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Abstract: This paper adresses the generation of test cases for testing the conformance
of a black-box implementation with respect to its specification, in the context of reactive
systems. We aim at extending the principles and algorithms of model-based testing à la
ioco for recursive specifications that can be modeled by Push-Down Systems (PDS). Such
specifications may be more compact than non-recursive ones and are more expressive.

The generated test cases are selected according to a test purpose, a (set of) scenario of
interest that one wants to observe during test execution. The test generation method we
propose in this paper is based on program transformations and a coreachability analysis,
which allows to decide whether and how the test purpose can still be satisfied. However,
despite the possibility to perform an exact analysis, the inability of test cases to inspect
their own stack prevents it from using fully the coreachability information. We discuss this
partial observation problem, its consequences, and how to minimize its impact.
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Génération automatique de test à partir de

spécifications interprocédurales

Résumé : Nous nous intéressons à la génération automatique de cas de tests permettant
de tester la conformité d’une implémentation bôıte noire vis-à-vis de sa spécification, dans
le cadre de systèmes réactifs. Nous étendons les principes et les algorithmes de génération
de tests à la ioco aux spécifications récursives, modélisables par des automates à pile. De
telles spécifications peuvent être plus compactes que des spécifications non récursives et sont
surtout plus expressives.

Les cas de test générés sont sélectionnés à partir d’un objectif de test, c’est-à-dire un
scénario (ou un ensemble de scénarios) que nous souhaitons observer pendant l’exécution du
test. La méthode de génération de tests que nous proposons dans cet article est fondée sur
des transformations de programmes et une analyse de co-accessibilité. Cette dernière permet
de décider, à un point donné de l’exécution du test, si (et comment) l’objectif de test peut
encore être satisfait. Cependant, malgré la possibilité d’avoir une analyse exacte, l’incapacité
des cas de test à connâıtre le contenu de leur propre pile ne permet pas d’utiliser la totalité
de l’information donnée par l’analyse. Nous discutons de ce problème d’observation partielle,
de ses conséquences et nous proposons des moyens de minimiser son impact.

Mots clés : Test à partir de modèles, automates à pile, systèmes réactifs, sélection de tests



Automatic Test Generation from Interprocedural Specifications 3

1 Introduction

We address the generation of test cases in the framework of conformance testing of reactive
systems [1]. In this context, a Test Case (TC ) is a program run in parallel with a black-
box Implementation Under Test (IUT ), that stimulates the IUT by repeatedly sending
inputs and checking that the observed outputs of the IUT are in conformance with a given
specification S. In case the IUT exhibits a conformance error, the execution is immediately
interrupted. Moreover, in addition to checking the conformance of the IUT , the goal of the
test case is also to guide the parallel execution towards the satisfaction of a test purpose,
typically a set of scenarii of interest. The test selection problem consists in finding a strategy
that maximizes the likehood for the test case to realize the test purpose.

This problem has been previously addressed in the case where the specifications, the test
cases and the test purposes are modeled with finite Labelled Transition Systems (LTS) [2,
3]. It was more recently addressed in the case where the same objects are modeled with
Symbolic Transition Systems (STS), which extend LTS with infinite datatypes and can
model non-recursive imperative programs [4]. The aim of this paper is to address the test
selection problem in the case where the specification is modeled as a Push-Down System
(PDS), which extends LTS with a stack over a finite alphabet and can model recursive
programs manipulating finite datatypes, which are more expressive than single procedure
programs. Fig. 1 summarizes the different models.

Contributions. The contribution of this paper is twofold. First we describe a test selection
algorithm that takes as input a recursive specification and a non-recursive test purpose and
that returns a recursive test case. This algorithm is based on program transformations and
(co)reachability analysis of recursive programs. Technical choices are guided by theoretical
properties of the underlying PDS and LTS models, but the generation is defined in term of
programming language concepts. Second, we analyze the partial observation problem, due
to the inability of test cases to inspect their own stack. We compare its consequences on the
generated test cases with the impact of using a non-exact, overapproximated coreachability
analysis as done for test selection based on symbolic STS models [4].

LTS STS

PDS
Recursive
Programs

+variables

approximated analysis

+recursion partial observation
of state

recursive program
with finite-state variables

single procedure program
with infinite-state variables

Fig. 1. Test selection on various models
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recognizing the traces xbnaync + z recognizing the traces xb∗ayc

Fig. 2. Control-flow Graphs of Specification and Test Purpose

2 Introductive Example

We illustrate in this section the concepts we will develop and our testing methodology on a
running example, before formalizing it in the next sections.

Specification. In our testing theory, the IUT is considered as a black box reactive system, and
its observation points are the messages exchanged with its environment. The specification
we consider as an example is the small recursive program of Fig. 4. Its control flow graph
is given on Fig. 2(a). Double circles denote the observation points. Inputs and outputs are
distinguished by the symbols ? and ! (inputs and outputs alphabets are disjoints). The
behavior of this specification program is the following: the main function calls the function
F (), which either emits the output !z and returns, or emits the output !x, calls the function
G(), then receives the input c and returns to its caller. According to its first input, the
function G() has two different behaviors: if the input is ?a, it returns to the caller, whereas
if the input is ?b, the function G() is called again (recursively) and after it returns, the
output !y is emitted.

