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Modeling and simulation of a reformate supplied PEM fuel cell stack, application to

fault detection

M. Najafi,∗ D. Di Penta,† K. Bencherif,‡ and M. Sorine§

SOSSO2 Project, INRIA-Rocquencourt

Domaine de Voluceau, BP 105

78153, Le Chesnay, France¶

A method to reduce the model of a nonlinear dynamic fuel cell stack, which is suitable for control

and fault detection studies, is presented. In order to model the fuel cell stack, we have assumed

that the fuel cells are arranged in a stack, electrically in series, with thermal and electrical contacts.

Since in practical applications a stack may be composed of several (at least fifty) fuel cells, such

model will be a large set of differential equations which may be difficult to simulate especially in

control applications. In this paper, first, a model for an isolated fuel cell will be given. Then, a

model for the temperature distribution in a fuel cell stack will be pursued. Finally, the use of an

orthogonal collocation method to reduce the size of the model of the fuel cell stack without changing

the model transient or steady state characteristics will be presented.

I. INTRODUCTION

Proton exchange membrane (PEM) fuel cells are the main type of fuel cell developed for ground vehicle applications.

Such applications require a fuel cell control, fault detection, and diagnosis. The three major control subsystem loops in

a fuel cell system are applied to the air/fuel supply regulation, the water management, and the heat management [1].

In this paper we concentrate on the modeling and simulation of the thermal effects and the temperature distribution

in a fuel cell stack.

Existing stack thermal models as in [6] consider the stack as a lumped mass and do not describe thermal distributions

in the stack. Typically, these models use a single average cell temperature or stack coolant outlet temperature, as

an indicator of the stack thermal condition. However, in a stack, each cell have its own electrical and thermal
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characteristics different from its neighbors. Furthermore, existing models do not explicitly account for the effect of the

end-cells of the stack. The thermal mass of the end-cells draws heat from the cells at both ends of the stack and affects

the stack temperature distribution. And above all, the model obtained for the stack is often a large stiff differential

equation that is difficult or is not appropriate for real-time applications such as fault detection and process control.

One of the main difficulties in the fuel cell control system is the need for an on-board control and fault detection

device to supervise the operation of the system through reliable strategies. These strategies are based on real-time

analysis of on-board sensor signals by checking their coherence with mathematical models. The model of each cell

includes electrochemical, electrical, and thermal phenomena. Consequently, the large range of transients involved

makes the model stiff. The stack model is, then, a large stiff DAE that is too slow for real-time applications. In this

paper, we develop a model for fuel cell stack, then we apply the orthogonal collocation method to reduce the model

and simulate it with only a few cells. Using the reduced model of stack will be well suited for controllers and diagnosis

algorithms.

The one-dimensional, fuel cell stack thermal model developed in this paper considers the features which form

an analysis tool for thermal characteristic and fault detection of a PEM fuel cell stack. The fuel cell stack model

has been developed with the Modelica language [2]. The Modelica models are then simulated in the Scilab/Scicos

(www.scilab.org) environment. The developed models of the fuel cell stack consists of N (50, 100) cell, electrically in

series, fed with hydrogen-rich reformate and compressed air.

II. FUEL CELL MODEL

In this section, the model of a PEM fuel cell stack is described. Fig. 1 illustrates the global fuel cell system considered

in this paper. The reformer processes ethanol, natural gas or gasoline into hydrogen-rich reformate which feeds the
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FIG. 1: Fuel cell System

anode of the PEMFC stack whereas the cathode is fed by compressed air. The reformer breaks down hydrocarbons or

hydrogen rich fuels into hydrogen, carbon dioxide, carbon monoxide and water. One of the main problems of reforming

hydrocarbons is the production of carbon monoxide which is a poison for the stack but this effect can be mitigated
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by introducing an air bleed into the anode (see Fig. 1). The model which includes electro-chemical, electrical and

thermal phenomena is used to build a model for the fuel cell stack. The internal structure of the fuel cell will not be

explained here, interested users are referred to [4–6].

