value of B0,N approahes 600pakets, whih is the BDP in this network example.We note that by Corollary 3 for small values of m the minimal bu�er size for the fullsystem utilization is approximately equal to µT , BDP of the bottlenek link. This is inagreement with the empirial onlusion of [23℄. In [3℄ the authors suggested that the mini-mal bu�er size for the full system utilization should derease as (µT )/
√

n as the number ofonnetions n inreases. We note that the authors of [3℄ have assumed that the ompetingTCP onnetions are not synhronized. That is, only a single onnetion redues its on-gestion window when the bu�er beomes full. In our model we assume full synhronizationof ompeting TCP onnetions. Namely, when the bu�er is full, all onnetions simultane-ously redue their ongestion windows. We expet that the situation in real networks is inbetween these two extremes. And thus, the model of [3℄ provides an upper bound and ourmodel provides a lower bound. Furthermore, it was believed previously that if the ompet-ing TCP onnetions are synhronized, one has to provide BDP of bu�ering to guaranteeRR n° 6142



16 Avrahenkov, Ayesta & Piunovskiythe full system utilization. From Figure 11 one an see that the minimal bu�er requirementdereases with inreasing m (or, equivalently, with inreasing n) even in the ase of ompletesynhronization. Finally, we would like to mention that the value of B0,N is non-monotonouswith respet to m, even though it eventually dereases to zero (see Figure 10). Curiouslyenough, the experiments of [24℄ with the router, running FreeBSD dummynet software, havealso shown the non-monotonous behavior of the minimal bu�er requirement in the ase ofsynhronized onnetions (see Figure 1 in [24℄).
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Figure 11: The minimal bu�er size for the fullsystem utilization (zoom).8 ConlusionsIn this paper we have studied the interation between AIMD Congestion Control and abottlenek router with Drop Tail bu�er. We have used the hybrid modeling approah. It isdemonstrated that the system always onverges to a yli behavior. The limit yles havebeen fully haraterized. In partiular, we have obtained neessary and su�ient onditionfor the absene of yles with multiple jumps and a simple but tight su�ient ondition.Then, we have formulated the problem of hoosing the bu�er size of routers in the Internet asa multi-riteria optimization problem. In agreement with previous works, our model suggeststhat as the number of long-lived TCP onnetions sharing the ommon link inreases, theminimal bu�er size required to ahieve full link utilization dereases. However, in the aseof synhronized onnetions, the derease is not monotonous and slower than the inverseof the square root of the number of onnetions. The Pareto set obtained with the help ofour model allows us to evaluate the IP router bu�er size in order to aommodate real timetra� as well as data tra�. The simulations arried out with the help of Simulink and NSSimulator on�rm the qualitative insights drawn from our model. Appliation of the sameINRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 17framework to other ongestion ontrol mehanisms, suh as MIMD, HighSpeed TCP, TCPWestwood appears to be a fruitful diretion for future researh.AppendixUnlipped yles.In this and the next subsetion, we ignore the requirement that y ≥ 0. Thus dynamisis desribed by equations














dv
ds

= 1;

dy
ds

=







v − y − q, if y < b, or
y = b and v ≤ A;

0 otherwise, (24)where
A

△
= b + q.The jumps our aording to (7) as before.De�nition 2 Let y0 = b and v0 < A be the initial onditions. A piee of trajetory on thetime interval [0, s∗ +1+0] is alled a pseudo-yle of order k (see (7)). If v(s∗ +1+0) = v0then the pseudo-yle is alled a k-yle.Later, it will be shown that if a lipped k-yle exists then the unlipped k-yle exists,too (Corollary 6). Clearly, (24) has a single solution

{

v(s) = v0 + s;
y(s) = (1 + q + y0 − v0)e

−s + s − 1 + v0 − q.
(25)Theorem 4 An (unlipped) k-yle exists i�

A ∈
(

βk

1 − βk
, A∗

k

]

, (26)where
A∗

k

△
=

{

βk−1(τk+1)
1−βk , if k > 1,

∞, if k = 1
(27)and, for k > 1, τk is the single positive solution to (16).Proof. Obviously, parameters of a k-yle, v0 and time interval s1 an be found fromequations

y(s1) = b; βkv(s1 + 1) = v0,
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18 Avrahenkov, Ayesta & Piunovskiywhih are equivalent to
v0 =

βk(s1 + 1)

1 − βk
. (28)

1 − e−s1 =
s1

1 + A − βk(s1+1)
1−βk

. (29)A k-yle exists i� (29) has a positive solution and v0 given by (28) satis�es inequality
v0 ≥ βA. (Otherwise, if v0 < βA, there is no need to redue v so many times.) Equation(29) has a positive solution i�

1 + A − βk

1 − βk
> 0 and d

ds





s

1 + A − βk(s+1)
1−βk





∣

∣

∣

∣

∣

∣

s=0

< 1

-
s

6

0

1

1 − e−s

s

1+A−
βk(s+1)

1−βk

Figure 12: Graphial solution to equation (29).(see Fig.12), or, equivalently, i�
βk(1 + A) < A. (30)Put

K
△
= min{i ≥ 1 : βi <

A

1 + A
}. (31)Before proeeding further, we need the following statements. INRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 19Lemma 1 If v0 ∈ [βA, A) then, starting from v0, y0 = b, the next instant series of K + 1jumps results in the value v < A. Hene the order of any yle annot exeed K + 1 (andlearly annot be smaller than K).Proof. Suppose v̂0 = βA. Then, after the next instant series of K + 1 jumps, the value
v̂ is not smaller than v. To put it di�erently,

v ≤ βK+1[βA + ŝ + 1], (32)where ŝ solves equation
(1 + A − βA)e−s + s − 1 + βA = A

⇐⇒ s

1 + (1 − β)A
− 1 + e−s = 0. (33)If we substitute

s̃
△
=

A + 1

β
− βA − 1 <

A

βK+1
− βA − 1into (33) we obtain, using equality A = βs̃+β−1

1−β2 :
s̃

1 + (1 − β)A
− 1 + e−s̃ =

s̃(1 + β)