What is really important is the traces recognized (or generated) by the specification,
which is here Traces(S) = {!z} ∪ {!x · (?b)n·?a · (!y)n · c? | n ≥ 0}. The (non-)conformance
of an IUT w.r.t. a specification S will be only based on Traces(S). Intuitively, an IUT will
be defined as conformant to S if after any execution trace which is a prefix of Traces(S), it
emits only outputs that S can emit as well.

Irisa



Automatic Test Generation from Interprocedural Specifications 5

enum out_t { x,y,z };
enum inp_t { a,b,c };

bool t = false;
void main(){

f();

}

void f()
{

f0: emit(p) when (p == x || p == z){

if (p==z) goto f3;
}

f1: g();
f2: receive(p) when (p == c) {};

f3:
}

void g()
{

g0: receive(p) when (p == a || p == b){
if (p == a) goto g4;

};

g1: t = true;

g2: g();
g3: emit(p) when (p == y) {}

g4:

}

Fig. 4. Specification corresponding to Fig. 2

enum out_t { a,b,c };
enum inp_t { x,y,z };

enum verdict_t { none, fail, pass, inconc };
enum verdict_t verdict = none;

bool t = false;
void main(){

f();

}

void f()
{

f0: receive (p) when true {

if (p != x && p != z)
{ verdict = fail; abort(); }

if (p == z) goto f3;
};

f1: g();
f2: emit(p) when (p == c) {}

[]

receive(p) when true
{ verdict = fail; abort() };

f3:
}

void g()
{

g0: emit(p) when (p == a || p == b){
if (p == a) goto g4;

}
[]
receive(p) when true

{ verdict = fail; abort() };
g1: t = true;

g2: g();
g3: receive(p) when true {

if (p != y){ verdict = fail; abort(); }

}
g4:

}

Fig. 5. Canonical tester associated to the specifi-
cation of Fig. 4

void main(){

emit(x) [] receive(p);
emit(y) [] receive(p);

}

Fig. 3. Non-conformant IUT

For instance, the IUT besides (where [] stands for
the non-deterministic choice operator) is not confor-
mant to S. After the execution trace !x, it may emit
!y, whereas S specifies that no output may be emitted
at this point: one or more ?b and then one ?a should
be received first).

The global variable t has no influence on Traces(S), its usefulness will be explained later
(see Sect. 6).

Canonical Tester. A tester, called canonical tester can be generated from S very straight-
forwardly, according to the (yet intuitive) definition of conformance. The program transfor-
mation consists in mirroring inputs into outputs and vice-versa, and to emit a failure verdict

PI n1835



6 Constant, Jeannet & Jéron

when the transformed program receives an unexpected input at an observation point. Fig. 5
gives the canonical tester Can(S) associated to S. A new type and a global variable verdict
have been introduced for storing the verdict. Can(S) stimulates the IUT by sending to it
input messages, and checks that the outputs of the IUT , which correspond to its own inputs,
are conformant w.r.t. S.

If this canonical tester is run in parallel with the non-conformant program of Fig 3, and if
the conformant program chooses to emit !x and then !y, the tester will perform the execution

m0
τ
−→ f0

?x
−→ f1

τ
−→ g0 and will reach location g0, where it will receive an unexpected ?y

input and will abort.
Notice that not only the (canonical) tester, but also the example IUT accept any input

at an observation point. For the tester, the reason is that it should check any output from
the IUT for conformance. For the IUT , this allows to prevent deadlocks.

The name canonical tester stems from the fact that it can detect any non-conformant
execution of the implementation. It is actually the most general tester, from which any sound
test case can be derived.

Test purpose. For large specifications, the canonical tester is too general. It tests the IUT in
a completely random way. One is often more interested in guiding the execution of the IUT
so as to realize a specific scenario that may reveal an error, and to stop the test execution
successfully when the scenario has been completed without conformance error.

In this context, a test purpose is a (set of) scenario one wants to observe during a
conformant test execution. The test purpose depicted as an automaton on Fig. 2 spec-
ifies that one is interested in detecting conformance errors occuring along the traces in
TracesE(TP ) = xb∗ayc. The symbol ∗ means “all other elements in the alphabet” and the
double circle denotes the final state E. This test purpose indicates that we want to test the
case where the IUT emits !x at control point f0 and where it performs one recursive call of
G from G.

The aim of test selection is to transform the canonical tester so that it is more likely
to produce the execution trace xb∗ayc until completion when executed in parallel with the
IUT . When performing such a selection, we anticipate the possible behaviors of a conformant
IUT. If a conformance error occurs, the tester aborts immediately with a fail verdict. For
instance, the first time the tester enters in function G(), it should first emit a !b, because
a matching ?y should be later received to realize the scenario. Moreover, the second time
it enters (recursively) in function G(), it should emit an !a, because only one ?y message
should be observed before !c.

On the other hand, if an IUT starts its execution by emitting one !z (which is conformant
to S), the scenario cannot be completed. The tester should detect such a case and abort
gracefully with an inconclusive verdict.