Electrodes of each cell in the stack are supplied by a mass fluid flow qin
k at the temperature T in

k , the pressure P in
k

and the mass composition Y in
i,a , where i ∈ {h, co, n, v, air}, and Y in

i,c , where i ∈ {o, n, v}. We suppose that there is no

liquid water entering the cell electrodes. The electrochemical reaction produces a current noted I and voltage Vcell.

The solid temperature is noted Ts and lastly the cell is cooled by a coolant flow qin
cool at the temperature T in

cool. We

define The input variable vector U in
k and output variables vector Uout

k of the fuel cell channel k ∈ {a, c, cool} are

illustrated in Fig. 2, with

U in
a =

[

T in
a qin

a P in
a λin

a Y in
h Y in

co Y in
air Y in

va

]

Uout
a = [T out

a P out
a Y out

h Y out
wa ]

U in
c =

[

T in
c qin

c P in
c Y in

o Y in
vc λin

c

]

Uout
c = [T out

c P out
c Y out

o Y out
wc ]

U in
cool =

[

qin
cool T in

cool

]

Uout
cool = T out

cool
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FIG. 2: Fuel cell stack and input and output variables in the fuel cell model

1. Mass balance equations

Mass balance equations are obtained from mass conservation laws. We apply the mass conservation law on hydrogen,

oxygen and water in electrodes. Since the procedure to get these equations are identical, we perform it on hydrogen
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species, the others are found in a similar way. Let mh be the hydrogen mass in the anode. Thus, we have

dmh

dt
= qin

h − qout
h − Mh

I

2F

= qin
a Y in

h − qout
a Y out

h − Mh
I

2F

where
MhI

2F
indicates the conversion of H2 to H+ ions and is obtained from the Faraday law. We suppose that the

hydrogen mass in anode mh is equal to Y out
h ρaVa. Assuming a dilute concentration, i.e., qout

a ≈ qin
a and ρa slightly

constant, we get the differential equation (1) for the conservation of hydrogen mass in the anode. In a similar way,

the oxygen mass balance equation, i.e., (2), the water mass balance equations in electrodes, i.e., (3) are obtained.

dY out
h

dt
=

qin
a

ρaVa
(Y in

h − Y out
h ) −

MhI

2ρaFVa
(1)

dY out
o

dt
=

qin
c

ρcVc
(Y in

o − Y out
o ) −

MoI

4ρcFVc
(2)

dY out
w,k

dt
=

qin
k

ρkVk
(Y in

v,k − Y out
w,k ) + αk

MwI

2ρkFVk
(3)

The value of the input mass flows qin
k k ∈ {a, c}, are determined as a function of the current I, of the inlet mass

fraction of hydrogen and oxygen, noted Y in
h and Y in

o , and of the stoichiometries in the electrodes, noted λa and λc, as

given in (4) and (5).

qin
a = λa

MhI

2FY in
h

(4)

qin
c = λc

MoI

4FY in
o

(5)

where Mh and Mo are the molar mass of the H2 and O2 respectively.

As we will see in the next section, the cell voltage is a function of the amount of reactants inside the electrodes.

Thus we define the mean partial pressures of H2 at the anode and of O2 at the cathode by

Ph =
Ma

2Mh
(Y in

h P in
a + Y out

h P out
a ) (6)

Po =
Mc

2Mo
(Y in

o P in
c + Y out

o P out
c ) (7)

where the average molar mass in the cathode and the anode, neglecting the mass fraction of CO and air bleed, will

be:

Ma =

(

Y in
h

Mh
+

Y in
v,c

Mw
+

Y in
n,a

Mn,a

)−1

Mc =

(

Y in
o

Mo
+

Y in
v,c

Mw
+

Y in
n,c

Mn,c

)−1
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where the inlet mass fractions of neutral gas are given by:

Y in
n,a = 1 − Y in

h − Y in
w,a (8)

Y in
n,c = 1 − Y in

o − Y in
w,c (9)

where the inlet pressures are obtained through a simple pressure drop laws:

P in
k = P out

k + Kdp,k
qin
k

P out
k

Finally, we suppose that all the CO and the air bleed is consumed in the the anode:

Pco =
Ma

2Mco
Y in

co P in
a (10)

Pair =
Ma

2Mair
Y in

airP
in
a (11)

2. Fuel cell voltage

The electrical voltage of a cell can by modeled by the difference between the two electrode potentials and overpo-

tentials, i.e.,

Vcell = Er − ηa − ηc − ηohm (12)

We assume that water is produced in liquid phase, so Er, the reversible potential, corresponding to the liquid water

formation is:

Er =
1

2F

(

∆H0
l − ∆S0

l Ts

)

= E0 −
∆S0

l

2F
Ts +

RTs

2F
ln

(
√

Po Ph

)

where E0, ∆H0
l , and ∆S0

l are the thermo-neutral potential, the variations in standard enthalpy, and standard entropy

of liquid water formation, respectively.

The ohmic loss is the voltage loss due to the internal resistance Rohm of the stack cells. Supposing that the

membranes are optimally hydrated, we can consider that these resistances are constant, thus the ohmic losses can be

computed as given:

ηohm = RohmJ (13)

where J is the current density defined by I = JAact where Aact is the active area of a cell.

The anode overpotential ηa is mostly linked to CO poisoning is expression was obtain by Di Penta et al. [7] :

ηa =
2RTs

F
sinh−1

(

J

2(kehθh + kecθco + kres)

)

(14)
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where Ts, R, and F are the cell solid temperature, the gas constant, and the Faraday constant. σ is the density of

sites on the catalyst layer. The coverage fractions of carbon monoxide and hydrogen carbon monoxide on the anode

catalyst sites noted θco and θh are given by

σ
dθco

dt
=

(

kfcPco −
kfokocθcoPair

kocθco + kohθh + bfokfo

)

(1 − θh − θco) − bfckfcθco −
kecθcoJ

kehθh + kecθco + kres
(15)

θh =
kfhPh

kfhPh + bfhkfh

(1 − θco) −
J

kfhPh + bfhkfh

(16)

with

bfc = b0
fc exp

(

−Ebfc

RTs

)

where Pco, Pair, Ph, are the mean partial pressures of CO, air bleed, and H2 at the anode which were defined (6),

(10) and (11).

Contrary to the anode, the cathode is not a place of competing reactions. Nevertheless, the cathode is at the origin

of most of the activation and diffusion losses. The cathode overpotential is given by:

ηc =
2RTs

F
sinh−1

(

kdiffPoJ

2kact(kdiffPo − J)

)

(17)

where

kact = k0
act exp

(

−Ekact

RTs

)

, kdiff = k0
diff exp

(

−Ekdiff

RTs

)

where Po is defined in (7).

3. Fuel cell thermal model

We suppose that solid part of the fuel cell is isothermal and the temperature of fluids at the outlet of the cell is

the same as the temperature of the fluids inside the cell. We have also supposed that the specific heat capacity of

elements are constant. We have considered four thermal equations in each cell, i.e., an equation for the solid mass

equation, two equations for anode and cathode gases, and an equation for the coolant. The fuel cell solid temperature

Ts is obtained with the first law of thermodynamics, i.e.,

msCp,s
dTs

dt
= Wtrans + Wprod (18)

where ms and Cp,s are the mass and the specific heat capacity of the solid, respectively. Wtrans which is the heat

transfer to the solid is obtained as the total thermal energy transfered from existing species in the electrodes to the

solid. Using the Newton law of cooling, we get

Wtrans = haSa (T out
a − Ts) + hcSc (T out

c − Ts) + hcoolScool(T
out
cool − Ts) (19)
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where haSa, hcSc, and hcoolScool are the heat transfer coefficients between the solid and the gas in the anode, the gas

in the cathode, and the coolant, respectively. As shown in Fig. 3, it is assumed that the chemical power of hydrogen

is shared between electrical power and the heat generation from reactions. Supposing that reactions take place on