β(2 + s̃)
− 1 + e−s̃ >

2s̃

1 + s̃
− 1 + e−s̃ > 0.When s inreases from zero, the lefthand side of (33) initially dereases from zero andinreases thereafter. Hene s̃ > ŝ and (32) implies

v < βK+1[βA + s̃ + 1] < βK+1[βA +
A

βK+1
− βA − 1 + 1] = A.Lemma 2 Suppose β ∈ (0, 1) is �xed and onsider funtion

fk(A)
△
= (1 − βk)A − βk−1(s1 + 1), (34)where s1 solves (29). The domain of f is given by (30). Then(a) dfk(A)

dA
> 0;(b) f1(A) < 0 for all A > β

1−β
;() ∀k > 1 equation fk(A) = 0 has a single �nite solution A∗

k given by (27); A∗

k dereasesas k inreases.(d) ∀k > 1 A∗

k > βk−1

1−βk−1 ; ∀k > 2, A∗

k ≤ βk−2

1−βk−2 .
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20 Avrahenkov, Ayesta & PiunovskiyProof. (a) Aording to the rule of impliit di�erentiation, applied to equation
(

1 + A − βk(s1 + 1)

1 − βk

)

(

1 − e−s1
)

− s1 = 0,we have
ds1

dA
= − (1 − e−s1)2(1 − βk)

e−s1s1(1 − βk) − (1 − e−s1)2βk − (1 − βk)(1 − e−s1)
.The denominator equals

−(1 − e−s1 − s1e
−s1) − βk(s1e

−s1 − e−s1 + e−2s1)

< βk(e−s1 − e−2s1 − s1e
−2s1) − (1 − e−s1 − s1e

−s1)

= (1 − e−s1 − s1e
−s1)(βe−s1 − 1) < 0;hene ds1

dA
> 0 for s1 > 0.Now

dfk(A)

dA
= (1 − βk) − βk−1 ds1

dA

=
(1 − βk)[(1 − βk)(s1e

−s1 − 1 + e−s1) + βk−1(1 − e−s1)2(1 − β)]

s1e−s1(1 − βk) + (1 − e−s1)(βke−s1 − 1)
.The denominator is negative (see above). The nominator does not exeed

(1 − βk)(1 − β)[(s1e
−s1 − 1 + e−s1)(1 + βk−1) + βk−1(1 − e−s1)2]

= (1 − βk)(1 − β)[(s1e
−s1 − 1 + e−s1) + βk−1e−s1(s1 − 1 + e−s1)].The both terms in the latter square braket are negative for s1 > 0. Hene dfk(A)

dA
> 0.(b) It is su�ient to prove that

s1 > S
△
= A(1 − β) − 1,where s1 solves (29) at k = 1.Case S < 0 is trivial, thus assume that S > 0. Let us substitute S into the both sides of(29) and estimate the di�erene:

S

1 + A − β(S+1)
1−β

− 1 + e−S =
S

1 + S+1
1−β

− β(S+1)
1−β

− 1 + e−S = e−S − 2

S + 2
< 0,beause funtion (S + 2)e−S dereases from 2 at S = 0. To omplete this part of the proof,it is su�ient to notie that, on the interval

0 < S <
A(1 − β)

β
+

1 − 2β

β
, INRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 21the righthand side of (29) is smaller than the lefthandside i� S < s1.() The �rst part is obvious: A∗

k is given by (27), provided equation (16) has a singlepositive solution. The latter statement folows from the fat that funtion
g(τ) = (1 − e−τ )(1 + α(τ + 1))/τdereases to limτ→∞ g(τ) = α, starting from limτ→0 g(τ) = 1 + α. Here

α
△
=

βk−1 − βk

1 − βk
. (35)Indeed,

dg

dτ
=

e−τ [1 + α + τ(1 + α + ατ)] − (1 + α)

τ2
< 0in ase α < 1, and

α =
βk−1

1 + β + . . . + βk−1
≤ 1

1 + 1/β
< 1/2. (36)Now, look what happens as k inreases. Obviously, funtions βk−1

1−βk = βk

1−βk · 1
β
and

α = βk

1−βk ( 1
β
− 1) (see (35)) derease. Aording to (27) it remains to prove that τk given by(16) inreases with α. We rewrite (16) as (1 + α(τ + 1))(1 − e−τ ) − τ = 0. Hene

dτk

dα
= − (τk + 1)(1 − e−τk)

α(1 − e−τk) + (1 + α(τk + 1))e−τk − 1
= − (τk + 1)2(1 − e−τk)2

h(τk)
,where h(τ) = −2 + 3e−τ − e−2τ + τe−τ + τ2e−τ . (We have substituted α = τk−1+e−τk

(1−e−τk )(τk+1)
.)We intend to prove that

dh

dτ
= −2e−τ + 2e−2τ + τe−τ − τ2e−τ < 0 (37)when τ > 0. Clearly (37) holds for τ ≥ 1.Suppose τ ∈ (0, 1). Then

d2h

dτ2
= 3e−τ − 4e−2τ − 3τe−τ + τ2e−τ < 3e−τ − 4e−2τ − 2τe−τ = e−τ (3 − 4e−τ − 2τ).Expression in the brakets has a negative maximum at τ = ln 2. Therefore, d2h

dτ2 < 0 and
dh
dτ

< 0. Finally, h(τ) < 0 for all τ > 0, beause h(0) = 0.(d) To estimate A∗

k from below, we use statement (a): it is su�ient to establish that
fk

(

βk−1

1−βk−1

)

< 0, ie s1 + 1 > 1−βk

1−βk−1 ⇐⇒ S

1+ βk−1

1−βk−1 −
βk(S+1)