Selected test case. Fig. 8 depicts the test case we obtain with the method we will develop in
the paper. Compared to the canonical tester of Fig. 5, we have first inserted at each obser-
vation point a call to the function TP() (after having checked the absence of conformance

Irisa



Automatic Test Generation from Interprocedural Specifications 7

enum pc_t { A,B,C,D,E,S };
enum pc_t pc = A;

void TP(enum msg_t p)
{

if (pc == A && p == x ) pc = B;
elsif (pc == B && p == b) pc = B;
elsif (pc == B && p == a) pc = C;

elsif (pc == C && p == y) pc = D;
elsif (pc == D && p == c ){

pc = E;
verdict = pass;
abort();

}
else pc = S;

}

Fig. 6. Test Purpose corresp. to Fig. 2.(b)

// Type and global variables Declarations
// ...

void main(){
m0: f();
m1:

}

void f()
{

f0: receive (p) when true {
f0r: if (p != x && p != z)

{ verdict = fail; abort(); }

TP(p);

};

f1: g();
f2: emit(p) when (p == c) {
f2e: TP(p)

}
[]

receive(p) when true
f2r: { verdict = fail; abort(); };
f3:

}

void g()
{

g0: emit(p) when (p == a || p == b){

g0e: TP(p);

if (p == a) goto g4;
}

[]
receive(p) when true

g0r: { verdict = fail; abort(); };

g1: t = true;
g2: g();

g3: receive(p) when true {
g3r: if (p != y)

{ verdict = fail; abort(); }
TP(p);

}

g4:
}

Fig. 7. Product

// Type and global variables Declarations
// ...

void main(){
m0: f();
m1:

}

void f()
{

f0: receive (p) when true {
f0r: if (p != x && p != z)

{ verdict = fail; abort(); }

TP(p);
if (p == z)

{ verdict = inconc; abort(); }
};

f1: g();
f2: emit(p) when (p == c) {
f2e: TP(p)

}
[]

receive(p) when true
f2r: { verdict = fail; abort(); };
f3:

}

void g()
{

g0: emit(p) when ((p == a && t == true)
|| (p == b && t == false)){

g0e: TP(p);

if (p == a) goto g4;
}

[]
receive(p) when true

g0r: { verdict = fail; abort(); };

g1: t = true;
g2: g();

g3: receive(p) when true {
g3r: if (p != y)

{ verdict = fail; abort(); }
TP(p);

}

g4:
}

Fig. 8. Test Case after selection

PI n1835



8 Constant, Jeannet & Jéron

error at this point). The function TP() defined on Fig. 6 takes as input the last message
exchanged and implements the automaton of Fig. 2(b). If the final state is reached, it emits
the pass verdict.

There are two other modifications to the canonical tester. At control point f0, when a
?z is received, the inconclusive verdict is emitted. Last, at control point g0, the condition
for emitting a message has been enforced: !a is emitted iff the variable t is true. Indeed, t
allows to distinguish if G() is called for the first time from f1, in which case t is false, or if
it is called recursively from g2, in which case t is true. Hence, the knowledge of the value
of t allows the test case to realize exactly the scenario defined by the test purpose (once ?x
has been received from the IUT ).

The next sections describe the theoretical fundations of this test selection scheme sketched
on the running example. Sect. 3 reminds classical definitions related to LTS and PDS. Sect 4
recalls the testing theory we use and the corresponding test selection algorithm on LTS
models. We define in Sect. 5 a small programming language and define its semantics in term
of PDS. We also describe how specifications, canonical tester and test purposes are defined.
Sect. 6 describes the selection algorithm and discuss the issues related to partial observation,
and Sect. 7 draws some conclusions and perspectives.

3 Labelled Transition Systems and Push-Down Systems

A Labelled Transition Systems (LTS) is defined by a tuple M = (Q, Q0, Λ,→) where Q

is a set of states, Q0 is the set of initial states, Λ = Λv ∪ {τ} is an alphabet of visible
(Λv) and internal ({τ}) actions and →⊆ Q × Λ × Q is a set of labelled transitions. The

notation p
a
→ q stands for (p, a, q) ∈→, and p

a
→ for ∃q : p

a
→ q. An execution is a sequence

q0
a0→ q1

a1→ . . . qn+1 with q0 ∈ Q0. Traces(M) ⊆ Λ∗
v denotes the projection of the set of

executions of M onto visible actions. For a subset X ⊆ Q of states, TracesX(M) denotes
the projection of the set of executions of M ending in a state q′ ∈ X onto visible actions. It
is also named the set of traces accepted by X . The set of prefixes (resp. strict prefixes) of
a set of traces Y is denoted by pref ≤(Y ) (resp. pref <(Y )). M is deterministic if Q0 has a

single element q0, if p
α
→ q ∧ p

α
→ q′ =⇒ q = q′ and if p

τ
→ q =⇒ ¬(∃α ∈ Λv : p

α
→). M is

complete for A ⊆ Λ, if ∀a ∈ A, ∀p ∈ Q, p
a
→.

A labelled Push-Down System (PDS) is defined by a tuple P = (G, Γ, Λ, c0, ↪→) where G is a
finite set of locations, Γ is a finite stack alphabet, c0 ∈ G×Γ ∗ is the inital configuration, Λ =
Λv∪{τ} is a finite set of visible (Λv) and internal ({τ}) actions, and ↪→⊆ (G×Γ )×Λ×(G×Γ ∗)
is a finite set of labelled transitions. Such a labelled PDS P generates an infinite LTS
M = (QM , QM

0 , Λ,→M ) where QM = G × Γ ∗, QM
0 = {c0}, and →is defined by the rule:

(g, γ)
α
↪→ (g, γ′) ∧ ω ∈ Γ ∗ =⇒ (g, ω · γ)

α
→ (g, ω · γ′)

The notions of deterministic and complete PDS are defined in term of LTS.