Heat power

Electrical power

E
0

Er

V
c
e

l
l
,
C

e
ll

V
o
lt

a
g
e

(
V

)
J, Current density (mA/cm2)

FIG. 3: Thermal balance in the fuel cell

the catalyst (solid), we obtain the heat generation as a function of the current density J and the cell voltage Vcell, as

given in 20.

Wprod = (E0 − Vcell)I (20)

Differential equations describing thermal behavior of fluids in electrodes are

VkρkCp,k
dT out

k

dt
= Wk,evap/cond + Wk,trans, k ∈ {a, c} (21)

where Wk,evap/cond is the heat transfered from evaporation/condensation which is obtained from

Wk,evap/cond = qkLv(Y in
wk − Y out

vk ), k ∈ {a, c} (22)

where Lv is the latent heat of water. Wk,evap/cond is the heat transfered from the solid to gas is obtained from

Wk,trans = qin
k Cp,k(T in

k − T out
k ) + hkSk

(

Ts − T out
k

)

, k ∈ {a, c} (23)

Finally, the thermal behavior of the coolant the is given by:

mcoolCp,cool
dT out

cool

dt
= qin

coolCp,cool

(

T in
cool − T out

cool

)

+ hcoolScool (Ts − T out
cool) (24)

4. Fuel cell complete model

The complete model of the fuel cell is an ODE with eight state variables. Defining state and input vectors as

X = [Y out
h , Y out

o , Y out
w,a , Y out

w,c , θco, T
out
a , T out

c , T out
cool]

T

U = [I, Y in
h , Y in

co , Y in
air, Y

in
o , Y in

w,a, Y in
w,c, q

in
a , qin

c , qin
cool, P

out
a , P out

c , T in
a , T in

c , T in
cool]

T ,
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Inputs Values Inputs Values Inputs Values Inputs Values

Y in
h 0.025 Y in

o 0.2 Y in
co 4.5E-5 Y in

air 0.018

Y in
w,a 0.33 Y in

w,c 0.13 T in
a 350 K T in

c 337 K

P out
a 1.5 Atm P out

c 1.5 Atm λa 1.38 λc 1.81

qin
cool 7.3 gr/sec T in

cool 346 K I 150 A

TABLE I: Input variable values

we can summarize the model as follows

msCp,s
dTs

dt
= haSa

(

T out
a − Ts

)

+ hcSc

(

T out
c − Ts

)

+ hcoolScool

(

T out
cool − Ts

)

+ (E0 − Vcell)I

dX

dt
= A(X, Ts, U)

Vcell = G(X, Ts, U)

This model has been implemented and the experimental data are used to identify and validate the model parameters,

see [6]. We have used the Modelica language [2, 8] to model the fuel cell. The Modelica model is then simulated in

Scicos [3]. In this simulation, we have used the input variables which are given in table I. In Fig. 4 the polarization

curve of the fuel cell which we obtained is plotted.

FIG. 4: Polarization curve of the fuel cell, with and without air bleed

III. A THERMAL MODEL FOR THE FUEL CELL STACK

Most papers published in the fuel cell modeling domain assume that all cells in a fuel cell stack are identical,

consequently modeling and simulation of a stack is reduced to the modeling and simulation of a single fuel cell.

Although, this assumption is reasonable for many cases, there are situations where this assumption does not hold;
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e.g., a stack with some faulty cells, or a fuel cell stack whose cells have different thermal or chemical characteristics.