1−βk

< 1 − e−S for S = 1−βk

1−βk−1 − 1.(The argument is similar to (b).) But
S

1
1−βk−1 − βk

1−βk · 1−βk

1−βk−1

− 1 + e−S =
S

S + 1
− 1 + e−S = e−S − 1

1 + S
< 0RR n° 6142



22 Avrahenkov, Ayesta & Piunovskiybeause funtion e−S(1 + S) dereases from 1 at S = 0.Finally, in ase k > 2, suppose A∗

k > βk−2

1−βk−2 . Then for parameters values β and A ∈
(

βk−2

1−βk−2 , A∗

k

) we have that (30) holds for k− 2, k− 1, and k and simultaneously fk(A) < 0,
fk−1(A) < 0, fk−2(A) < 0: see (a) and (). Aording to the beginning of the proof ofTheorem 1, yles of orders k, k − 1, and k − 2 exist whih ontradits Lemma 1.Now we an easily �nish the proof of Theorem 4. Suppose a k-yle exists. Then, a-ording to (30), A > βk

1−βk . Lemma 2 guarantees that
A∗

k >
βk−1

1 − βk−1
>

βk

1 − βk
,and, as was mentioned earlier, inequality v0 ≥ βA must be valid (see (28)), whih is equiv-alent to A ≤ A∗

k. Finally, if (26) holds then (29) has a positive solution (see (30) ) and
v0 ≥ βA; hene a k-yle exists.
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bFigure 13: Existene of unlipped yles; N = 4.Remember that A = b + q. Thus, if q is �xed and b inreases from 0, unlipped yleshave orders N (see (11)) and, possibly, N + 1, if A∗

N+1 − q > 0. Later, as b inreases, theorder of yles dereases aording to Fig. 13.Stability of unlipped yles.We intend to study the mapping ϕ introdued just before Theorem 1. Sine we studyonly unlipped yles, this map is a little di�erent and will be denoted ϕ̃. But �rstly weINRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 23onentrate on a di�erent mapping:
Φk(v0) = βk(v0 + s∗ + 1)de�ned for v0 ∈ [βA, A] under a �xed k ≥ 1. Here s∗

△
= 0 if v0 = A; in ase v0 < A, s∗ > 0is the �rst moment when y(s∗) = b starting from y(0) = b, v(0) = v0.Lemma 3 ∣∣

∣

dΦk(v0)
dv0

∣

∣

∣
< βk and hene Φk is a ontration. Funtion Φk is dereasing.Proof. Assuming that v0 < A, s∗ is a single positive solution to equation

(1 + A − v0)(1 − e−s) − s = 0, (38)hene
ds∗

dv0
=

1 − e−s∗

(1 + A − v0)e−s∗ − 1
=

1 − e−s∗

s∗

1−e−s∗ · e−s∗ − 1and
dΦk

dv0
= βk(1 +

ds∗

dv0
) = βke−s∗ s∗ − 1 + e−s∗

s∗e−s∗ + e−s∗ − 1
< 0.Finally,

e−s∗ s∗ − 1 + e−s∗

s∗e−s∗ + e−s∗ − 1
+ 1 = e−s∗ es∗ − e−s∗ − 2s∗

1 − e−s∗ − s∗e−s∗
> 0,beause the nominator inreases, starting from 0 at s∗ = 0. Therefore dΦk

dv0
> (−βk).Lemma 4 (a) A ∈

(

A∗

K+1,
βK−1

1−βK−1

] i� d < βA, where d is a solution to ΦK(d) = A. Hereand below, βK−1

1−βK−1

△
= ∞ if K = 1; K is de�ned by (31).In this ase, ∀v0 ∈ [βA, A), the mapping ϕ̃(v0) oinides with ΦK(v0).(b) If A ∈

(

βK

1−βK , A∗

K+1

] the following statements hold:(α) ∀v0 ∈ [βA, d], ϕ̃(v0) = ΦK+1(v0) ∈ [βA, d];(β) ∀v0 ∈ (d, A), ϕ̃(v0) = ΦK(v0) ∈ (d, A).See Fig.14. (Note that, aording to the de�nition of K, A ∈
(

βK

1−βK , βK−1

1−βK−1

]; aordingto Lemma 2, A∗

K+1 ∈
(

βK

1−βK , βK−1

1−βK−1

].)Proof. (a) Aording to the de�nition, d = A
βK −s∗−1, where s∗ solves (38) under v0 = d.If d = βA then

{

(1 + A − βA)(1 − e−s∗

) = s∗;
A

βK − s∗ − 1 = βA,
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24 Avrahenkov, Ayesta & Piunovskiy(a)
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Figure 14: Graphs of ϕ̃(v0).or equivalently
{

A = βK(s∗+1)
1−βK+1 ;

(1 + A − βK+1(s∗+1)
1−βK+1 )(1 − e−s∗

) = s∗.To put it di�erently, we have A = A∗

K+1 if d = βA.It remains to prove that d− βA = A
βK − s∗ − 1− βA is a dereasing funtion of A. Sine

s∗ satis�es equation
(

1 + A − A

βK
+ s∗ + 1

)

(1 − e−s∗

) − s∗ = 0,

ds∗

dA
=

(1 − βK)(1 − e−s∗

)2

βKe−s∗(e−s∗ + s∗ − 1)and
d(d − βA)

dA
=

1

βK
−ds∗

dA
−β =

s∗e−s∗

+ e−s∗ − 1 + βK(1 − e−s∗

)2 − βK+1e−s∗

(e−s∗

+ s∗ − 1)

βKe−s∗(e−s∗ + s∗ − 1)
.The denominator is obviously positive for s∗ > 0. The nominator equals zero when s∗ = 0,its derivative equals

e−s∗

[−s∗ + 2βK(1 − e−s∗

) − βK+1(2 − 2e−s∗ − s∗)]. INRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 25Expression in the square brakets equals zero when s∗ = 0 and has derivative
−1 + 2βKe−s∗ − 2βK+1e−s∗

+ βK+1 △
= g(s∗, β).Clearly,

∂g(s∗, β)

