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J. Symboli Computation (2001) 11, 1{000
Computing representations for radials of �nitelygenerated di�erential idealsFran�ois Bouliery, Daniel Lazard, Fran�ois Ollivier and Mihel PetitotUniversit�e Lille I, LIFL, 59655 Villeneuve d'Asq CEDEX, FraneUniversit�e Paris VI, LIP6, 75252 Paris CEDEX 05, Frane�Eole Polytehnique, GAGE, 91128 Palaiseau CEDEX, FraneUniversit�e Lille I, LIFL, 59655 Villeneuve d'Asq CEDEX, Franeboulier�li.fr, lazard�posso.lip6.fr, ollivier�gage.polytehnique.fr, petitot�li.frTehnial report IT306 of the LIFL. Unpublished.(Reeived July 1997 (revised February 1999))This paper deals with systems of polynomial di�erential equations, ordinary or withpartial derivatives. The embedding theory is the di�erential algebra of Ritt and Kolhin.We desribe an algorithm, named Rosenfeld{Gr�obner, whih omputes a representationfor the radial p of the di�erential ideal generated by any suh system �. The omputedrepresentation onstitutes a normal simpli�er for the equivalene relation modulo p (itpermits to test membership in p). It permits also to ompute Taylor expansions ofsolutions of �. The algorithm is implemented within a pakagey in MAPLE V.

IntrodutionThe following system � (whih has no physial signi�ane) is a system of three poly-nomial di�erential equations with partial derivatives.�8>>>>>><>>>>>>:
� ��x u(x; y)�2 � 4u(x; y) = 0;� �2�x �y u(x; y)�� ��y v(x; y)� � u(x; y) + 1 = 0;�2�x2 v(x; y)� ��x u(x; y) = 0:In the following, we denote (for short) derivations using indies. The system � beomes�8<: u2x � 4u = 0;uxy vy � u+ 1 = 0;vxx � ux = 0:y A part of this work (in partiular the MAPLE pakage) was realized while the �rst author was apostdotoral fellow at the Symboli Computation Group of the University of Waterloo, N2L 3G6 Ontario,Canada.y The pakage is available for MAPLE VR3 and R4. It is going to enter the main library of MAPLEVR5.0747{7171/90/000000 + 00 $03.00/0  2001 Aademi Press Limited



2 F. Boulier, D. Lazard, F. Ollivier, M. PetitotThe Rosenfeld{Gr�obner algorithm that we present in this paper omputes a representa-tion of the radial p of the di�erential idealz generated by �. This representation tells usin partiular that the solutions of � (whih turn out to be polynomials) depend on threearbitrary onstants and permits us to ompute Taylor expansions of these solutions. If weexpand them in the neighborhood of the origin then the arbitrary onstants are u(0; 0),v(0; 0) and vx(0; 0). For u(0; 0) = 5, v(0; 0) = 421 and vx(0; 0) = � our algorithm givesus (omputations are detailed in setion 8)u(x; y) = 5 + xp10p2 + yp10 + x2 + x yp2 + 12 y2;v(x; y) = 421 + x� + 2 yp2 + 12 x2p10p2 + x yp10 +14 y2p10p2 + 13 x3 + 12 x2 yp2 + 12 x y2 + 112 y3p2:The applied mathematial theory is alled di�erential algebra. It was initiated mostlyby Frenh and Amerian researhers at the early twentieth entury (Riquier (1910), Janet(1920) and (1929) and Ritt (1932)) and really developed by the Amerian teams of Ritt(1950) and Kolhin (1973). Di�erential algebra aims at studying di�erential equationsfrom a purely algebrai point of view. It is muh loser to ordinary ommutative algebrathan to analysis.The Rosenfeld{Gr�obner algorithm represents the radial of the di�erential ideal gen-erated by any �nite system � of polynomial di�erential equations as a �nite intersetionof di�erential ideals r's (that we all regular).p =p[�℄ = r1 \ � � � \ rn:Eah regular di�erential ideal ri is presented by a set of di�erential polynomial equa-tions Ci whih satis�es:1 Ci is a anonial representative of ri,2 Ci redues to zero a di�erential polynomial p if and only if p 2 ri.Therefore, the set of the C's onstitutes a normal simpli�er for the equivalene relationmodulo