Irisa



Automatic Test Generation from Interprocedural Specifications 9

4 Testing Theory

The testing theory we consider is based on the notions of specification, implementation,
and conformance relation between them [2]: the specification is a deterministic LTS S =
(QS , QS

0 , Λ,→S), and the Implementation Under Test (IUT ) is assumed to be an LTS IUT =
(QIUT , QIUT

0 , Λ,→IUT ) which is unknown except for its alphabet, which is assumed to be
the same as that of the specification. Moreover, it is assumed that the IUT is input-complete,
which reflects the hypothesis that the IUT cannot refuse an input from its environment.

In this context, a test case for the specification S is a deterministic LTS TC = (QTC , QTC
0 ,

Λ,→TC ) which is able to interact with an implementation and to emit verdicts:

– its alphabet is the mirror of that of S (ΛTC
? = ΛS

! and ΛTC
! = ΛS

? )
– it is input-complete (outputs of IUT are not refused) except in verdict states;
– it is equipped with 3 disjoint subsets of sink, verdict states Pass, Fail, Inconc ⊆ QTC .

Intuitively, Fail means rejection, Pass that some wanted behavior has been realized (this
will be clarified later), and Inconc that a wanted behavior cannot be realized any more.

The conformance relation defines which implementations are considered correct w.r.t.
the specification. We will consider the following conformance relation:

Definition 1 (Conformance relation). Let S = (QS , QS
0 , Λ,→S) and IUT = (QIUT ,

QIUT
0 , Λ,→IUT ) be two LTS with same alphabet. A trace σ of IUT conforms to S, denoted

by σ conf S, iff
pref ≤(σ) ∩ [Traces(S)·Λ! \ Traces(S)] = ∅

IUT conforms to S, denoted by IUT conf S, iff all its traces are conformant: Traces(IUT )∩
[Traces(S)·Λ! \ Traces(S)] = ∅.

Intuitively, IUT conf S if after each trace of S, IUT may emit only outputs that S can emit
as well, while its inputs are unconstrained. Except for the notion quiescence (absence of
outputs), conf corresponds to the ioco relation of [2].

The set of traces Traces(S)·Λ!\Traces(S) is the set of minimal (with respect to the prefix
ordering) non-conformant traces, which is characterized by a test case called the canonical
tester, which is obtained from the specification S by inversion of inputs and outputs, followed
by an input-completion, where each unspecified input leads to Fail.

Definition 2 (Canonical Tester). Let S = (QS , QS
0 , Λ,→S) be the deterministic LTS of

the specification. The canonical tester of S for conf is the deterministic LTS Can(S) =
(QS ∪ Fail, QS

0 , ΛCan,→Can) such that

– Fail = {qFail}, with qFail 6∈ QS a new state;
– its alphabet is the mirror of that of S (ΛCan

? = ΛS
! and ΛCan

! = ΛS
? )

– →Can is defined by the rules:

q, q′ ∈ QS q
α
−→S q′

q
α
−→Can q′

q∈QS α ∈ ΛS
! = ΛCan

? ¬(q
α
−→S)

q
α
−→Can qFail

PI n1835



10 Constant, Jeannet & Jéron

We have the following equalities:

Traces(Can(S)) = pref ≤(Traces(S)·Λ!)
TracesFail(Can(S)) = Traces(S)·Λ! \ Traces(S)

Can(S) is already a test case. However, it is typically too large and is not focused on any
part of the system. It is more interesting in practice to test what happens in the course of a
given scenario (or set thereof), and if no error has been detected, to end the test successfully
when the scenario is completed.

Definition 3 (Test Purpose). A test purpose TP for a specification S is a deterministic
LTS TP = (QTP , QTP

0 , Λ,→TP ) equipped with a subset Accept ⊆ QTP of accepting sink
states. TP is complete except in Accept states. TP defines a set ATraces(S,TP ) of accepted
traces of S which induces a set RTraces(S,TP) of refused traces (traces of S that cannot be
extended to accepted traces):

ATraces(S,TP) =TracesQS×Accept(S×TP )=Traces(S) ∩TracesAccept(TP) (1)

RTraces(S,TP) =Traces(S) \ pref ≤(ATraces(S,TP)) (2)

The completeness assumption allows not to constrain S in the product S × TP (unless the
execution trace is accepted). Observe that both accepted and refused traces are conformant.

The test case should now not only detect conformance errors, but also try to satisfy
the test purpose. For this, it has to take into account output choices of the specification
(observable non-determinism) and to detect incorrect outputs of the IUT w.r.t. the test
purpose. The following definition formalizes the meaning of the verdicts of a test case.

Definition 4 (Soundness of test cases). The verdicts of a test case TC are sound w.r.t.
S and TP whenever the following properties are satisfied:

(1) TracesFail(TC ) = Traces(TC ) ∩ (Traces(Can(S))): Fail is emitted iff TC observes an
unspecified output after a trace of S;

(2) TracesPass(TC ) = Traces(TC )∩ATraces(S,TP): Pass is emitted iff TC observes a trace
of S accepted by TP;

(3) Traces Inconc(TC ) ⊆ RTraces(S,TP ): Inconc may be emitted only if the trace observed by
TC belongs to S (it is conformant) but is refused by TP. The test execution can thus be
interrupted, as Pass cannot be emitted any more.