Based on an evaluation of existing stack thermal models in the literature, we build a thermal model for the stack.

We assume a fuel cell stack composed of cells electrically in series with thermal and electrical contacts. The stack

model is a 1-D model in which fuel cells are independent and each cell can only influence the others via thermal

conduction. Although a cell is composed of several layers, we assume that the cells are lumped plates of width δ and

mass ms. Each cell is in thermal contact with two adjacent cells and the input of all cells are identical except the

coolant electrodes. In fact, here we assume that the cooling circuit does not pass through all cells. Generally, five or

even more cells are cooled down by a single cooling plate. In Fig. 5 the cooling channel layout of our fuel cell stack is

given. Thus, Qin
cool, the flow rate of the coolant in the stack channels is defined as

qin
cool(i) =











qin
cool,0 if i = 5, 10, 15, ...

0 else

where qin
cool,0 is the coolant flow in a ’cooled’ cell, see Fig. 5.

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

i0

Qin

cool

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 N

5 10 15 N

qin

cool

FIG. 5: Qin
cool in the fuel cell stack

In the stack, each cell affects the two adjacent cells through thermal conduction. Thus, the model of ith cell in the

stack is






























ms,iCs,i
dTs,i

dt
= haSa

(

T out
a,i − Ts,i

)

+ hcSc

(

T out
c,i − Ts,i

)

+ hcoolScool(T
out
cool,i − Ts,i) + (E0 − G(Xi, Ts,i, Ui))I + ψi

dXi

dt
= A(Xi, Ts,i, Ui)

Vcell,i = G(Xi, Ts,i, Ui)

(25)

where ψi is defined as

ψi =



























D
δ

(Ts,2 − Ts,1) + hinfSinf (Tinf − Ts,1) i = 1

D
δ

(Ts,N−1 − Ts,N ) + hinfSinf (Tinf − Ts,N ) i = N

D
δ

(Ts,i−1 + Ts,i+1 − 2Ts,i) 1 < i < N

(26)

The terminal voltage of the stack is

Vstack =

N
∑

i=1

Vcell,i =

N
∑

i=1

G(Xi, Ts,i, Ui)
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The simulation result of a stack composed of 100 cells is given in Fig. 6. For this simulation we have used the

parameters given in the table I. In Fig. 6, the temperatures of the first twenty cells of the fuel cell stack (i.e.,

Ts,i, i = 1, · · · , 20) are given for the time interval, time=[0, 70] seconds. Fig. 7 gives the value of Ts,i, i = 1, · · · , 20

at time=70 sec. In this simulation, the initial cell temperatures are 300K.
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FIG. 6: Temperature distribution in the stack of 100 fuel cells
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FIG. 7: Temperature distribution in the stack at t=70 sec

A typical fuel cell stack is composed of at least 50 fuel cells. Modeling such a stack usually ends up with a large

stiff differential equation. Consequently, the simulation of the model will be slow. In some applications such as

fault detection where the output of a physical system is compared with the output of a model, we need a real-time

simulation. Thus, a compromise between low model complexity and high solution accuracy should be found. Therefore,

a functional approximation method is necessary to obtain a lower model size as well as an accurate enough modeling

and simulation.
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IV. MODELING OF THE FUEL CELL STACK AS A 1D PDE

The dynamics of a single fuel cell is described by an ODE and the fuel cell stack model (25,26) developed in section

III is composed of N cells in series with thermal and electrical contacts. This model is too large and too slow to be

used in control applications. In order to come up with a solution for this problem and obtain a reduced model, the

stack model is transformed into a partial differential equation (PDE). For that, we assume that the stack is a uniform

mass whose thermal behavior is given by the following general PDE and two Robin’s type boundary conditions. For

the sake of simplicity, in the rest of the paper we assume that cooling channels pass through all cells. Thus, the model

of stack (25,26) can be considered as the PDE (27) discretized at N distinct points.



















