p (i.e. an algorithm whih deides membership in p). The simpli�er is not anon-ial for the representation may ontain redundant omponents: every di�erential primeideal whih is minimal over p is minimal over at least one of the regular di�erential idealsprodued but the onverse is not true.Assume the solutions of p depend on �nitely many arbitrary onstants. The algorithmseparates the solutions whih do not depend on the same number of arbitrary onstants.In our introdutory example, only one regular di�erential ideal was produed. This provesthat all the solutions of p depend on three arbitrary onstants.An implementation of this algorithm was realized for the MAPLE V omputer algebrasoftware. It is embedded in a pakage named diffalg.z We make preise in further setions some of the notations and the terminology used in thisintrodution



Computing representations for radials of �nitely generated di�erential ideals 3Used theoremsThe Rosenfeld{Gr�obner algorithm relies mainly on three theorems:1 a theorem of zeros (Hilbert's Nullstellensatz), whih states that a polynomial pbelongs to the radial of an ideal presented by a basis � if and only if every solutionof � is a solution of p ; we apply this theorem in the algebrai and in the di�erentialase,2 a lemma of Rosenfeld, whih gives a suÆient ondition so that a system of poly-nomial di�erential equations admits a solution if and only if this same system,onsidered as a purely algebrai system admits a solution,3 a lemma of Lazard, whih establishes that eah regular ideal r is radial and thatall its prime omponents have a same parametri set (this property is stronger than\de�ning an unmixed algebrai variety").It utilizes only the operations and the equality test with zero in the base �eld of theequations: we refer to Ritt's redution algorithms, omputations of Gr�obner bases andsplittings similar to those in the elimination methods of Seidenberg (1956). In partiular,it does not need any fatorization.New resultsThe Rosenfeld{Gr�obner algorithm was �rst desribed by Boulier (1994) and improvedby Boulier et al. (1995). This paper ontains new results.We give in setion 2 a proof of Lazard's lemma whih is more preise than the one wegave in Boulier et al. (1995), lemma 2, page 161.We give an original presentation of the fundamental Rosenfeld's lemma. We present itas a property of some lass of systems of polynomial di�erential equations and inequationsinstead of a property of some lass of sets of di�erential polynomials.We give a version of Rosenfeld's lemma more general than the one of Rosenfeld (thiswas already proven by Boulier (1997)) and not ontained in Kolhin's version. Briey,our version only imposes to the ideals to be saturated by the separants of the di�erentialpolynomials (and no more by the initials). It also only imposes to the set of equations tobe triangular instead of autoredued (but this is anedoti). Sine Lazard's lemma alsoholds in suh a situation, we formulate our theorems without onsidering the initials ofdi�erential polynomials (though we do it in our implementation for eÆieny reasons).This is an improvement w.r.t. Kolhin's theory.We prove new results for regular ideals: theorems 4.2 and 6.1. The former permits toompute the minimal di�erential prime omponents of regular ideals and provides alsoinformations about these prime ideals without having to ompute them ; the latter givesus an original presentation of a well known proof about formal power series.The algorithm presented is muh more eÆient than the one of 1995. It applies forpolynomial di�erential equations an analogue of the seond riterion proven by Buh-berger (1979) for Gr�obner bases. Our implementation of this riterion was designed afterthe method of Gebauer and M�oller (1988).