In addition, the test case is optimal if:

(4) Traces Inconc(TC ) = Traces(TC ) ∩ RTraces(S,TP) ∩ pref <(ATraces(S,TP))·Λ!: Inconc

is emitted as soon as possible;
(5) Traces(TC ) ∩ Λ∗ ·Λ? ⊆ pref ≤(ATraces(S,TP )): TC emits only outputs (inputs of S)

which maintain the current trace in the accepted traces.

The Fail and Pass verdicts are uniquely defined, so that they are emitted appropriately and
as soon as possible, whereas the Inconc verdict is not uniquely defined. We have adopted this
definition because checking whether a trace is refused is not always possible, either because
it is undecidable, for instance with infinite-state symbolic model [4], or because of partial
observation issues as discussed in Sect. 6. Last, we refer to [4] for details about the conditions
(4) and (5) defining optimal test cases.

Irisa



Automatic Test Generation from Interprocedural Specifications 11

Test selection for LTS. We briefly recall how to generate an optimal test case from a specifi-
cation S and a test purpose TP given as finite LTS [3]. One first builds the canonical tester
Can(S) using Def. 2. One then builds the product P = Can(S) × TP combining the infor-
mation about conformance given by Can(S) and the information about the wanted scenario
given by TP . One defines the set Pass of verdict states as Pass = QS × AcceptTP . P as a
test case satisfies conditions (1)–(2) of Def.4. Adding the Inconc verdict is done by observing
that

pref ≤(ATraces(S,TP)) = pref ≤(TracesPass(P )) = Tracescoreach(Pass)(P )

where coreach(Pass) = {q ∈ QP | ∃q′ ∈ Pass : q →∗ q′} denotes the set of states that may
reach a state in Pass. Recalling that RTraces(S,TP ) = Traces(S) \ pref ≤(ATraces(S,TP)),
a valid test case TC is obtained from P by adding a new state Inconc and by modifying →P

as follows:

q
α
−→P q′ q′ ∈ coreach(Pass)

q
α
−→TC q′

q
α
−→P q′ α ∈ Λ

Can(S)
? q′ 6∈ coreach(Pass)

q
α
−→TC Inconc

The first rule keeps only transitions maintaining the execution in coreach(Pass), in order
to stay in pref ≤(ATraces(S,TP )). In particular, it selects the appropriate outputs w.r.t.
TP that should be sent to the IUT . As TC should remain input-complete, the second rule
redirects the input transitions not selected by the first rule to the Inconc verdict, which is
thus emitted as soon as the execution leaves the prefixes of accepted traces by a conformant
input. The resulting test case TC satisfies all the conditions of Def 4.

5 Modeling Recursive Specifications and Test Purposes

The previous section recalled our framework for model-based testing, based on the low-
level semantics model of LTS. We already extended these principles and designed sound
algorithms for infinite-state symbolic transition systems in [4]. Our aim here is to do the same
for recursive specifications which can be compiled into (input/output) pushdown automata,
PDS. Such specifications manipulate finite data but may have an infinite control due to the
recursion, hence they are more expressive than finite LTS. In terms of traces, which is a
relevant notion for the conformance relation, they generate context-free languages instead
of regular languages. Moreover, even if there are cases where the recursion is bounded and
the specification may be flattened into a LTS (by inlining), such a process may result in a
huge LTS.

A small programming language. The syntax and semantics of the small language we used
in the example of Sect. 2 is inspired by Bebop [5], an input language of the Moped tool,
which is a model-checker for linear-time temporal logic on pushdown systems [6].

Bebop uses a classical imperative language syntax. We assume for the sake of simplicity
that control structures have been transformed into test and branch intructions, and that pa-
rameter passing and returns for procedures are emulated by using dedicated global variables.
This results in the syntax given in Fig. 9.

PI n1835



12 Constant, Jeannet & Jéron

Expressions expr
Atomic Instructions atom ::= var = expr | if (expr ) goto label
Interproc. Instructions callret ::= proc() | return

Communications com ::= emit(p) when expr {block}
| receive(p) when expr {block}
| com [] com

Instructions instr ::= atom | callret | com

Sequences block ::= ε | instr ; block

Fig. 9. Language Syntax

Control point k ∈ K

Global environment g ∈ GEnv = GVar → Val
Local environment l ∈ LEnv = LVar → Val
Configuration (g, σ) ∈ C = GEnv × (K × LEnv )+

Fig. 10. Language Semantic domains

The features added to Bebop are the communication instructions, and the non deter-
ministic choice operator between them. Emission and reception instructions use a special
global variable p which contains the message, and which may be used only in the condition
and in the block associated to these instructions. We assume that emission and reception are
not nested. The operator [] is the non-deterministic choice operator. It may be used only for
communication instructions. The reason is that while we allow non-determinism, it should
remain observable, so that to any trace of the program corresponds an unique execution.

Its semantics as a Push-Down System (PDS). We assume that the special variable p takes
its values in the alphabet Λ. The semantics of this language is defined using the domains
defined on Fig. 10. It is given as a labelled PDS P = (G, Γ, c0, Λ, ↪→) where G = GEnv ,
Γ = K × LEnv , c0 = (g0, (k0, l0)) is the initial configuration, and ↪→ is defined by the
following inference rules, using the control flow graph associated to the program. We just
sketch the standard inference rules and we refer to [6] for more details, as we focus more
precisely on the semantics of the emission and reception instructions.