∂s∗
= 2βKe−s∗

(β − 1) < 0,and �nally g(0, β) = −1 + 2βK − βK+1 < 0 for all β ∈ (0, 1) beause g(0, 1) = 0 and
dg(0,β)

dβ
= βK−1[K(1 − β) + K − β] > 0. Therefore d(d−βA)

dA
< 0.Aording to Lemma 1, ϕ̃ an oinide with ΦK or ΦK+1 only. In ase (a), ΦK(A) < Abeause limv0→A s∗ = 0 (see (31) ). Funtion ΦK inreases as v0 dereases (Lemma 3), but

ΦK(v0) = A when v0 = d < βA. Thus, ∀v0 ∈ [βA, A) ΦK(v0) < A, (K + 1) instant jumpsare never needed and ϕ̃ = ΦK .(b) In this ase, d ≥ βA aording to (a). Sine ΦK(d) = A and ΦK is a dereasingfuntion (Lemma 3), ΦK(v0) ≥ A if v0 ∈ [βA, d] and ϕ̃(v0) = ΦK+1(v0), as K jumps arenot su�ient. Obviously, ϕ̃(d) = ΦK+1(d) = βA. Now
ϕ̃(βA) = ΦK+1(βA) = ΦK+1(d) −

∫ d

βA

dΦK+1(v0)

dv0
dv0 < ΦK+1(d) + (d − βA) = daording to Lemma 3, and statement (α) is proved.In ase (β), ΦK(v0) < A, hene ϕ̃(v0) = ΦK(v0). We know that ΦK(d) = A. UsingLemma 3, we onlude that

ΦK(A) = ΦK(d) +

∫ A

d

dΦK(v0)

dv0
dv0 > A − (A − d) = d.Corollary 4 Theorem 1 and Corollary 1 hold for unlipped yles.Proof. (See Fig.14.) Under onditions (a) of Lemma 4, ϕ̃ has a stable stationary point

V2 oinident with that of ΦK . (Note that ΦK(A) < A, so that V2 ∈ [βA, A).)Consider ase (b) of Lemma 4.If v0 ∈ [βA, d] then ϕ̃ = ΦK+1 is a ontration de�ned on this interval; so that thestatement follows.If v0 ∈ (d, A), ϕ̃ has a stable stationary point V2 oinident with that of ΦK . (Note that
ΦK(A) < A, hene d < A = ΦK(d), so that V2 ∈ (d, A).)Corollary 1 is obvious.Critial yles.Remind that a yle is alled ritial if mins y(s) = 0 From (25,28,29) it is lear that theminimum is attained at

s0 = ln
s1

1 − e−s1
, (39)where s1 solves (29).RR n° 6142



26 Avrahenkov, Ayesta & PiunovskiyLemma 5 Suppose, an unlipped k-yle exists.(a) y(s0) inreases with A.(b) For yles of order k = 1, ∃ε > 0 ∃δ > 0: dy(s0)
dA

> ε as soon as A > β
1−β

+ δ.Consequently y(s0) → ∞ as A → ∞.Proof. (a) After rewriting (29) in the form
(

1 + A − βk(s1 + 1)

1 − βk

)

(1 − e−s1) − s1 = 0,we obtain:
ds1

dA
=

1 − e−s1

βk

1−βk (1 − e−s1) − e−s1 s1

1−e−s1
+ 1

=
(1 − e−s1)2(1 − βk)

1 − e−s1 − s1e−s1(1 − βk) − βke−s1 + βke−2s1
.(40)The denominator has derivative (wrt s1 > 0)

s1e
−s1(1 − βk) + 2βk(e−s1 − e−2s1) > 0and hene inreases starting from 0 when s1 = 0. Therefore ds1

dA
> 0.Sine

y(s0) = (1 + A − v0)e
−s0 + s0 − 1 + v0 − q = v0 + s0 − q (41)we onlude that

dy(s0)

dA
=

(

dv0

ds1
+

ds0

ds1

)

ds1

dA
=

(

βk

1 − βk
+

1 − e−s1 − s1e
−s1

s1(1 − e−s1)

)

ds1

dA
> 0.(b) Note that the denominator in (40) is a bounded funtion of s1. Thus ∃ε > 0 ∃δ1 > 0:

ds1

dA
> ε as soon as s1 > δ1, or, equivalently, as soon as A > β

1−β
+ δ, where δ > 0 existsbeause s1 monotonially inreases with A. Remember that lim

A→
β

1−β

s1 = 0.Lemma 6 Suppose, all parameters, apart from b, are �xed.(a) A ritial yle of order k exists (for some positive value of b) if and only if
βk

1 − βk
< q ≤ q∗k, (42)where q∗k is given by (18). The orresponding value of b equals b0,k, see (15).(b) The boundary q∗k satis�es inequalities

βk−1

1 − βk−1
≤ q∗k < A∗

k. (43)(In ase k = 1, q∗1 = +∞.) INRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 27Proof. (a) Neessity. Let k > 1 and suppose a ritial yle of order k exists. Then, if weinrease b up to b∗ = A∗

k −q, this k-yle (equipped with an asterisk) must remain unlipped(Lemma 5):
y∗(s∗0) = v∗0 + s∗0 − q ≥ 0 (44)(see (41) ), ie q ≤ v∗0 + s∗0. Here s∗0 = ln

s∗

1

1−e
−s∗

1
(see 39) ), s∗1 solves (29) under A∗

k and heneoinides with τk de�ned by (16); v∗0 is de�ed by (28). Therefore, v∗0 + s∗0 = q∗k.Obviously, system of equations (28,29,39) and
v0 + s0 − q = 0(see (41) ) must be ompatible, ie equation

h(s1) =
βk(s1 + 1)

1 − βk
+ ln

s1

1 − e−s1
− q = 0 (45)must have a positive solution. One an easily hek that h inreases to in�nity with s1,starting from lims1→0 h(s1) = βk

1−βk − q. Hene q > βk

1−βk .In ase k = 1 we put q∗1 = +∞, so that (42) transforms to q > β
1−β

, and the proof of thelatter inequality remains unhanged.Before proving su�ieny, we �rstly prove part (b).(b) Let k > 1;
h