4 F. Boulier, D. Lazard, F. Ollivier, M. PetitotComparison with other methodsThere is a strong relationship between our algorithm and Seidenberg's work. AntonSeidenberg (1956) designed elimination algorithms for systems of ODE and PDE inharateristi zero and non zero. His PDE elimination algorithm in harateristi zeroatually solves the same problem we are solving: deiding membership in the radialof a �nitely generated di�erential ideal. He proved (theorem 6, page 51) an analogue ofRosenfeld's lemma whih is a bit weaker (restrition to orderly rankings on the derivativesof a single di�erential indeterminate) and more tehnial (note Rosenfeld (1959) presentshis lemma as a new version of Seidenberg's theorem). In his theorem 11, page 59 he showsthat, if � is a system whih satis�es the hypotheses of his theorem 6 then every algebraisolution of � furnishes a unique di�erential solution. He showed later (Seidenberg, 1969)how di�erential solutions an be onverted as formal power series.There are di�erenes between Seidenberg's algorithm and ours. The most importantis the following: the Rosenfeld{Gr�obner algorithm omputes a representation of radialdi�erential ideals whih an be used afterwards for testing membership in the ideal manytimes afterwards while Seidenberg's deides if a di�erential polynomial p belongs to theradial of the di�erential ideal generated by a �nite family � by eliminating suessivelyall the di�erential indeterminates whih our in the system � = 0; p 6= 0 in order to testif this system admits solutions (Hilbert's theorem of zeros). The answer of his algorithmis a boolean.Another important di�erene: Seidenberg's elimination algorithms are restrited toelimination rankings between di�erential indeterminates whih indue very explosiveomputations, while orderly rankings are handled by the Rosenfeld{Gr�obner algorithm(this is the ase for instane in our introdutory example).Ritt (1950) gave a method to deompose the radial of an ordinary di�erential idealas an intersetion of prime di�erential ideals, providing a harateristi set for eahof these ideals. This deomposition is not the minimal one beause of the redundanyproblem (still open). That algorithm is inonvenient beause it is only partially e�etive:it proeeds by fatorization over a tower of algebrai �eld extensions of the �eld ofoeÆients. To our knowledge, it has not been implemented. It only applies for ODE.Wu Wen Ts�un (1987) designed a variant of Ritt's algorithm for ordinary di�erentialequations, with a notion of harateristi set weaker than Ritt's (e.g. a harateristi setin the sense of Wu may have no solution). Other authors (e.g. Wang (1994)) developedlater Wu's and Seidenberg's ideas. These algorithms only apply for ODE.Ollivier (1990) and Carra-Ferro (1987) have independently tried to generalize Gr�obnerbases to systems of ordinary polynomial di�erential equations. These di�erential Gr�obnerbases are in general in�nite, even for ODE systems.Another de�nition of di�erential Gr�obner bases was attempted by Mans�eld (1991).The algorithm DIFFGBASIS, implemented in MAPLE, utilizes Ritt's algorithm of re-dution and then always terminates. It handles PDE systems. In general however, itannot guarantee its output to be a di�erential Gr�obner basis. Note that the member-ship problem in an arbitrary di�erential ideal is undeidable (Gallo et al., 1991), and themembership problem of a �nitely generated di�erential ideal is still open.Bouziane et al. (1996) and Maârouf (1996) designed reently a variant of the Rosenfeld{Gr�obner algorithm. They started from the algorithm of Kalkbrener (1993) whih omputedeompositions of radials of ideals in non di�erential polynomial algebras. They desribe