– An atomic instruction generates a rule of the form

k
atom
−−−→ k′

(g, (k, l))
τ
↪→ (g′, (k′, l′))

with a condition on (g, l) in the case of a test and branch instruction.
– A procedure call generates a rule

k
proc()
−−−−→ k′

(g, (k, l))
τ

↪→ (g, (k′, l) · (sproc , l
′
0))
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where sproc is the start point of the caller. Such a transition means that a new activation
record is pushed onto the stack, with an initial local environment l′0, which reflects the
assumption that the variables are uninitialized. A procedure return generates a rule

k
proc()
−−−−→ k′ eproc

return
−−−→ . . .

(g, (k′, l′) · (eproc, l))
τ
↪→ (g, (k′, l′))

where the activation record is popped and the control goes back to the caller.

– An emission instruction generates a rule

k
emit(p) when expr {k′:block}
−−−−−−−−−−−−−−−−−−→ k′′ ∀v 6= p : g′(v) = g(v)

(g, (k, l))
p

↪→ (g′, (k′, l)) if JexprK(g′, l) = true

(g, (k, l))
τ
↪→ (g′, (k′′, l)) if Jexpr K(g′, l) = false

One first forgets the previous value of p when introducing g′, in order to make it uninitial-
ized, as its real scope is the condition and the block associated to the emission. Then,
if the current environment (g, l) satisfies the condition, p is emitted and the control
passes to the beginning of the block k′. Otherwise, the control passes to k′′. Notice that
an non-deterministic choice is performed here: the instruction may emit any message p

which satisfies the condition.

The semantics of the reception is identical to the emission. Emission and reception need
to be distinguished only w.r.t. the conformance relation.

All instructions generate internal transitions labelled by τ , except emission and reception
instructions. The observation points of a program are defined as the control points at the
beginning of communication instructions. They are the only control points from which a
message may be exchanged. Such observation points may be separated by (sequences of)
ordinary control points linked by internal τ -transitions. Notice that we do not use the term
“observation point” in the sense given to it in the testing community, when refering to the
testing architecture.

Interprocedural specification and its canonical tester. An interprocedural specification S (c.f.
Fig. 4) is a program defined with the language of Fig. 9, which is deterministic, in the sense
that the allowed non-determinism should be observable, so that to a trace corresponds a
unique possible execution ending in an observation point. A choice can still exist between two
emissions and/or receptions, but we cannot have a choice between two internal instructions
(generating τ -transitions).

This deterministic assumption allows to build easily the canonical tester of S, which is an
executable, hence deterministic observer of Traces(S) ·ΛS

? \Traces(S). The canonical tester
Can(S) is obtained from S using the following program transformation at each observation
point:
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14 Constant, Jeannet & Jéron

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

emit(p) when expr
e
{

block e

}
[]

receive(p) when expr
r
{block r}

⇒

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

receive(p) when true {
if(not expr

e
){verdict = fail ; abort() }

block e

}
[]

emit(p) when expr
r
{block r}

This operation mimics the corresponding operation defined for LTS in Sect. 4. Here, it could
be done on the PDS generated by the program, but we prefer to proceed directly by program
transformations.

Test purpose. When performing test generations from LTS, the test purpose is an LTS that
is taken into account by computing the product Can(S) × TP (c.f. Sect. 4). Now, Can(S)
is a PDS. It is known that the product of two PDS is not a PDS, hence we cannot specify
test purposes using PDS if we do not want to manipulate more expressive computational
models. However, as the product of a PDS with an LTS is still a PDS, we can consider test
purposes defined by finite LTS. We can compute the synchronous product of Can(S) with
TP to add the Pass verdict to the canonical tester.

However, our goal is to proceed by program transformations. This excludes to work
directly on the underlying LTS and PDS models. The solution consists:

– in implementing the LTS TP (which should satisfy Def. 3) by a procedure TP(p) that
takes as input the last exchanged message and implements the LTS, c.f. Figs. 2(b) and
6;

– and in instrumenting Can(S) by inserting calls to TP at observation points:
˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

receive(p) when true {
if(not expr

r
)

{ verdict = fail; abort() }
block r

}
[]

emit(p) when expr
e
{block e}

⇒

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

receive(p) when true{
if(not expr

r
)

{ verdict = fail; abort() }
TP(p); block r

}
[]

emit(p) when expr
e
{TP(p); blocke}

The call to TP is performed after having checked the conformance, because accepted traces are
conformant. The procedure TP is in charge of emitting the Pass verdict. This transformed
canonical tester will be denoted by P , which satisfies conditions (1)–(2) of Def. 4. Fig. 7
depicts the obtained program for our running example.

6 Test Selection on Recursive Canonical Tester

Test selection is based on the same principle as for LTS, c.f. Sect. 4. In particular we will ex-
ploit the identity pref ≤(ATraces(S,TP)) = Tracescoreach(Pass)(P ) to recognize (conformant)
traces that may be accepted in the future by the test purpose.
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Location Coreachable states
from 〈(−, pass, E), ω〉

m0 〈(ff,−, A), ω.m0〉
〈(tt,−, A), ω.m0〉

m1 〈(−, pass, E), ω.m1〉
f0 〈(ff,−, A), ω.f0〉

〈(tt,−, A), ω.f0〉
f0r 〈(ff,−, A, x), ω.f0r〉

〈(tt,−, A, x), ω.f0r〉
f1 〈(ff,−, B), ω.f1〉

〈(tt,−, B), ω.f1〉
f2 〈(ff,−, D), ω.f2〉

〈(tt,−, D), ω.f2〉
f2e 〈(ff,−, D, c), ω.f2e〉

〈(tt,−, D, c), ω.f2e〉
f2r ⊥
f3 〈(−, pass, E), ω.f3〉
g0 〈(ff,−, B), ω.(f1g0 + f1g2g0〉

