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ABSTRACT
We introduce in this paper a class of constraints for de-
scribing how an XML document can evolve, namely XML
update constraints. For these constraints, we study the im-
plication problem, giving algorithms and complexity results
for constraints of varying expressive power. Besides clas-
sical constraint implication, we also consider an instance-
based approach. More precisely, we study implication with
respect to a current tree instance, resulting from a series
of unknown updates. The main motivation of our work is
reasoning about data integrity under update restrictions in
contexts where owners may lose control over their data, such
as in publishing or exchange.

Categories and Subject Descriptors
H.2.3 [Database management]: Languages; H.2.0 [Data-
base management]: General—Security, integrity, and pro-
tection

General Terms
Algorithms, Languages, Theory

Keywords
Semi-structured data, XML, update constraints, implica-
tion, data integrity.

1. INTRODUCTION
Restricting the ways in which data is modified and trans-

formed is often a necessity and the basis for reasoning about
data validity. When data is under centralized control, arbi-
trarily complex update constraints can be actively enforced
inside the boundaries of the data owner, who can moni-
tor changes. But in distributed, loose environments, for
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instance when data is published or exchanged, it becomes
much harder to control updates. The enforcement of up-
date restrictions can be passively achieved via cryptographic
techniques, and by consequence only simpler update restric-
tions can be imposed. Dealing with simpler update limi-
tations has, however, an advantage, since it allows users to
do more reasoning about data properties, beyond “no illegal
update occurred”, understanding what could have happened
and how.

To illustrate, consider an XML document that is exchan-
ged between three parties, Source, Broker and User (Fig-
ure 1). Assume Broker is allowed to modify data he receives
from Source, but only in a controlled manner. For instance,
advertisements may be introduced but only in certain well-
defined areas. Also, some information may be filtered out,
but again in well-defined areas. For instance, Broker may
be allowed to remove a private phone number but not to
replace it by another one. In particular, the rules of the
game should be precise enough so that (a) the Source can
choose the right restrictions on how data can be modified
and can specify them in a clear way, and (b) based on the
given update restrictions and the data to which they apply,
the User has the means to decide on the validity of the data
that interests her.

This paper introduces a constraint model that allows data
owners to specify restrictions on allowed updates for XML
trees. Starting from this model, we focus on inference tech-
niques that help data owners choose the right restrictions
and help users reason about the integrity properties of data.
In short, the constraints we consider allow stating that a set
of selected XML nodes representing the result to some path
query should always grow, or shrink, or should not change
at all. Then we study two inference problems, namely, the
constraint implication problem and the instance-based impli-
cation problem.

The constraint implication problem is defined as follows.
Given a set of update constraint C and a constraint c, is it
true that each pair (I, J) of consecutive data instances (i.e.,
a tree instance before and after updates) satisfying C also
satisfies c?

In the instance-based implication problem, J is known.

Source Broker User
I, C J, C

Figure 1: Exchange with update constraints (C).



The problem becomes: is it true that for each I such that
(I, J) satisfies C, (I, J) also satisfies c. Thus this may be
viewed as a question over the past. For instance, know-
ing that C is enforced, can we derive from the instance we
received that no new product has been inserted. A sym-
metrical problem (not studied here) is obtained by giving
I instead of J and questioning the future. Instance-based
implication may be viewed as a foray into the more general
problem of temporal queries under update constraints.

As our constraint language closely captures what cryp-
tographic techniques can support, we believe that such a
simple model, that talks only about increasing or decreas-
ing sets of XML nodes, is best suited to express update
restrictions on data with limited owner control and no log
or history of updates. Hence, it has not only theoretical but
also practical value, as it can be effectively enforced in non-
centralized environments. However, the focus of this paper
is not on the actual enforcement, but on reasoning about
integrity properties of data under update constraints. We
only remind here that although classic signing techniques
prevent any kind of modification on signed data, more flexi-
ble approaches have been provided lately [26, 15, 1, 8, 21], in
which some restricted modifications may still occur, without
causing the invalidation of the data. For example, by digital
signatures, one can impose that a certain collection of items
can only increase (or decrease).

To the best of our knowledge, this work is the first to con-
sider update constraints for tree structured data. Perhaps
the work that is closest in spirit is the one of Miklau and
Suciu [23] which, for relational data, models integrity guar-
antees of digital signature schemes as embedded dependen-
cies and considers query related issues that can be solved by
the relational chase [2]. As we will see, both for constraint
implication and instance-based implication, new issues are
raised when considering trees. While integrity constraints
for XML data have received a lot of attention lately [14, 18,
11], we study here update constraints, defined in terms of
XPath expressions, which talk about how a document can
be changed. Nevertheless, our work gives also new insight
into XML integrity constraints in general.

The paper is organized as follows. In Section 2 we de-
fine the constraint language and the implication problems
studied in the paper. In Section 3 the two implication prob-
lems are related to previous works on query containment and
constraints for XML data. Constraint implication is stud-
ied in Section 4 and instance-based implication in Section 5.
We briefly discuss a model extension, namely relative con-
straints, in Section 6. In Section 7 we discuss other related
works and we conclude. For space reasons, we only give the
intuition of proofs.

2. XML AND UPDATE CONSTRAINTS
Given two infinite domains, the domain of node identifiers

(N ) and the domain of labels (L), we define XML trees as
follows.