△
= q∗k − βk−1

1 − βk−1
=

βk

1 − βk
(τk + 1) + ln

τk

1 − e−τk
− βk−1

1 − βk−1

= ln
τk

1 − e−τk
− α(τk + 1) − α(τk + 1)γ + τkγ,where α

△
= βk−1

−βk

1−βk , γ
△
= βk−1

1−βk−1 . Using (16), the last expression an be rewritten as
h = 1 − τk

1 − e−τk
+ ln

τk

1 − e−τk
+

(

1 − τk

1 − e−τk

)

γ + τkγ.For k > 1 one an easily hek that γ ≥ α
1−2α

; therefore, sine 1 − e−τk − τke−τk ≥ 0,
h ≥ 1 − τk

1 − e−τk
+ ln

τk

1 − e−τk
+

1 − e−τk − τke−τk

1 − e−τk
· α

1 − 2α

= 1 − τk

1 − e−τk
+ ln

τk

1 − e−τk
+

1 − e−τk − τke−τk

1 − e−τk
· τk − 1 + e−τk

3 − 3e−τk − τk − τke−τk
.

(46)(We have used (16) to express α in terms of τk.)
RR n° 6142



28 Avrahenkov, Ayesta & PiunovskiyDuring the proof of Lemma 2(), we established that τk inreases with α ∈ (0, 1/2),starting from 0 when α = 0. Hene τk ∈ (0, τ), where τ is the single positive solution toequation
(1 − e−τ )(1 +

1

2
(τ + 1)) = τ.(The solvability was established in the Proof of Lemma 2().)Now the righthand side of (46) is non-negative if τk ∈ (0, τ). This statement was auratlyheked numerially; the analytial proof is problemati.The seond inequality, to be veri�ed, is obvious:

q∗k −A∗

k =
βk

1 − βk
(τk + 1) + ln

τk

1 − e−τk
− βk−1(τk + 1)

1 − βk
= ln[1 + α(τk + 1)]− α(τk + 1) < 0.(a) Su�ieny. Suppose inequalities (42) hold. Then for b ∈ [0, A∗

k − q] (unlipped)
k-yles exist aording to Theorem 4, see Fig.13. (Remember that A∗

1 = q∗1 = +∞.) Notethat, in ase k > 1, q < A∗

k due to (b). In this ase, for b = b∗ = A∗

k − q,
y∗(s∗0) = v∗0 + s∗0 − q = q∗k − q ≥ 0(see (44) ) and this partiular yle is really unlipped. In ase k = 1, aording to Lemma5(b), y(s0) > 0 for su�iently large b. Now, if b dereases then the minimal value of y overa yle dereases (Lemma 5(a) ) and, being ontinuous, beomes zero, sine y(s0) < 0 forthe unlipped k-yle orrresponding to b = 0.To alulate the ritial value of b, note that equation (45) has a single positive solution

s1. Now, if we take
b =

s1

1 − e−s1
+

βk(s1 + 1)

1 − βk
− 1 − q =

s1

1 − e−s1
− ln

s1

1 − e−s1
− 1then, aording to (28,29), the orrresponding yle will be ritial. (One an easily see that

b > 0.) It remains to notie that equation (45) is idential with (14).Corollary 5 Let N be de�ned by (11). Then ritial yles of orders k < N annot exist.Proof. Aording to (11), q ≤ βk

1−βk , if n < N . The statement follows from Lemma 6(a).Clipped yles.Proof of Theorem 1. Let S be the single positive solution to equation
(1 + b + S)e−S = 1.Then a ontinuous trajetory (25) starting from (y0 = b, v0 = q−S) touhes the axis y = 0at a single point, at time moment S.

INRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 29(a) In ase S > q − βA it is obvious that starting from any point (y0 = b, v0 ∈ [βA, A)),the trajetory never touhes the axis y = 0. The statements follow now from Corollary 4:the mappings ϕ and ϕ̃ oinide.(b) Suppose that S ≤ q − βA and q − S < V , where V (= V1 or V2) is the minimalstationary point of the mapping ϕ̃ (see Lemma 4 and Fig.14). Then, starting from any point
(y0 = b, v0 ∈ [βA, A)), at most ϕ(ϕ(v0)) is suh that the further trajetory never touhesthe axis y = 0: see Lemmas 3 and 4. To put it di�erently, ϕn(v0) > q − S for n ≥ 2. Therequired statements again follow from Corollary 4. The mappings ϕ and ϕ̃ oinide on thedomain [q − S, A).() Suppose that S ≤ q−βA, q−S ≥ V2, where V2 is the maximal stationary point of themapping ϕ̃ (see Lemma 4 and Fig.14). Then, starting from any point (y0 = b, v0 ∈ [βA, A))
∀n ≥ 2, ϕn(v0) = ϕ(ϕ(v0)) beause ϕ(v0), ϕ(ϕ(v0)) ≤ V2 ≤ q − S. Note that in terms ofTheorem 1, d < β(q + b), V2 = ϕ(ϕ(v0)) is di�erent from (smaller than) V2 shown on Fig.14.(d) Suppose that S ≤ q − βA, ase (b) (Lemma 4) takes plae and V1 ≤ q − S ≤ d (seeFig.14). Then, if v0 ∈ [βA, d], the situation is similar to (): ∀n ≥ 2 ϕn(v0) = ϕ(ϕ(v0)),beause ϕ(v0), ϕ(ϕ(v0)) ≤ V1 ≤ q − S ≤ d.If v0 ∈ (d, A) then the trajetory never touhes axis y = 0 beause ∀n ϕn(v0) = ϕ̃n(v0) >
d ≥ q − S. The statements follow from Corollary 4.(e) Suppose that S ≤ q − βA, ase (b) (Lemma 4) takes plae and d < q − S < V2 (seeFig.14). Then situation is similar to (b). Starting from any point (y0 = b, v0 ∈ [βA, A)), atmost ϕ(ϕ(v0)) is suh that the further trajetory never touhes the axis y = 0, the mappings
ϕ and ϕ̃ oinide on the domain [q−S, A) and the required statements follow from Corollary4. Corollary 1 is now obvious.Corollary 6 If a lipped k-yle exists then an unlipped k-yle exists, too. (See (24).)Proof. As is lear from the proof of Theorem 1, 0 < S ≤ q−βA and ϕ(q−S) = Φk(q−S).To put it di�erently, the domain of Φk is non-empty, so that the orresponding stationarypoint V1 or V2 (Fig.14) does exist and de�nes the unlipped k-yle.Corollary 7 The order of a lipped yle an be N or N + 1 only (see (11)).Proof. Suppose all parameters are �xed, apart from b. For very small values of b, obvi-ously, only a lipped N -yle is realised. Conditions when a lipped (N + 1)-yle exists,are left till the next subseion.Suppose N > 1. When we inrease b, k-yles with k < N appear: see Fig.13. If bis lose to βk