∂X

∂t
= A(X , Ts, U)

c0
∂Ts

∂t
= c1

∂2Ts

∂z2
+ c2(T

out
a − Ts) + c3(T

out
c − Ts) + c4(T

out
cool − Ts) + (E0 − G(X , Ts, U))I

0 = c5
∂Ts

∂z
+ c2(T

out
a − Ts) + c3(T

out
c − Ts) + c4(T

out
cool − Ts) + c7(Tinf − Ts) + (E0 − G(X , Ts, U))I|z = 0

0 = c6
∂Ts

∂z
+ c2(T

out
a − Ts) + c3(T

out
c − Ts) + c4(T

out
cool − Ts) + c7(Tinf − Ts) + (E0 − G(X , Ts, U))I|z = L

(27)

where Ts, and X are the temperature and state variables of the uniform mass as a function of z and relates to Ts,i

and Xi via











Ts,i ≈ Ts(z)|z=(i−1/2)δ, i = 1, · · · , N

Xi ≈ X (z)|z=(i−1/2)δ, i = 1, · · · , N

The coefficients cj , where i ∈ 0 · · · 7, are unknowns that can be obtained if we discretize the PDE via the finite

difference method and compare the resulting ODE with original stack model (25,26). The coefficients can then be

computed as given in the following table.

c0 = msCs c1 = Dδ c2 = haSa c3 = hcSc

c4 = hcool0Scool c5 = D c6 = −D c7 = hinfSinf

The obtained PDE can be solved instead of simulating the stack. But the simulation of a PDE is not a trivial task

and needs a discretization of the space at several points to have a reasonable accuracy. There are, however, some

spectral methods to discretize a PDE using only a small number of discretization points which will be explained in

the next section.

V. THE COLLOCATION METHOD

The collocation method, which is a useful method for solving PDEs, was developed originally as a stable, predictable,

and simple way to implement pseudo-spectral technique. Because of its reliability, it has become a standard method
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for solving boundary-value problems by polynomial trial function expansions. This method allows discretizing a PDE

with a selection of only 3 to 7 points in the region, comparing to 10 to 20 points in finite difference method [9–11].

The formulation of this method is based on choosing a set of trial functions from an orthogonal polynomial sequence,

with the discretization points computed as the roots of the polynomial next in the sequence. Similar to the finite

difference method, in collocation methods Nc points are selected which partition the region into Nc + 1 segments.

Then, Φ(z, t) is approximated by a Lagrange interpolation polynomial Φ̂(z, t) of order Nc +1 using zi as interpolation

points. Then, the approximated partial derivatives at zi (corresponding derivatives of Φ̂(z, t)) are inserted in the PDE

to satisfy the PDE only at collocation points zi. To implement this method in a 1-D region with Nc collocation points,

Φ and its partial derivatives are approximated as linear combinations of basis functions Li, i.e.,

Φ(z, t) ≈ Φ̂(z, t) =

Nc
∑

i=1

Φ̂i(t)Li(z) (28a)

⇒
∂Φ(z, t)

∂z
≈

∂Φ̂(z, t)

∂z
=

Nc
∑

i=1

Φ̂i(t)
dLi(z)

dz
(28b)

⇒
∂2Φ(z, t)

∂z2
≈

∂2Φ̂(z, t)

∂z2
=

Nc
∑

i=1

Φ̂i(t)
d2Li(z)

dz2
(28c)

⇒
∂Φ(z, t)

∂t
≈

∂Φ̂(z, t)

∂t
=

Nc
∑

i=1

dΦ̂i(t)

dt
Li(z) (28d)

Li(z) are the Nc +1 linearly independent basis functions of the N th
c order Lagrange polynomial. They are determined

by the Nc + 1 collocation points zi as follows:

Li(z) =

Nc
∏

j=1, i 6=j

z − zj

zi − zj
=

Nc
∑

k=1

akzk (29)

The coefficients ak can be computed from the known points zi. Hence, the derivatives of the Lagrange-Polynomial

(29) can be obtained easily as given in (30).

dLi(z)

dz
=

Nc
∑

k=1

kakzk−1 (30a)

d2Li(z)

dz2
=

Nc
∑

k=2

k(k − 1)akzk−2 (30b)

Since the PDE is to be satisfied only at the collocation points and the Lagrange polynomials (29) have the property

(31). Thus the derivatives of the Lagrange polynomials (31) at the collocation points are obtained to be used to

compute (28).