Definition 2.1. An (unordered) data tree is an expres-
sion (T, λ), where T = (N, E) is a finite unordered tree,
with set of nodes N ⊂ N , directed edges E ⊂ N × N , and
λ : N → L is a labeling function over nodes.

By the above definition, we intend to capture XML data
which, besides labels (L), have unique node Ids (N ). Hence

a node is a pair in N ×L and from here on, when we speak
of an individual node, we mean such a pair1.

In the specification of update constraints, we rely on XPath
queries from the fragment XP{/, [], //, ∗}, generally referred
to as unary tree pattern queries. More precisely, the XPath
expressions used in this paper are generated by the following
grammar:

path ::= /step | //step | path path

step ::= label pred

pred ::= ǫ | [path] | pred pred

label ::= L | ∗

By / we denote child axis navigation. By // we denote
descendant axis navigation. L denotes labels and ∗ is the
wildcard label. The path inside brackets is called a predi-
cate. Queries have one distinguished output node. For exam-
ple, the b node is the output node of the query /a//b[/c].
Notice that the root of the document is treated differently
from other nodes, as predicates cannot be defined on the
root. The reason for this is that we are mainly interested in
queries that test properties of individual nodes, and not of
entire documents.

The semantics of such queries is defined in the standard
way (see, for instance, [29, 9]). For example, the previous
query returns the set of b nodes having both a c child and
an a ancestor which is child of the document root. For some
node n in a data tree I and path query q, q(n, I) denotes
the result of q evaluated on the subtree of I rooted at n. We
write q(I) for q(root, I). We stress that the result of a query
is set of pairs (Id, label). The evaluation of XP{/, [], //, ∗}
queries can be done in polynomial time [19].

By concrete path, we denote a path that has the output
node labeled by a concrete label (not wildcard). In order to
simplify the presentation, we will only discuss in this paper
concrete XPath queries. However, all the results can be
extended and reformulated to deal also with non-concrete
paths.

Throughout this paper, we use of the notions of query
containment (denoted by ⊆) and equivalence (denoted by
≡), both defined in a standard way. We also consider the
intersection of queries (denoted by ∩). Informally, we say
that q ≡ q1 ∩ · · · ∩ qk if for all instances I , we have q(I) ≡
q1(I) ∩ · · · ∩ qk(I).

As in [28], an update on an XML tree is defined as a
sequence of node insertions deletions, moving and modifi-
cations of labels. In this paper, we will simply abstract an
update as a pair of data trees (I, J), where I (resp. J) is
the before (resp. after) update tree.

We next define update constraints.

Definition 2.2 (Syntax). An XML update constraint
is an expression (q, σ), where q is an XPath query called the
range and σ is the constraint type, i.e., one of no-insert (in
short ↓) or no-remove (in short ↑) .

Definition 2.3 (Semantics). We say that a pair of
trees (I, J) is valid with respect to some constraint c = (q, σ)
(denoted (I, J) ⊢ c) if we have q(I) ⊆ q(J) (resp. q(J) ⊆
q(I)) when σ is no-remove (resp. no-insert).

1Other aspects of the XML data model [30] such as data
values (text content) or attribute values can be considered
as being part of the node label.
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Figure 2: Pair of instances (I, J).

A pair (I, J) is valid for a set of constraints if it is valid
for each of them. Note that we can express immutability
restrictions by simply pairing no-remove and no-insert con-
ditions. As a shorthand, we will use (q,⊤) to denote such a
pair of no-remove and no-insert constraints.

Example 2.1. For example, consider the (I,J) instances
of Figure 2 and the following constraints:

• c1 = (/patient[/visit], ↓)

• c2 = (/patient[/clinicalTrial],⊤)

• c3 = (/patient/visit, ↑),

The first constraint states that the set of patients having
a visit can only shrink. The second one says that the set
of patients having a clinicalTrial cannot change at all,
while the third one says that the overall set of visits can
only grow. The pair of instances (I, J) in Figure 2 is valid
for c1 and c2 but not for c3. This is because the visit node
n7 has been deleted.

We will briefly consider one extension to this constraints,
namely relative update constraints, in Section 6. These are
constraints that specify update restrictions relative to some
scope, e.g., a particular constraint should hold for each pati-

ent in the medical document that is sent. Other possible
extensions and directions for future work are discussed in
Section 7.

Finally, note that in our model constraints are always con-
sistent and, in particular, a pair (I, I) of identical instances
is valid for any set of update constraints. This would no
longer be the case if we consider arbitrary inclusions such as
(q1(I) ⊆ q2(J)), that would actually “force” modifications
to happen.

2.1 Implication problems
We are now ready to formally define the problems we

study. First, we consider the implication problem for up-
date constraints:

Definition 2.4 (General implication). Given a set
of update constraints C and an update constraint c, we say
that C implies c (denoted C |= c) if for any pair of tree
instances I, J, we have (I, J) ⊢ C ⇒ (I, J) ⊢ c.

In Example 2.1, the constraint

c = (/patient[/visit][/clinicalTrial] , ↓)

is implied by {c1, c2}. We briefly explain why: in order
to violate c, by adding in some instance I a node in the
result of /patient[/visit][/clinicalTrial], one should
either (a) add some new patient node, along with visit

and clinicalTrial children (but this would violate c1 and
c2), or (b) just add some visit and / or clinicalTrial

children to a node that did not qualify for at least one of
these predicates before (but this would again violate at least
one of c1 or c2).