1−βk − q then the k-yle has a very short ontinuous part. From the proof ofLemma 5, we have
lim

b→
βk

1−βk −q

s0 = 0 and lim
b→

βk

1−βk −q

y(s0) =
βk

1 − βk
.
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30 Avrahenkov, Ayesta & Piunovskiy(See (39,41). Therefore, using Lemma 5(a) we onlude that all k-yles remain unlippedindeed. See also Corollary 5.E�ets of the router bu�er b.The goal of this subsetion is to justify all the statements of Setion 4.Case A∗

N+1 < q is trivial: see Fig.13, Lemmas 5,6, Corollary 7 and its proof.Case q ≤ q∗N+1. Aording to Lemma 6, here the (N + 1)-yle appears and beomesritial before it extints at b = A∗

N+1 − q.Consider the ontinuous trajetory (25) staring from (y0 = 0, v0 = q):
{

y(r) = e−r + r − 1;
v(r) = q + r.Clearly, there is 1 − 1 orrespondane between parameters r and b given by equation
e−r + r − 1 = b. (47)The (N + 1)-yle annot be realised if

βN (q + r + 1) < y(r) + q = e−r + r − 1 + q = b + q.Let us study the di�erene
∆(r)

△
= e−r + r − 1 + q − βN (q + r + 1). (48)Sine d∆(r)

dr
= 1−e−r−βN , this di�erene has a minimum at r = − ln(1−βN) (orrespondingto b = C, see (13) ) whih equals

q(1 − βN ) − 2βN − (1 − βN ) ln(1 − βN ) = (1 − βN )(q − D),see (12). Sine the ritial (N + 1)-yle exists, we are sure that q ≤ D and the values band b̄ (20) are well de�ned. These equal the minimal and the maximal values providing
∆(r(b)) = 0. Here and below, r(b) is the positive solution to (47). Note that the lipped
(N + 1)-yle appears when b = b and beomes ritial at b = b0,N+1. The value b̄ does notplay any role beause b̄ ≥ b0,N+1.Case q∗N+1 < q ≤ A∗

N+1. Here the (N +1)-yle annot be ritial (Lemma 6). Aordingto Lemma 5, it also annot be unlipped beause unlipped yle beomes ritial when bdereases. Sometimes (N + 1)-yles are not realised at all. Firstly, the latter happens if
D < q. But even if D ≥ q, it an happen that b > A∗

N+1 − q, so that the (N + 1)-yle doesnot exist in view of Corollary 6.Lemma 7 Suppose q∗N+1 < q ≤ A∗

N+1.(a) For a given value of b, the lipped (N + 1)-yle exists i� ∆(r(b)) ≤ 0 and b ≤
A∗

N+1 − q.(b) ∆(r(A∗

N+1 − q)) > 0.() Suppose that D ≥ q. Then b > A∗

N+1 − q i� C > A∗

N+1 − q; b̄ < A∗

N+1 − q i�
C < A∗

N+1 − q. INRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 31Proof. (a) The neessity is obvious: see Corollary 6 and Fig.13.Suppose ∆(r(b)) ≤ 0 and b ≤ A∗

N+1 − q. For the unlipped (N + 1)-yle, the minimalvalue of y is negative; let us denote the orresponding minimal value of v by v̂. Then,starting from (y0 = 0, v0 = q), the trajetory (25) reahes the level y = b, and, after (N +1)instant redutions of v, reahes point (y = b, v < v̂). After that, the trajetory goes downup to the axis y = 0, and the lipped (N + 1)-yle is well de�ned.(b) Value b = A∗

N+1 − q is the largest bu�er size when the unlipped (N + 1)-yleexists: see Fig.13. The orresponding minimal value ymin is negative and, starting from
(y0 = ymin, v0 = ymin + q) trajetory (25) reahes level y = b at suh value of v that
βNv = b + q. Therefore, starting from (y0 = 0, v0 = q), trajetory (25) reahes level y = bat a smaller value of v, and smaller than (N + 1) redutions of v are needed, meaning that
∆(r(b)) > 0.() Obviously, b ≤ C ≤ b̄. Thus the neessity is trivial. The su�ieny follows from (b)beause A∗

N+1 − q /∈ [b, b̄].Corollary 8 In ase q∗N+1 < q ≤ A∗

N+1, q ≤ D, the value of C annot equal A∗

N+1 − q.The proof follows diretly from statement (b), Lemma 7.Corollary 9 Suppose N is �xed.(a) For all q ∈ (q∗N+1, A
∗

N+1] the value of N remains unhanged.(b) If D ≥ A∗

N+1 then ∀q ∈ (q∗N+1, A
∗

N+1] C > A∗

N+1 − q.() If q∗N+1 < D < A∗

N+1 then either C > A∗

N+1 −D and ∀q ∈ (q∗N+1, D] C > A∗

N+1 − q,or C < A∗

N+1 − D and ∀q ∈ (q∗N+1, D] C < A∗

N+1 − q.(d) If β ∈ (0, 1) varies, equality C = A∗

N+1−D an hold only in the area where D ≤ q∗N+1.Proof. (a) The assertion follows from inequalities
βN