Li(zj) = 1 for i = j

Li(zj) = 0 for i 6= j

(31)

The interpolation with the Lagrange polynomials tends to provide oscillating curves yielding a very bad approxi-

mation, if the collocation points (zi) are not well chosen. In order to avoid this problem, the basis functions of the

Lagrange polynomial should be a set of orthogonal functions in the interval 0 ≤ ξ ≤ 1 with respect to some weighting
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function w(ξ) assuming a normalized ξ-domain with L = 1. When the interpolation points ξi are chosen as roots of

Jacobi polynomials, the Lagrange polynomials are orthogonal in the sense of

∫ 1

0

w(ξ)Li(ξ)Lj(ξ)dξ for i 6= j, w(ξ) = (1 − ξ)τ1ξτ2 (32)

The Jacobi polynomial of order N is defined as:

P
(τ1,τ2)
N =

N
∑

i=0

(−1)N−iζ(N, i)ξi

The function ζ(N, i) can be computed recursively as follows:

ζ(N, i) = N−i+1
i

N+i+τ1+τ2

i+τ2
ζ(N, i − 1)

ζ(N, 0) = 1

where the parameters τ1 and τ2 can be used to influence the position of collocation points (ξi). This results from the

weighting function w(ξ) = (1− ξ)τ1ξτ2 . If τ1 is small, the concentration of collocation points will be toward ξ = 1 and

when τ2 is small, the concentration of collocation points will be around ξ = 0. The concentration will be uniform in

the region, if τ1 = τ2.

VI. APPLICATION

As a simple application, the orthogonal collocation method is used to discretize the PDE (27) using six collocation

points. The simulation result is given in Fig. 8. In this figure, the temperature of the stack is given as a function

of time and z. In order to compare the simulation result, the original fuel cell, composed of 50 cells, was simulated
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FIG. 8: Simulation of a fuel cell stack with the orthogonal collocation method using four discretization points

with the same parameters and input vector (U). The result of two simulations is given in Fig. 9. In this figure, the
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temperature of stack via two method is given. The initial temperature is 293K and the steady state temperature is

about 420K. The simulation shows that two results are nearly identical.
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FIG. 9: Temperature distribution (in time and z) in a fuel cell stack using two simulation methods

In order to demonstrate the efficiency of the collocation method in simulation of cell cell stacks, we simulate a fault

in a fuel cell. Consider a fuel cell stack composed of 50 cells, and suppose that due to a fault, cooling circuit in cell

numbered 24, 25, 26, and 27 is blocked and these cells are not cooled down properly. We have modeled such a fault

by replacing coolant flow rate (qin
cool(i)) in the faulty cells in the stack in (24,25,26) by equation (33).

qin
cool(i) =











0.5qin
cool,0 for i = 24, 25, 26, 27

qin
cool,0 other i

(33)

Similar to the previous example, two methods are used; A model composed of 50 cells with a fault, and another

model with orthogonal collocation method. In the collocation method, we assume that the stack is composed of three

regions and we discretize each region with four points (Nc = 4). So, the total number of collocation points is twelve.

The τ1 and τ2 of each domain are chosen so that the concentration of the points around the faulty region become

higher. In Fig. 10 and 11, the temperature of the cell is given as a function of z and time. The simulation shows a

very good accordance between the simulation of the stack of 50 cells and the simulation of the stack simulated with

only 12 cells.