We also consider implication when the current tree in-
stance (J), to which previous updates lead, is available. The
corresponding implication problem is called instance-based
implication.

Definition 2.5 (Instance-Based implication). Giv-
en a set of update constraints C, an instance J and a con-
straint c, we say that C implies c for J (denoted C |=J c) if
for any tree instance I, we have (I, J) ⊢ C ⇒ (I, J) ⊢ c.

Considering the J instance and constraints of Example 2.1,
the constraint

c = (/patient[/clinicalTrial]/visit, ↑)

is implied by {c3} and J . Let us consider what could have
happened on an initial I instance in order to violate c:
one could have completely removed from I a visit of some
patient with clinicalTrial (this would violate c3); and
one could have moved a visit of a patient with clinical-

Trial below another patient without clinicalTrial (this is
not possible because there is no such patient in the cur-
rent instance, J). Observe that c would not be implied by c3

alone, i.e., for any pairs of instances.
The two implication problems capture different scenarios

for data integrity. General implication is relevant in situa-
tions of data exchange or publishing when a publisher wants
to decide a priori, regardless of the published data, what up-
date restrictions should be imposed. Instance-based impli-
cation is relevant when someone obtains a document with
update constraints and wants to understand the integrity
properties of this data. It is easy to observe that the gen-
eral constraint implication implies the instance-based one.

These problems abstract more practical ones such as de-
ciding if some update can be safely performed or understand-
ing the integrity properties of a query result. Instance-based
implication can be viewed as verifying properties of the past,
i.e., questioning the past evolution. Similarly, we could con-
sider inference when the I instance is given, i.e., question-
ing the future evolution. The problem becomes somewhat
analogous to the one we consider here, in some sense the
symmetric in the future of the problem we consider about
the past. Besides instance-based implication, other validity
questions may be relevant when we consider data. For ex-
ample, we could simply ask if a certain node could have been
added to the result of a query, or could have been removed.
Solutions to the above implication problem represent a first
step towards inferring such richer, fine-grained assertions. A
detail study of such aspects is left for future work.

On sequences of instances Observe that the current de-
finition of validity and implication considers only pairs of
instances and can only capture contexts of exchange among



three parties (such as the one of Figure 1). However, in
many other scenarios, it is also worth considering sequences
of instances.

Let us consider a sequence (I0, . . . , Ik). We call it pairwise
valid if each of its pairs (Ii, Ij), i < j, are valid according to
Definition 2.3. When the last instance is fixed, we can give a
more data-oriented definition of validity, one that only takes
into account this last instance: we say (I0, . . . , Ik) is valid
for Ik if the pair (I0, Ik) is valid. Then, implication (in both
flavors) for sequences would be defined based on the cor-
responding notions of validity. All the results presented in
this paper, referring to pairs of instances, remain valid also
for sequences. This becomes immediate from the definitions
of pairwise validity and validity for Ik. So, without any loss
of generality, in the rest of the paper we will only refer to
pairs of instances.

Notation We consider during our analysis various sub-frag-
ments of XP{/, [], //, ∗}. They will be represented by the
navigational primitives that are allowed. For instance, by
XP{/, //} we denote paths without predicates and wild-
cards. To denote implication in restricted contexts, we use
the notation |=X

σ , where X is the XPath fragment we as-

sume and σ ∈ {↑, ↓}. For example, |=XP{/,[]}
↑ denotes the

constraint implication problem for no-remove constraints ex-
pressed in XP{/, []}. Similarly, we use |=X

J,σ for instance-
base implication in restricted contexts.

3. RELATED PROBLEMS
To further clarify the implication problems outlined in the

previous section, we first consider some initial results relat-
ing them to previous work on topics such as the equivalence
of path queries, regular XML keys and XML Integrity Con-
straints (XICs).

Query equivalence Since we rely on XPath queries to ex-
press update constraints, it comes as no surprise that XPath
query containment and equivalence [27] are tightly related
to our implication problems. Regarding the relationship be-
tween query equivalence and implication, we can prove the
following:

Theorem 3.1. Given two constraints c1 = (q1, σ) and
c2 = (q2, σ), expressed in XP{/, [], //, ∗}, we have c1 |= c2

(and symmetrically c2 |= c1) iff q1 ≡ q2.

Proof: [Sketch] Without loss of generality we assume
that σ is ↑; the opposite type is analogous by symmetry.
From the definition of implication, one directions is obvious
(c1 |= c2 ⇐ q1 ≡ q2). Now suppose c1 |= c2. Suppose
also that q2 * q1, then there exists some tree I and node n
such that n ∈ q2(I) and n /∈ q1(I). We can easily obtain a
contradiction to c1 |= c2 by the pair instances (I, I [n → n′]),
where by I [n → n′] we denote the instance obtained by
replacing n with a new node n′ with the same label.