1 − βN
≤ q∗N+1 < A∗

N+1 ≤ βN−1

1 − βN−1
,see Lemma 2(d) and Lemma 6(b). As usual, βN−1

1−βN−1 = +∞ if N = 1.(b) Clearly, if q = A∗

N+1 = min{A∗

N+1, D} then C > 0 = A∗

N+1 − q. If we derease qup to q∗N+1, the values of C and A∗

N+1 remain unhanged and situation C = A∗

N+1 − q isexluded due to Corollary 8.() The proof is similar to (b): take q = D = min{A∗

N+1, D} and redue its value.(d) In ase C = A∗

N+1 − D and D > q∗N+1 we have a ontradition to ().One an show that di�erent situations studied in Lemma 7 and Corollaries 8 and 9 anreally take plae.Theorem 2 follows diretly from Setion 4.Proof of Proposition 1. Aording to de�nition (17), δ = β(1+2β−τ)
1−β2 , where τ solves equa-tion

τ(1 + β)

1 + 2β + βτ
= 1 − e−τ .RR n° 6142



32 Avrahenkov, Ayesta & PiunovskiyThe both funtions on the left and on the right inrease from zero, and τ is smaller than θwhih solves equation θ(1+β)
1+2β+βθ

= 1, ie τ < θ = 2β + 1. Now
τ(1 + β)

1 + 2β + βτ
< 1 − e−(2β+1) =⇒ τ <

(1 + 2β)(1 − e−(2β+1))

1 + βe−(2β+1)and
δ >

β

1 − β2
· (1 + 2β)(β + 1)e−(2β+1)

1 + βe−(2β+1)
→ ∞ as β → 1.Proof of Theorem 3.First we onsider the ase b ∈ [0, b0,1]. In this ase, the yle is lipped or ritial (seeFigure 7). Aording to Condition (b) of Theorem 2, if q > A∗

2 the yle does not havemultiple jumps for any size of the bu�er. Without loss of generality, we assume that thezero time moment orresponds to the time moment just after the jump (Point A). Reallthat we denote the transformed time by s and the original time by t. We denote by SA thetransformed time when the system reahes point A, by SB the transformed time when thesystem reahes point B, and so on. Without loss of generality, we assume that SA = 0. Wealso use the notation: SAB = SB − SA = SB, SBC = SC − SB, and so on.From (25) we have
y(SC + u) = yCD(u) = e−u + (u − 1), for u ∈ [0, SCD],so that

y(SD) = e−SCD + SCD − 1 = b.We note that v(SC) = q. Consequently, v(SD) = q + SCD, v(SE) = q + SCD + 1 and
v(SA) = β(q + SCD + 1). Again, from (25) we have

y(s) = (1 + q + y(SA) − v(SA))e−s + s − 1 + v(SA) − q,and
y(SB) = [y(SA) + 1 + q − v(SA)]e−SAB + [SAB − 1] + v(SA) − q = 0.Thus, we have the following equation for SAB

[b − βSCD + (1 − β)(1 + q)]e−SAB + SAB

+βSCD − (1 − β)(1 + q) = 0.Now, we an alulate the yle duration in the original and transformed times. Denotethese quantities by Tcycle and Scycle, respetively. Note that Scycle = s1 + 1 (see (29) with
k = 1). From equation v(SE) = v(SA) + Scycle we obtain

Scycle = (1 − β)(q + SCD + 1), INRIA



Convergene and Optimal Bu�er Sizing for AIMD Congestion Control 33and, onsequently,
Tcycle =

∫ Tcycle

0

dt =

∫ Scycle

0

(

T +
x(s)

µ

)

ds = TScycle+
m

µ

(

B

m
+

∫ SB

SA

y(s)ds +

∫ SD

SC

y(s)ds

)

.Next, we alulate the average queue size
x̄ =

1

Tcycle

∫ Tcycle

0

x(t)dt =
1

Tcycle

∫ Scycle

0

x(s)

(

T +
x(s)

µ

)

ds

=
1

Tcycle

[

mT

(

∫ SB

SA

y(s)ds +

∫ SD

SC

y(s)ds

)

+
m2

µ

(

∫ SB

SA

y2(s)ds +

∫ SD

SC

y2(s)ds

)

+ B

(

T +
B

µ

)

]

.Now we alulate the average sending rate
λ̄ =

1

Tcycle

∫ Tcycle

0

λ(t)dtUsing (2), we havē
λ =

1

Tcycle

∫ Tcycle

0

w(t)

T + x(t)/µ
dt =

m

Tcycle

∫ Scycle

0

v(s)ds

=
m

Tcycle

∫ Scycle

0

(β(q + 1 + SCD) + s) ds =
m

Tcycle

1

2
(1 − β2)(q + 1 + SCD)2.For the alulation of the average goodput we use the following formula:

ḡ =
1

Tcycle

[

∫ TD

TA

λ(t)dt + µ

(

T +
B

µ

)

]

=
m

Tcycle

[

∫ SD

SA

v(s)ds + q + b

]

.In ase b ∈ (b0,1,∞) the yle is unlipped. Consequently, the alulations of the averagequantities are more straightforward than in the previous ase and are based on the knowledgeof only one parameter Scycle.Proof of Proposition 2.If B → ∞ (equivalently, b → ∞), then s1 → ∞ (see equation (29)). Aording toTheorem 3, we have
Tcycle =

m

µ

[

q(s1 + 1) +

∫ s1

0

y(s)ds + b

]

=
m

µ

[

1 + 2b + 2q − s1 − (1 + b + q − β(s1 + 1)

1 − β
)e−s1 +

s2
1

2
+

β(s2
1 − 1)

1 − β

]

,and, onsequently,
∆ = µ

1+β
2(1−β)(2s1 + 1) − 1 − 2b − 2q + s1 + (1 + b + q − β(s1+1)

1−β
)e−s1 + β

1−β

1 + 2b + 2q − s1 − (1 + b + q − β(s1+1)
1−β

)e−s1 − β
1−β

+ 1+β
2(1−β)s

2
1RR n° 6142
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∼

(2 + 2(1−β)
1+β

)s1

s2
1

=
4

1 + β

1

s1
→ 0+, as s1 → ∞.Proof of Proposition 3. (a) Suppose N is �xed and q = µT

m
hanges, i.e., inreases startingfrom βN

1−βN . Using (14),(15) and omitting for brevity N as the power and the index, weobtain:
dB0

dm
= m

db0

dθ
· dθ

dq
· dq

dm
+ b0

= m

[

1 − e−θ − θe−θ

(1 − e−θ)2
× θ − 1 + e−θ

θ

]