VII. CONCLUSION

The reaction-diffusion model of fuel cell stack which may be composed of at least 50 cells is modeled and simulated

with a small number of cells. We have used the orthogonal collocation method to sample the stack at only a few

points, which is quite lower than the number of cells in the stack. The main principle of the orthogonal collocation
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Collacation method, 12 cells
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FIG. 10: Simulation result of a faulty fuel cell stack with multi-domain collocation method and standard method of the stack

of 50 cells
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FIG. 11: 2D simulation of a faulty fuel cell stack at differed simulation times

method is that the material and energy balances remains unchanged and they are still satisfied exactly at collocation

points. Therefore the model of stack via the collocation method becomes smaller and easier to simulate. There are

several advantages when using the reduced model: the model of the fuel cell stack is no longer discrete, which allows

a uniform modeling. Then, this method reduces the size of the process model in terms of number of variables and

balances leading to significant computational savings.

Nomenclature

Aact= the active membrane area

bi= kinetics constants i ∈ {fh, fc, fo}
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Ce= specific heat capacity of elements e ∈ { s, a, c, cool }

D= heat transfer coefficients between two adjacent cells

Ei= activation energies i ∈ {bfc, kact, kdiff}

E0= thermo-neutral potential (1.48 volts)

F= Faraday constant (96450 coulombs/mol)

hkSk= heat transfer coefficients between electrodes and gas k ∈ {a, c}

hcoolScool= heat transfer coefficient between solid and coolant

hinfSinf= heat transfer coefficient between end-cells and the environment

I, J= current of the cell and the current density (I = JAact)

ki= kinetics constants i ∈ {fh, eh, fc, ec, fo, oh, oc, res}

k0
i = kinetics constants i ∈ {act, diff}

L= the fuel cell stack length

Mf= molar mass of fluids f ∈ { h, o, co, w, air }

Mn,k = average molar mass of neutral gases in electrodes k ∈ {a, c}

P out
k = output pressure in electrodes k ∈ {a, c}

qin
cool= inlet coolant mass flow

R= gas constant (8.314 J/(mol K))

Rohm= ohmic resistance of a cell

T in
k = inlet fluid temperature at the electrodes k ∈ {a, c}

T in
cool= inlet coolant temperature

Ts= solid temperature

T out
k = outlet fluid temperature at the electrodes k ∈ {a, c}

T out
cool= outlet coolant temperature

Tinf= environment temperature

Vcell= cell voltage

Vk= volume of electrode channels k ∈ {a, c}

Y in
h = anode inlet mass fraction of H2

Y in
co = anode inlet mass fraction of CO

Y in
air= anode inlet mass fraction of air bleed

Y in
o = cathode inlet molar fraction of O2

Y in
v,k= inlet mass fraction of vapor water at electrodes k ∈ {a, c}

Y out
h = anode outlet mass fraction of H2

Y out
o = anode outlet mass fraction of O2 in cathode

Y out
w,k = outlet mass fraction of water at the electrodes k ∈ {a, c}
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Greek

∆S0
l = change in entropy of liquid water formation under the standard condition

∆H0
l = change in enthalpy of liquid water formation under the standard condition

δ= The thickness of a single fuel cell

ρk= average mass density of gas in electrodes k ∈ {a, c}

λk= inlet stoichiometric ratio at the electrodes k ∈ {a, c}

αk = water transfer coefficient through membrane in electrodes k ∈ {a, c} and αa = 1 − αc

θco= anode catalyst CO poisoning rate

βk= pressure drop parameter in electrodes k ∈ {a, c}

Subscripts

a=Anode

c= Cathode

o=O2

h=H2

co=CO

n= neutral gas

air= air bleed

w= water

v= vapor water

l= liquid water

s= solid mass

cool=coolant

Superscripts

in= Input to the cell

out= Output from the cell
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