Regarding the other containment, if we assume q1 * q2,
then there exists some tree T ′ and node n′ such that n′ ∈
q1(T

′) and n′ /∈ q2(T
′). We can then obtain a contradiction

to c1 |= c2 by a transformation as the one illustrated in
Figure 3. In this figure, T is any tree with some node n
in q2(T ). By putting together T and T ′ (i.e., merging their
root nodes), the presence of n and n′ in range queries is not
affected in any way. In the transformation I → J we simply
interchange n and n′. Since n and n′ have the same label, by

T

n n’

T’ T

n’ n

T’

n ∈∈∈∈ q1,

n ∈∈∈∈ q2

I J

n’ ∈∈∈∈ q1,

n’ ∉∉∉∉ q2

n’ ∈∈∈∈ q1,

n’ ∈∈∈∈ q2

n ∈∈∈∈ q1,

n ∉∉∉∉ q2

Figure 3: Counterexample pair of instances (I, J).

this transformation, we remove the node n from the result
of q2, without removing anything from the result of q1.

A similar result can be proven for instance-based implica-
tion. So, in general, the implication problem, in both flavors,
is at least as hard as query equivalence and containment2.

To illustrate further the relationship of constraint implica-
tion with query containment and equivalence, let us consider
a restricted setting in which all constraints have the same
type (say ↑). As a sufficient approach for testing implica-
tion, we can state the following proposition, which follows
from the definition of implication.

Proposition 3.1. A constraint (q, ↑) is implied by a a set
of ↑ constraints C if there exist some constraints c1, ..., ck in
C, with their respective range queries q1, . . . , qk, s.t. q ≡
q1 ∩ ... ∩ qk.

We will see further that, in some restricted cases, this con-
dition of equivalence is also necessary (but only in restricted
cases).

Regular XML key constraints Previous works addressed
the implication problem for inclusion dependencies on semi-
structured data [11, 4, 18] and XML keys/foreign keys [7,
17], taking into account also schema information (such as
DTDs). In particular, regular XML keys [7] have the form
β.τ [X] → β.τ , for β being a regular expression over schema
types and wildcard, τ being a schema type and X being a set
of node attributes3. The interpretation is that the tuple of X
attributes represents a key for the path β, i.e., they uniquely
determine nodes which are found on the path β. Similarly, a
regular foreign key has the form β1.τ1[X] ⊆ β2.τ2[Y ], for X
and Y being sequences of attributes of the same cardinality.
Such constraints are said to be unary if they only refer to
one attribute.

Given a set of key and foreign key regular constraints and
a Document Type Definition (DTD) ([30]), the consistency
problem (defined in [7]) is asking whether there exists an
XML document that conforms both to the DTD and the
regular key constraints. (The exact definitions can be found
in [17, 7].)

Although this constraint formalism is generally not com-
parable to our XPath-based formalism, regular key con-
straints can be used to express some of our update con-
straints. More precisely, they can express constraints de-
scribed by only linear paths (i.e., no use of predicates). We

2Query equivalence and containment were shown to be
coNP-hard in [22] (see also [27]) for XP{/, [], //, ∗}; the
proof of this lower bound uses only concrete paths.
3Attributes can be seen as nodes that are uniquely identified
by their label for each parent node.



can see node identifiers as being the only node attribute and
pairs (I, J) as being the two main branches of a document.
We need an unary key constraint to enforce uniqueness for
node identifiers and one unary foreign key constraint for
each update constraint. In fact, we show in Section 4 how
constraint implication can be reduced to consistency in the
presence of DTDs and unary regular constraints, even for
queries with predicates.

XML Integrity Constraints (XICs) This is probably
the richest formalism that has been proposed for express-
ing integrity constraints for XML data in terms of XPath
expressions [14]. An XIC is defined as follows:

∀ xi, . . . , xn A(x1, . . . , xn) →

∃ y1, . . . , ∃ ym B(x1, . . . , xn, y1, . . . , ym)

where A, B are conjunctions of atoms u = v or u p v, with
p being a path step (such as /label, //label or /@attribute)
evaluated at u which returns v.

While the implication problem for XICs has not been
fully explored yet, implication under some limitations and
query containment in the presence of such constraints have
been considered in [14]. In general, implication of XICs was
shown to be undecidable. It becomes decidable for a tighter
class, namely bounded XICs, which are XICs for which us-
age of // and attributes are not allowed under existential
quantifiers, and the technique used is a classical inference
technique, the chase [2].

First, our update constraints can be fully expressed by
XICs, even in the instance-based setting. For that, it suffices
to see a pair (I, J) of instances as a virtual document divided
into two main branches, I and J. We just have to use an Id
attribute, with no two nodes under the same main branch
(I or J ) having the same Id value.

Unfortunately, the XICs needed to capture update con-
straints are not bounded because of both // axis and the Id
attribute (it is existentially quantified). Indeed, we can ex-
hibit very simple examples of constraint implication where
the chase technique fails to terminate. So our contribution
is also to show decidability and give complexity bounds for
constraint implication in a family of unbounded XICs.

4. CONSTRAINT IMPLICATION
In this section we study constraint implication. Instance-

based implication is the topic of the next section. We first
give some intuition on how constraints of opposite types
may interact (Section 4.1). Then, in Section 4.2, we study
the complexity of the constraint implication problem. We
first show that constraint implication is decidable, but with
high complexity (NEXPTIME upper bound), although the
tightness of this bound remains open. We then study com-
plexity when restricting the expressivity of constraints. More
precisely, there are two directions in which one can restrict
constraints: (a) restrictions on the XPath fragment used,
and (b) restrictions on the update types (for instance, only
↓ or only ↑), and we will consider both. The results of this
section are summarized in Table 1.