〈(tt,−, B), ω.(f1g0 + f1g2g0〉
g0e 〈(ff,−, B, a), ω.f1g2g0e〉

〈(ff,−, B, b), ω.f1g0e〉
〈(tt,−, B, a), ω.f1g2g0e〉
〈(tt,−, B, b), ω.f1g0e〉

g0r ⊥
g1 〈(ff,−, B), ω.f1g1〉

〈(tt,−, B), ω.f1g1〉
g2 〈(ff,−, B), ω.f1g2〉

〈(tt,−, B), ω.f1g2〉
g3 〈(ff,−, C), ω.f1g3〉

〈(tt,−, C), ω.f1g3〉
g3r 〈(ff,−, C, y), ω.f1g3r〉

〈(tt,−, C, y), ω.f1g3r〉
g4 〈(ff,−, C), ω.f1g2g4〉

〈(ff,−, D), ω.f1g4〉
〈(tt,−, C), ω.f1g2g4〉
〈(tt,−, D), ω.f1g4〉

(a) Coreachable states

Location Reachable states
from 〈(ff, none, A), m0〉

f0r 〈(ff, none, A, x), m1f0r〉
〈(ff, none, A, z), m1f0r〉

f2e 〈(ff, none, C, c), m1f2e〉
〈(tt, none, D, c), m1f2e〉
〈(tt, none, S, c), m1f2e〉

f2r 〈(ff, none, C,−), m1f2r〉
〈(tt, none, D,−), m1f2r〉
〈(tt, none, S,−), m1f2r〉

g0e 〈(ff, none, B, a), m1f2g0e〉
〈(ff, none, B, b), m1f2g0e〉

〈(tt, none, B, a), m1f2g
+

3
g0e〉

〈(tt, none, B, b), m1f2g
+

3
g0e〉

g0r 〈(ff, none, B,−), m1f2g0r〉

〈(tt, none, B,−), m1f2g
+

3
g0r〉

g3r 〈(tt, none, C, y), m1f2g
+

3r
〉

〈(tt, none, D, y), m1f2g
+

3r
〉

〈(tt, none, S, y), m1f2g
+

3r
〉

(b) Reachable states in obser-
vation points

Location Intersection reachable
and coreachable states

f0r 〈(ff, none, A, x, ), m1f0r〉
f2e 〈(ff, none, C, c), m1f2e〉
f2r ⊥
g0e 〈(ff, none, B, a), m1f2g3g0e〉

〈(tt, none, B, b), m1f2g0e〉
g0r ⊥
g3r 〈(tt, none, C, y), m1f2g3r〉

(c) Intersection between
reachable and coreachable
states

Fig. 11. Analysis of the program of Fig. 7. The configurations are composed of the values of global
variables (t, verdict , pc, p) and the stack (− means any value, and ω = K∗).As p is “active” only at
observation points, its value is not precised elsewhere.

Coreachability Analysis. In the PDS generated by the semantics of our programming lan-
guage, a configuration is a pair (g, σ) ∈ C of a global environment and a call-stack. The set
of configurations corresponding to the Pass verdict is Pass = {(g, σ) | g(verdict) = Pass)}.
The wanted coreachable set is coreach = {c ∈ C | ∃c′ ∈ Pass : c →∗ c′}.

We will exploit nice theoretical properties of PDS for computing coreach . These properties
justify the choice of PDS as the semantic model of our language, and the restriction to finite-
state variables. Given a PDS P = (G, Γ, c0, Λ, ↪→), a set of configurations X ∈ ℘(G×Γ ∗) =
G → ℘(Γ ∗) is regular if it associates to each global state a regular language. The first result
is that the coreachability (resp. reachability) set of a PDS is regular if the final (resp. initial)
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16 Constant, Jeannet & Jéron

set of configurations is regular [7]. The second result is that in this case, the coreachability
(resp. reachability) set is computable with polynomial complexity [8, 9]. The Moped tool
implements efficient symbolic algorithms to compute these sets, using a model of symbolic
PDS where the relation transition ↪→ is represented with BDDs [6].

As the set Pass is regular, we can provide to Moped the PDS generated by our recursive
program and the set Pass, and we obtain the regular set of coreachable configurations.
Coming back to our running example, the table of Fig. 11(a) indicates, for every location,
the configuration from which we can reach the final configuration 〈(−, pass, E), ω〉. As there
are no local variables in the example, the stacks contain only control points.

The problem of partial observation. The selection consists in adding tests in the program
P , using coreachability information, for selecting the outputs to emit, and for detecting the
inputs which makes P leaves the set of accepted traces. However, in an usual imperative
language like ours, a program can only observe the top of the stack, whereas deciding whether
the current configuration is coreachable or not may require the inspection of the full stack.