Computing representations for radials of �nitely generated di�erential ideals 5a method for omputing harateristi sets of prime di�erential ideals di�erent from ourmethods given in Ollivier (1990), Boulier (1994) and Boulier et al. (1995), setion 5, page164.Reid et al. (1994) and Reid et al. (1996) developed algorithms for studying systemsof PDE and omputing Taylor expansions of their solutions. These methods are basedmore on di�erential geometry than on algebra. They do not laim to be as general as theRosenfeld{Gr�obner algorithm.Organization of the paperSetions 1 and 2 deal with ommutative algebra. The former ontains preliminaries; inthe latter, we prove Lazard's lemma and show how some omputations an be performedin dimension zero. Setion 3 ontains di�erential algebra preliminaries. In setion 4 weprove our version of Rosenfeld's lemma and some tehnial results whih will be used foreÆiently testing the oherene hypothesis of this lemma (in partiular, we show thereour analogue of Buhberger's seond riterion). Setion 5 shows how to represents radi-al di�erential ideals as intersetions of regular di�erential ideals. This is the ore of theRosenfeld{Gr�obner algorithm. In the next setion, we show how to ompute anonialrepresentatives for regular di�erential ideals and we state the Rosenfeld{Gr�obner algo-rithm as a theorem (theorem 6.4) with an e�etive proof. The algorithm is obtained bytranslating the proof in any programming language. In setion 7 we explain how alge-brai solutions of regular di�erential ideals an be expanded as formal power series. Afew examples are developed in the last setion.1. Commutative algebra preliminariesLet R = K[X ℄ be a polynomial ring where K is a �eld and X is an alphabet (possiblyin�nite) endowed with an ordering R. Let p 2 R nK be a polynomial. The leader of pis the greatest indeterminate x 2 X w.r.t. R whih appears in p. It is denoted ld p. Letd = deg(p; x) be the degree of p in x. The initial ip of p is the oeÆient of xd in p.The separant sp of p is the polynomial �p=�x. The rank of p is the monomial xd. It isdenoted rank p. The rank of a set of polynomials is the set of ranks of the elements ofthe set.If A � R nK is a set of polynomials then IA (respetively SA) denotes the set of theinitials (respetively separants) of the elements of A and HA = IA [ SA.If p and q are two polynomials with ranks xd and ye then q < p if y < x or y = xand e < d.Let A = fp1; : : : ; png and A0 = fp01; : : : ; p0n0g be two nonempty subsets of R n K.Renaming the polynomials if needed, assume rank pi � rank pi+1 and rank p0j � rankp0j+1for all i < n, j < n0. The set A is said to be less than A0 if there exists some i � min(n; n0)suh that pi < p0i and rank pj = rankp0j for 1 � j < i else if n > n0 and rank pj = rank p0jfor 1 � j � n0. Two sets of polynomials suh that none of them is less than the otherone are said to have the same rank.A subset A of R nK is said to be triangular if the leaders of its elements are pairwisedi�erent.If A � R then (A) denotes the smallest ideal of R ontaining A. If a is an ideal of Rthen the radial pa of a is the ideal of all the elements of R, a power of whih lies in a.An ideal equal to its radial is said to be radial. Any radial ideal r of a polynomial



6 F. Boulier, D. Lazard, F. Ollivier, M. Petitotring R = K[X ℄ (X �nite) is a �nite intersetion of prime ideals whih is unique whenminimal.A omponent (say p1) of an intersetion r = p1\� � �\pn is said to be redundant w.r.t. rif r = p2 \ � � � \ pn. An element p of a ring R is said to be a divisor of zero if p 6= 0 andthere exists in R an element q 6= 0 suh that the produt p q = 0.If r is an ideal and S is a �nite subset of a ring R then the saturation r : S1 of r byS is the ideal of all the polynomials p 2 R suh that there exists a power produt h ofelements of S suh that h p 2 r. 1.1. Gr�obner basesIn this setion R = K[X ℄ denotes a polynomial ring over a �eld. We only reall someproperties of Gr�obner bases. The books of Cox et al. (1992) and Beker and Weispfenning(1991) provide a real presentation.If B is a Gr�obner basis of an ideal r of a polynomial ring R = K[X ℄ for an ordering R.The redution by B, denoted ��!B preserves the equivalene relation mod r and we have1 r = (B),2 when it is redued, a Gr�obner basis is a anonial representative of r (it only dependson the ideal and on the ordering),3 the ideal r is equal to R if and only if 1 2 B (Beker and Weispfenning, 1991,orollary 6.16, page 257),4 given any p 2 R, there exists a unique polynomial �p irreduible by B suh thatp ��!B �p. This polynomial is a anonial representative of the residue lass of pmodulo r (it only depends on the ideal and the ordering). In partiular, if p 2 rthen �p = 0,Even if X is in�nite, one an ompute Gr�obner bases of �nitely generated ideals ofK[X ℄. This remark is important sine we are going to ompute Gr�obner bases of (nondi�erential) ideals in di�erential polynomial rings. The theoretial justi�ation is givenby