4.1 Interacting types
As we will see, the interaction between no-insert and no-

remove constraints is surprising. For each such constraint
type σ (↓ or ↑), and each set C of constraints, let Cσ denote

the constraints in C of type σ. A property that may seem
rather intuitive is the following:

[Same-type property] For a constraint c of type σ and any
set of constraints C, we have C |= c iff Cσ |= c.

It turns out that this is not true in general, as can be
witnessed in the following example.

Example 4.1. The following constraints:

• (c1) : (//a//c, ↑)

• (c2) : (//b//c, ↑)

• (c3) : (//a//b//c, ↓)

• (c4) : (//a//b//a//c, ↑)

• (c5) : (//b//a//b//c, ↑)

imply c = (//b//a//c, ↑), while the no-remove constraints
alone do not. For space reasons, the detailed explanation of
this example is omitted.

So, when looking at the implication of constraints we need
to take into account both update types. A restricted case
where we can indeed limit to one type only is when we dis-
allow the // axis. We can prove the following.

Theorem 4.1. For any constraint c of type σ and any set
of constraints C, all expressed in XP{/, [], ∗}, we have C |= c
iff Cσ |= c.

The intuition behind the proof of this result is that we can
exhibit a pair of instances that witnesses non-implication
using some tree transformations.

4.2 Complexity of constraint implication
We first show that constraint implication is decidable in

NEXPTIME. A coNP lower bound follows immediately
from the fact that constraint implication is at least as hard
as query equivalence (Theorem 3.1).

Theorem 4.2. |=XP{/,[],//,∗} is in NEXPTIME and co-
NP-hard.

Proof: [Sketch] We solve the constraint implication prob-
lem by reducing it to the consistency problem for unary regu-
lar constraints and DTDs (described in Section 3). The main
difficulty is to take into account predicates, which are not
handled by such constraints. The crux is to transform nor-
mal labeled trees into annotated trees, where the label of a
node describes precisely the predicates that can be matched
below that node. (The predicates to be considered are only
those occurring in constraints.)

In this way, instead of evaluating tree patterns with pred-
icates on the normal tree, one can evaluate linear paths on
the annotated tree and obtain the same result (modulo the
modified labels). To avoid that annotations “lie” about the
patterns that can be matched at a node, we control the cor-
respondence between a node’s annotations and its content
by a specialized DTD (an extension of DTDs that decouples
node labels and types; see, for instance, [25]). Regarding its
general structure, this DTD describes trees having 3 main
branches, {I , J , witness}, where the witness gives one node
that is removed or inserted in order to violate c.



XP{/, [], ∗} XP{/, [], //} XP{/, //, ∗} XP{/, [], //, ∗}

only one update type in PTIME in coNP in PTIME(1) coNP-complete

arbitrary update types in PTIME
in NEXPTIME in NP(1) in NEXPTIME

coNP-hard coNP-hard coNP-hard

(1): if the number of constraints and the maximal number of wildcards between consecutive //’s

are bounded by constants.

Table 1: Upper and lower bounds for the implication of constraints.

We reduce constraint implication to an instance of the
XML consistency problem in which: (a) the DTD has expo-
nential size, (b) the number of unary regular constraints is
polynomial in the number of unary constraints, and (c) the
size of unary regular constraints is exponential but each con-
straint can still be described by a deterministic finite-state
automaton of only exponential size.

The consistency problem was shown to be solvable in 2-
NEXPTIME [5]. More precisely, the complexity is (1) non-
deterministic doubly-exponential in the number of regular
constraints, and (2) only non-deterministic polynomial in
the size of the product of their deterministic finite-state au-
tomata, and in the size of the DTD.

While this would lead to an 2-NEXPTIME upper-bound,
the problem remains in NEXPTIME due to the limited type
of inclusions we must handle (i.e., only between two main
branches, I and J).

Given the high complexity of the above decision proce-
dure, we consider in the following various restrictions on the
expressivity of constraints, tracing a fairly tight borderline
between tractable and intractable cases.

XPath fragment restrictions We start by restricting the
XPath language. First, when predicates are not used, the
general upper bound can be refined to NP, under two re-
strictions:

Theorem 4.3. |=XP{/,//,∗} is in NP if the number of
constraints and the maximal number of wildcards between
two consecutive //’s are bounded by constants.

Proof: [Sketch] We use the same reduction from the
XML consistency problem under unary regular constraints,
which is simpler in the absence of predicates. As before, the
DTD describes trees having the structure {I , J , witness},
where the witness contains one node that is removed or in-
serted in order to violate c. Now, our update constraints
can be modeled as a deterministic automata of only polyno-
mial size4. Again, the upper bound benefits from the limited
type of inclusions we consider (i.e., only between I and J),
instead of arbitrary ones.

Next, moving from an XPath fragment without predicates
to one without // axis or wildcard, we can prove that finding
an equivalence with some intersection of ranges is not only
a sufficient condition (by Theorem 3.1) but also a necessary
one. This will translate into a PTIME decision algorithm

4The deterministic finite-state automaton that describes a
linear path has exponential size only in the maximal num-
ber of wildcard nodes between two consecutive // edges
(see [20]).

for XP{/, [], ∗}. We remind that we already know that, for
this fragment, we can safely limit to only one constraint
type, ↓ or ↑ (by Theorem 4.1).

Theorem 4.4. Given a set of constraints C all with up-
date type σ and a constraint c = (q, σ), all expressed either
in XP{/, [], ∗} or XP{/, [], //} we have C |= c iff there ex-
ist constraints c1, ..., ck ∈ C with respective ranges q1, . . . , qk,
s.t. q ≡ q1 ∩ ... ∩ qk.