Let us define the observation function

α : C → GEnv × K × LEnv
(g, ω · (k, l)) 7→ (g, k, l)

extended to sets, and γ = α−1 the corresponding inverse function. (α, γ) forms a Galois
connection. At some location k of the program, given a set of configurations X , and X(c) =
{(c ∈ X | c = (g, ω · (k, l))} its projection on location k, the program can only decide if
the current valuation of variables (g, l) is included in α(X(c)). This means that in term of
configurations, one can only test inclusionship in γ ◦α(X) ⊇ X . In particular one may be in
a case with

γ ◦ α(coreach(k)) ∩ γ ◦ α(coreach(k)) 6= ∅ (3)

where one cannot decide, using only the observable part of the configuration, whether the
configuration is coreachable or not. For instance, in Fig. 11(a), in location g0e, α(coreach(g0e)) =
(p ∈ {a, b} ∧ pc = B) and α(coreach(g0e)) = tt.

Selection rules. Because of the partial obervation phenomenon, we have to be conservative
in the selection. Let cond co(k)(g, l) be the logical characterization of α(coreach(k)). We
transform the program P as follows:
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˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

receive(p) when true{
if (not expr

r
)

{ verdict = fail; abort() }
kr :

TP(p); block r

}
[]

emit(p) when expr
e

{ke : TP(p); blocke}

⇒

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

receive(p) when true{
if (not expr

r
)

{ verdict = fail; abort() }
kr : if not (cond co(kr))

{ verdict = inconc; abort() }
TP(p); block r

}
[]

emit(p) when expr
e
andcond co(ke)

{ke : TP(p); block r}

For receptions, at location kr, after having checked the conformance, ¬cond co(k) is a sufficient

condition to leave the prefixes of accepted traces (γ(¬cond co(k)) ⊆ coreach(k)). So if it is
satisfied we emit Inconc. For emissions, cond co(k) is a necessary condition to stay in prefixes
of accepted traces (γ(cond co(k)) ⊇ coreach(k)).

The obtained program is a sound test case, satisfying conditions (1)–(3) of Def. 4. There
is a strong similarity between this test selection algorithm and the test selection algorithm for
symbolic infinite-state transition systems defined in [4]. Here partial observation may prevent
us to perform an optimal selection, but if we distinguish perfectly coreachable configurations,
we have, despite the partial observation, an optimal selection. Indeed, in this case, the
obtained program satisfies conditions (4)–(5) of Def. 4. In [4], it is the impossibility to
compute the exact coreachability set, and the need to resort to an overapproximation.

Improving selection with reachability information. One can improve the selection algorithm
using reachability information. Let reach denote the set of reachable configurations of the
program P . At a point k, we can exploit the knowledge that the current configuration is
anyway included in reach(k), and testing the inclusion in γ◦α(reach(k)∩coreach(k)) instead
of γ ◦ α(coreach(k)).1 The problematic case identified by Eqn (3) becomes

γ ◦ α(reach(k) ∩ coreach(k)) ∩ γ ◦ α(reach(k) ∩ coreach(k)) 6= ∅ (4)

It is clear that Eqn. (4) implies Eqn. (3) but that the converse if false.

Coming back to our example, Fig. 11(b) gives the reachability set of P projected on
observation points, and Fig. 11(c) the intersection reach(k) ∩ coreach(k) for these points. If
condco(k)(g, l) denotes now a formula characterizing α(reach(k) ∩ coreach(k)), we now have
condco(g0a) = (pc = B) ∧ (t ∧ p = b ∨ ¬t ∧ p = a) instead of just (pc = B). One can check
that Eqn. (4) is not true for k = g0e, thus the selection is optimal at this point. Fig. 8
depicts the test case obtained by this improved selection algorithm. It should be noted that
the presence of the variable t helps to perform an accurate selection at location g0, because
it allows to distinguish whether G() has been called from f1 or from g2. If we remove this
variable, which does not change the semantics of S w.r.t. the conformance relation, one could
not select optimally the output a or b to send to the IUT.

1 As reachability and coreachability sets are regular, so is their intersection.
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7 Concluding Remarks

We have not yet implemented the selection algorithm of Sect. 6. We need to extend the
Moped tool for this purpose. Indeed, Moped acts as a model-checker returning a Boolean
answer, possibly with a counter-example. For our application, we need to get the sets of con-
figurations computed by Moped, to intersect reachability and coreachability sets, to project
this intersection on the visible part, and to convert the result in terms of a programming
language expression. This requires extensions of Moped.

It is interesting to note the similarity of the two combinations: partial observation and ex-
act analysis w.r.t. full observation and approximated analysis. In case of partial observation,
the observation function α we introduced acts exactly as an abstraction (approximation)
function. This means that one could apply our method to general recursive programs, on
which the analysis would be in general approximated. The non-optimality of the selection
would then be a consequence of the combination of partial observation and inexact analysis.
One gets the diagram of Fig. 1.

Alternative methods. Our selection method described in Sect. 6 is based on (i) an exact
analysis computing full configurations (instead of just visible parts of configurations), and
(ii) on pure program transformations. These two choices could be revised. Concerning (i),
one could use a less precise, classical interprocedural analysis method, which could still be
exact for the observable part of the stack (for instance using the Bebop tool [5]). However
it would lead to a less precise selection scheme. In particular, intersecting the coreachabe
set with reachable set would filter out less values. Concerning (ii), one could instrument
the program so as to get more knowledge about the invisible part of the configuration. For
instance, one could add a data-structure maintaining a stack of procedure return points, and
using it when testing if one is still in a coreachable configuration. Although the resulting test
case could not be any more transformed into a PDS, the analysis would still be performed
on the same intermediate program P as in Sect. 6. Test case execution would be however
slower, as testing for coreachability would involve more complex datatypes.
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