[

1
1−e−θ−θe−θ

θ(1−e−θ)
+ β

1−β

]

[

−µT

m2

]

+
θ

1 − e−θ
− ln

θ

1 − e−θ
− 1.We used the impliit di�erentiation theorem for dθ

dq
. Note that µT

m
= q and express q using(14):

dB0

dm
=

[

θ

1 − e−θ
− ln

θ

1 − e−θ
− 1

]

−
[

(1 − e−θ − θe−θ)(θ − 1 + e−θ)

θ(1 − e−θ)2
×

ln θ
1−e−θ + β(θ+1)

1−β

1−e−θ−θe−θ

θ(1−e−θ)
+ β

1−β

]

.The seond square braket, f( β
1−β

), is a monotonous funtion of β
1−β

.(α) If (θ + 1)1−e−θ
−θe−θ

θ(1−e−θ)
− ln θ

1−e−θ ≥ 0 then f(·) does not derease and hene
dB0

dm
≤ θ

1 − e−θ
− ln

θ

1 − e−θ
− 1 − f(0)

=
θ

1 − e−θ
− ln

θ

1 − e−θ
− 1 −

ln θ
1−e−θ · (θ − 1 + e−θ)

(1 − e−θ)

=
θ

1 − e−θ
− 1 − θ

1 − e−θ
ln

θ

1 − e−θ
= γ − 1 − γ ln γ < 0,beause γ

△
= θ

1−e−θ ∈ (1,∞) for θ > 0 and funtion γ − 1 − γ ln γ has the maximum whihis equal to zero at γ = 1.(β) If
(θ + 1)

1 − e−θ − θe−θ

θ(1 − e−θ)
− ln

θ

1 − e−θ
< 0 (49)then f(·) dereases and hene

dB0

dm
<

θ

1 − e−θ
− ln

θ

1 − e−θ
− 1 − lim

y→∞
f(y) INRIA
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=

θ

1 − e−θ
− ln

θ

1 − e−θ
− 1 − (1 − e−θ − θe−θ)(θ − 1 + e−θ)(θ + 1)

θ(1 − e−θ)2
.Using (49), we have

dB0

dm
<

θ

1 − e−θ
− (θ + 1)(1 − e−θ − θe−θ)

θ(1 − e−θ)
− 1

− (1 − e−θ − θe−θ)(θ − 1 + e−θ)(θ + 1)

θ(1 − e−θ)2

=
3e−θ + θ2e−θ + θe−θ − 2 − e−2θ

(1 − e−θ)2
< 0, if θ > 0.Indeed, onsider funtion g(θ) = 3e−θ + θ2e−θ + θe−θ − 2 − e−2θ. Clearly g(0) = 0;

dg

dθ
= e−θ[θ + 2e−θ − 2 − θ2];

dg

dθ

∣

∣

∣

∣

θ=0

= 0;
d[θ + 2e−θ − 2 − θ2]

dθ
= 1 − 2e−θ − 2θ < 0beause the latter funtion dereases starting from −1 at θ = 0.Note that

dB0

dm
→ 0 − as θ → 0 + . (50)(b) Obviously, without loss of generality we an put N = 1 and prove that B0,N inreasesas β ∈ (0, 1) dereases. Like previously, we omit N as the power and the index. Now againusing the impliit di�erentiation theorem we obtain

dB0

dβ
= m

db0

dθ
· dθ

dβ

= m

[

(1 − e−θ − θe−θ)(θ − 1 + e−θ)

(1 − e−θ)2θ

]

[

− 1+θ
(1−β)2

1−e−θ−θe−θ

θ(1−e−θ) + β
1−β

]

< 0.Proof of Corollary 3. The �rst part follows diretly from Proposition 3, if we notie that Nremains unhanged on intervals m ∈
[

µT (1−βN−1)
βN−1 , µT (1−βN )

βN

) and inreases by 1 at points
mi+1.When m → mN − 0, q approahes βN

1−βN and θN goes to zero (see (15)). Aording to(15), b0,N → 0+, hene B0,N = mb0,N → 0+. Equality (50) implies that dB0,N

dm
→ 0−.
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36 Avrahenkov, Ayesta & PiunovskiySuppose m → 0+, q → ∞, N = 1, θ1 → ∞. Then ln
θ1

1−e−θ1

θ1
→ 0 and q

θ1
→ β

1−βaording to (14). Therefore
B0,1 = mb0,N =

µT

q
θ1

(

b0,1

θ1

)

→ µT (1 − β)

β
.Consider B0,N (mN−1), ie put q = βN−1

1−βN−1 and study equations (14),(15). Let θN be thepositive solution to
ln

θ

1 − e−θ
+

βN

1 − βN
· θ =

βN−1

1 − βN−1
− βN

1 − βN
; (51)then

B0,N (mN−1) =
µT (1 − βN−1)

βN−1

[

θN

1 − e−θN
− ln

θN

1 − e−θN
− 1

]

.Obviously, limN→∞ θN = 0, hene, diretly from (51) we obtain:
lim

N→∞

[

ln θN

1−e−θN

θN

· θN

βN
+

θN

1 − βN

]

=
1

2
lim

N→∞

θN

βN
= lim

N→∞

[

β−1

1 − βN−1
− 1

1 − βN

]

=
1 − β

βand �nally
lim

N→∞

mN−1B0,N (mN−1) = lim
N→∞

[(

θN

1 − e−θN
− ln

θN

1 − e−θN
− 1

)/

θ2
N

]

× lim
N→∞

(

θN

βN

)2

β2(µT )2 lim
N→∞

(1 − βN−1)2 =
1

8

[

2(1 − β)

β

]2

β2(µT )2 =
1

2
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