Proof: [Sketch] We can assume w.l.o.g. no-remove con-
straints; the opposite type is analogous by symmetry. One
direction (sufficiency) was already discussed (Proposition 3.1).
The other direction is proven by induction on the number
of no-remove constraints. (We already proved the statement
for one no-remove constraint in Theorem 3.1.)

Once we know that equivalence is also a necessary condi-
tion, a naive decision procedure is to just look for a combi-
nation of range queries having their intersection equivalent
to the to-be-implied range. We can avoid such an expensive
search by taking all the range queries qi such that q ⊆ qi

(testable in polynomial time [22]), and then test if q ≡ ∩iqi.
While the fragment XP{/, [], ∗} is closed under intersection
and the intersection of queries can be computed in linear
time, it remains open if the same can done for the frag-
ment XP{/, [], //}. It can be easily checked that the latter
fragment is not closed under intersection.

From Theorems 4.1 and 4.4 we obtain that:

Theorem 4.5. |=XP{/,[],∗} is in PTIME.

Finally, regarding lower-bounds for the discussed XPath
fragments, we can show that implication remains coNP-
hard when predicates or wildcard are combined with de-
scendant axis.

Theorem 4.6. |=XP{/,[],//} and |=XP{/,//,∗} are coNP-
hard.

We reduce from the unsatisfiability of 3SAT formulas.

One type restrictions We next consider restricting the
type of constraints, more precisely assuming that all con-
straints have one same type. Observe that the problems
|=↓ and |=↑ are equivalent by symmetry, so in general only
one of them will be discussed (we denote this by the generic
notation |=σ). We first show that under the one-type re-
striction, constraint implication becomes solvable in coNP
time.

Theorem 4.7. |=
XP{/,[],//,∗}
σ is in coNP.



Proof: [Sketch] We show that if there exists a pair (I, J)
that is a contradiction for implication, we can find another
one, (I ′, J ′), of polynomial size in C and c with the same
property (we call this the small instance property). The size
of (I ′, J ′) will depend on that of c and C, and in particular
on the maximal star-length of ranges5. We first apply a
number of pruning steps on J , while maintaining the witness
property. After obtaining a J ′ instance of polynomial size
in size of c and the maximal star-length from ranges, we
apply similar pruning steps to the I instance. The pruning
steps are complex and for space reasons not presented here.
In conclusion, we can guess in polynomial time a pair of
instances that witnesses non-implication.

We next show that if we now restrict the XPath fragment,
by disallowing predicates, constraint implication becomes
solvable in PTIME. We show the following:

Theorem 4.8. |=XP{/,//,∗}
σ is in PTIME if the number

of constraints and the maximal number of wildcards between
consecutive //’s are bounded by constants.

Proof: [Sketch] The proof is based on finite state au-
tomata techniques. First, if we assume that implication does
not hold and a counterexample exists, it is immediate that
we can limit to looking for pairs of trees contradicting C |= c
that are made only of linear paths (i.e., nodes have at most
one child). Then, for any constraint c, the range can be
modeled as a deterministic automaton of polynomial size
(denoted Ac). Hence, the complement of a range can also
be modeled by a deterministic automaton of polynomial size
(denoted A¬c). We then look at products of such automata,
and there are polynomially many products to be considered
if the number of update constraints is considered fixed.

5. INSTANCE-BASED IMPLICATION
We study in this section instance-based implication. Given

a set of constraints and a current tree instance, we want
to check if other constraints are implied. Unless specified
otherwise, when we mention complexity, we mean combined
complexity, i.e., in the size of c, C and J . The results of this
section are summarized in Table 2.

First, similar to constraint implication, we can show that
instance-based implication is at least as hard as query con-
tainment and equivalence. So when all navigational prim-
itives are used, even with only one update type, instance-
based implication is coNP-hard. Next, we show that this
lower bound is tight, by showing that we can guess a coun-
terexample pair of instances in polynomial time.

Theorem 5.1. |=XP{/,[],//,∗}
J is coNP-complete.

Proof: [Sketch] We show that we have a small instance
property; more precisely, if there exists an instance I such
that the pair (I, J) is a contradiction for implication, we can
find an instance I ′ of polynomial size in |J | and |C| with the
same property. We apply a number of pruning steps on I ,
making sure to preserve at each step the witness property of
the pair. The size of the resulting I ′ will depend in particular
on the maximal star-length of ranges.

5The star-length of a path denotes the maximal length of
a chain of wildcards occurring in the path (this notion was
introduced by [22]).

Next, we show that, even for classes where the implica-
tion problem is tractable, instance-based implication may
become intractable.

We show that when no-remove and no-insert constraints
are used together, the problem becomes coNP-hard for frag-
ments on which general implication was in PTIME. (We
note that some of the hardness results of fragments with
wildcard are obtained without making use of this primitive.
For brevity of presentation, the cases with and without wild-
card are grouped together in Table 2.)

Theorem 5.2. |=XP{/,[]}
J and |=XP{/,//}

J are coNP-hard.

The proof is by reduction from the unsatisfiability of 3SAT
formulas. Intuitively, the hardness comes from the fact that
we can affect c (without affecting the constraints of C) by
permuting data from J , and the moves to consider are expo-
nentially many. Hence we have an exponential search space
in which we need to find a “previous” instance I such that
(I, J) ⊢ C but (I, J) 0 c.

In order to trace the tractability boundary, we state with-
out proof that for the most restricted fragment, XP{/},
instance-based implication is in PTIME.

Since one cannot obtain tractability by imposing reasonable
XPath restrictions, we next consider restricting the update
types. More precisely, we consider instance-based implica-
tion when all constraints (both of C and c) have the same
constraint type. We begin with no-insert constraints, look-
ing first at the fragment XP{/, [], ∗}.

Theorem 5.3. |=XP{/,[],∗}
J, ↓ is in PTIME.

Proof: [Sketch] Let C = {(qi, ↓)} and c = (q, ↓). We
will construct in PTIME an instance F (J) such that C 2J c
iff (F (J), J) contradicts C � c. This instance will contain
all the certain facts that can be obtained from data and
constraints. We build F (J) as follows. Initially, F (J) is
just root. Then, for each constraint (qi, ↓) and each node
n ∈ qi(J), we add to F (J) a tree having the structure of the
range qi. This tree will have the actual n as the distinguished
node and nodes with fresh identifiers for the other query
nodes. We put a fresh label (z) for wildcard nodes.

We then take the trees obtained at the previous step, iden-
tify nodes with the same Id, and merge respectively their
ancestors. We use the following policy for the node iden-
tifiers: when two merged nodes have both fresh identifiers,
the merged node gets one of them arbitrarily. When one
of them has an original label (i.e., a label appearing in C),
the merged node gets this label. If one of the nodes has
an original Id (i.e. one from J) the merged node gets this
Id. It should be noted that no conflicts may arise in the
above merging process, namely it cannot be the case that
we need to merge two nodes that both have original iden-
tifiers, merged nodes will not have different original labels,
and no paths of different structures will need to be merged.

Once F (J) is obtained, we rely on the following claim:
C 2J c iff q(J) contains some node that does not belong
to q(F (J)). For space reasons, the proof of the claim is
omitted.

The same upper bound can be obtained for XP{/, //, ∗}
under restrictions similar to those of Theorem 4.8:

Theorem 5.4. |=XP{/,//,∗}
J, ↓ is in PTIME, if the number

of constraints and the maximal number of wildcards between
consecutive //’s are bounded by constants.



XP{/} XP{/, [], ∗} XP{/, //, ∗} XP{/, [], //, ∗}

only update type ↓ in PTIME in PTIME in PTIME(1) coNP-complete

only update type ↑ in PTIME
in PTIME(2) in PTIME(2) in PTIME(2)

coNP-hard coNP-hard coNP-hard

arbitrary update types in PTIME coNP-complete coNP-complete coNP-complete

(1): if the number of constraints and the maximal number of wildcards between consecutive //’s

are bounded by constants.

(2): if the size of c is bounded by a constant.

Table 2: Upper and lower bounds for the instance-based implication of constraints.

The proof is almost identical to that for general implica-
tion in this fragment (Theorem 4.8).

We now consider the opposite update type, no-remove.
We show that, under no fragment restrictions, we obtain a
tractable solution in the size of J and C, though exponential
in that of c.

Theorem 5.5. |=XP{/,[],//,∗}
J, ↑ can be decided in time poly-

nomial in the size of J and C, exponential in that of c.

Proof: [Sketch] Let c = (q, ↑). We show that we can
test implication while limiting to I instances that have the
“shape” of q. (The construction is similar to the one used
in the proof of Theorem 4.7.)

Given an instance I , query q such that q(I) is not empty,
and a node n ∈ q(I), we say a node n′ ∈ I is redundant for
n and q if n ∈ q(I ′), where I ′ is the tree obtained from I by
removing the subtree rooted at n′.

We say that an instance I is a possible embedding of q
if it satisfies the following conditions (stated informally):
(1) there is a homomorphism from q to I that preserves
the parent-child (for / axis) and ancestor-descendant (for //
axis) relationships among nodes, the labels of query nodes
that are not wildcards, and the root node, (2) for some n ∈
q(I), there are no redundant nodes for n and q, (3) the nodes
of I that are matched (in the evaluation of q yielding n) only
to query nodes labeled by wildcards have a fresh label z, and
(4) all the paths in I that are matched in this evaluation to
a // in the query are sequences of (m + 1) nodes labeled z,
for m being the maximal star-length of ranges.

The proof is based of the following observation:

C 2J c iff there is a previous tree instance I such that

• (I, J) ⊢ C (i.e. all the range sets are subsets of the
ones in J),

• I is a possible embedding of q in which we assign to
nodes that are not labeled z either Ids from J or fresh
Ids,

• and q(I) * q(J).

We can enumerate all the possible embeddings by tak-
ing the tree pattern representation of q and (1) assigning
to wildcard nodes either a label occurring in data or con-
straints, or the special z label, (2) merging some nodes hav-
ing the same label, and (3) deciding on how the remaining

ones are ordered (i.e., choosing the child/parent and ances-
tor/descendant relationships that are not already given by
q and don’t contradict q).

The number of nodes that are not labeled z is at most
|q|. The number of possible embedding depends only on q
(it does not depend on maximal star-length), and is at most
exponential.

From the above observation we can derive a naive enu-
meration algorithm for testing if C |=J c. The number of Id

assignments is bounded by (|J |+1)|q|, so polynomial in |J |,
although exponential in |q|.

For the same setting, i.e., only no-remove constraints, we
can also prove coNP hardness even for the sub-fragments
XP{/, []} and XP{/, //, ∗}.

Theorem 5.6. |=
XP{/,[]}
J, ↑ |=

XP{/,//,∗}
J, ↑ are coNP-hard.

The proof uses a construction similar to that of Theo-
rem 5.2. Details are omitted.

6. RELATIVE CONSTRAINTS
We briefly consider in this section relative constraints. For

instance, while we imposed in Example 2.1 that the overall
set of visits can only increase, we cannot require that the
visits of each individual patient element can only increase
as well. This form of update restriction can be expressed
by introducing a scope over which constraints are specified.
More precisely, we would express the above restriction on
visits by the relative constraint:

(/patient, /visit, ↑)

As already noted in previous works on XML integrity con-
straints, such relative constraints are particulary suited for
hierarchically structured data. For instance, keys that are
relative to a node type were introduced in [17].

A possible model extension to relative update constraints
could be the following:

Definition 6.1 (Syntax). A relative XML update con-
straint is an expression of the form (qs, qr, σ), where qs, qr

are queries called the scope and the range , and σ is the con-
straint kind, i.e., one of no-insert (in short ↓) or no-remove
(in short ↑).

Definition 6.2 (Semantics). We say a pair of trees
(I, J) is valid with respect to some relative constraint c =
(qs, qr, σ) (denoted by (I, J) ⊢ c) if for all x in qs(I)∩ qs(J)



we have qr(x, I) ⊆ qr(x, J) (resp. qr(x, J) ⊆ qr(x, I)) when
σ is no-remove (resp. no-insert).

We next briefly discuss what changes or may change when
we have relative constraints. First of all, we can easily ex-
hibit examples (see Example 6.1 below) showing that the
same-type property of Section 4.1 is no longer true even for
XP{/, []} (it was proven true for the fragment XP{/, [], ∗}
in Theorem 4.1).

Example 6.1. Given the constraints C:

• c1 = (/patient, ↓)

• c2 = (/patient, /visit, ↓)

• c3 = (/patient/visit, ↑),

the constraint c = (/patient[/visit], ↑) is implied by C,
although it is not implied by the only no-remove constraint
(c3) alone.

Also, with relative constraints, implication for sequences
and for pairs are not necessarily equivalent, as we can easily
exhibit sequences in which consecutive pairs are valid but
the overall sequence is not. To address this drawback, some
soundness requirements could be imposed on constraints.

Regarding complexity, although in the case of constraint
implication one should expect complexity to increase, we
believe that upper-bounds for instance-based implication
should not be affected, and that most of our proofs can be
extended to deal with scopes. It seems on the other hand
that such an extension with scopes may have a very serious
impact on the constraint implication problem. Indeed, it is
not even clear whether the problem is still decidable. Impli-
cation for relative constraints remains mostly open and is a
direction we intend to follow in future work.

7. CONCLUSION
We introduced in this paper a family of update constraints

for XML data. We studied general constraint implication,
i.e., for all possible instances, and instance-based implica-
tion, i.e., in the presence of a current tree instance. Our
work was motivated by contexts of exchange or publishing
where data has update constraints but no history of updates
is maintained. In particular, the constraints considered here
could be enforced by existing digital signing techniques [26,
15, 1, 8, 21]. In the reminder of the section we consider
additional related work and open questions.

Instance-based implication is related to representing and
querying incomplete information (e.g. [3]). One may con-
sider representing a document which is subject to controlled
modifications by a combination of certain and possible facts,
describing which parts may have changed and how. How-
ever, the results of [3] can not be applied directly to our
XPath-based setting - the work in [3] uses a different query
semantics where queries return, besides the result nodes,
also the full root to node path. The instance-based flavor of
implication is also related to query answering in XML data
exchange [6]. Intuitively, one could see update constraints as
source-to-target dependencies. The analogy does not fully
go through because we do not consider DTDs and we can
also have target-to-source dependencies.

Some of our constraints can be expressed by first-order
formulas with 2 variables over unranked, ordered trees with

data values. The logic FO2(∼, <)6 over trees was proven
decidable in [10]. However, this logic captures only update
constraints without // axis and the complexity of implica-
tion is high.

Several open problems and future work directions were
identified throughout the paper. In particular, we high-
lighted a number of open issues regarding relative constraints.
Also, tighter complexity bounds are open for some of the
studied problems. Other future directions have to do with
richer XPath fragments and “static” integrity constraints
(such as keys and foreign keys [18, 11]) and schema in-
formation, which are often available for XML data. It is
important to understand the role they play in update con-
straint implication. Note that we assume an update lan-
guage where nodes may also be moved around. So, in two
“consecutive” instances, the same node may appear in to-
tally different parts of the document. However, in some
settings, parent-child relations may not be modifiable, and
as a consequence one cannot move a node from one parent to
another. We leave the study of such “no-move” constraints
for future work.

Regarding the instance-based context, besides the studied
implication, a more fine-grained language for data validity
assertions and temporal reasoning may be worth consider-
ing. Also, for both implication problems, as some cases
where proven difficult, it may be useful to consider sound
approaches. For instance, we could build on the sufficient
test of general implication, by taking into consideration only
some data properties.
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