the following lemma.Lemma 1.1. Let r be an ideal of a ring R and x be transendental over R. If � denotesthe anonial ring homomorphism � : R! R[x℄ then ��1(�r) = r.Let A = fp1; : : : ; png and S = fs1; : : : ; smg be �nite sets of polynomials of R. Letfz1; : : : ; zmg be a �nite set of indeterminates over R. One gets a Gr�obner basis B0 ofthe ideal S�1(A) of S�1R by omputing a Gr�obner basis of the setfp1; : : : ; pn; s1 z1 � 1; : : : ; sm zm � 1gfor any ordering (Eisenbud, 1995, exerise 2.2, page 79). Eah zi stands for 1=si. To geta Gr�obner basis B1 of (A) : S1, ompute �rst B0 for any ordering whih eliminates thez's. Then B1 = B0 \ R (Beker and Weispfenning, 1991, proposition 6.15, page 257).2. Lazard's lemmaLazard's lemma (theorem 2.1) is a result of ommutative algebra, interesting in itself.It was �rst published in (Boulier et al., 1995, lemma 2, page 161) with a proof relying on



Computing representations for radials of �nitely generated di�erential ideals 7basi arguments. During the Speial Year in Di�erential Algebra and Algebrai Geometryorganized in 1995 at the City College of New York by Prof. Hoobler and Sit, a weaknessin the proof was pointed outy: there was a laim whih was true but not proven. Morrison(1995) proved then a generalized version of the lemma whih is presented in Morrison(1997). Another proof was written later by Shiho and Li (1995). The one we give hereonly relies on elementary ommutative algebra (say van der Waerden (1966), hapter 15).In this sense, it is simpler than the other ones. The knowledge of Morrison's proof helpedus to �x ours. Setion 2.2 ontains the argument (Ollivier, 1998) missing in (Boulieret al., 1995).Definition 2.1. (regular algebrai systems)A system A = 0; S 6= 0 of a polynomial ring R is said to be a regular algebrai system(for an ordering R) if1 A is triangular,2 S ontains the separants of the elements of A.The ideal (A) :S1 is alled the regular algebrai ideal de�ned by the system. The systemis said to be inonsistent if (A) : S1 = R. It is said to be onsistent otherwise.Theorem 2.1. (Lazard's lemma)Let A = 0; S 6= 0 be a onsistent regular algebrai system of a polynomial ring R =K[X ℄. Denote L the set of the leaders of the elements of A and N = X n L. Then1 the regular algebrai ideal (A) : S1 is radial,2 if p is a prime ideal minimal over (A) : S1 then dim p = jN j and p \K[N ℄ = (0).Proof. Notie it is enough to prove the theorem in the ase S = SA for, if (A) : S1A isradial, the ideal (A) : S1 is the intersetion of the prime ideals whih are minimal over(A) : S1A and whih do not meet S (van der Waerden, 1966, setion 15.6).Propositions 2.2 and 2.3 imply that if p is an assoiated prime of (A) : S1A thendim p = jN j and p \K[N ℄ = (0). This proves the point 2.The nonzero elements of K[N ℄ are thus di�erent from zero and do not divide zero inR=(A) :S1A . The elements of SA are not zero and do not divide zero either in R=(A) :S1A .We have thus the ring isomorphismyFr(R=(A) : S1A ) ' Fr(S�1�A �R=S�1�A ( �A))where �R = K(N)[L℄ and �A denotes the image of A by the anonial ring homorphismR ! �R. A produt of �elds is isomorphi to its total ring of frations thus the ringFr(R=(A) :S1A ) is isomorphi to a produt of �elds by proposition 2.1. Aording to theaxioms of produts, Fr(R=(A) : S1A ) ontains no nilpotentz element thus R=(A) : S1Adoes not either whene (A) : S1A is radial. 2y The �rst author would like to thank Prof. Hoobler, Sit and in partiular Prof. Sally Morrison formany fruitful omments and email ommuniations.y If R is a ring then Fr(R) denotes the total ring of frations of R, obtained by making invertible allthe non divisors of zero of R.z An element g of a ring R is said to be nilpotent if g 6= 0 and gn = 0 for some n 2 N .



8 F. Boulier, D. Lazard, F. Ollivier, M. PetitotIn the sequel, we onsider the ideal (A) : S1A . We denote L the set of leaders of thetriangular set A and N the remaining indeterminates. Thus (A) : S1A � R = K[N; L℄.We assume (A) : S1A 6= R.2.1. Lazard's lemma in dimension zeroIn this setion we onsider the ase jN j = 0.We denote S�1A R the ring loalized at SA and S�1A (A) the ideal generated by the imageof (A) in S�1A R (van der Waerden, 1966, setion 15.9) or (Eisenbud, 1995, setion 2).Lemma 2.1. Let K[x℄ be a polynomial ring in one indeterminate over a �eld. Let p 2K[x℄ be a polynomial and s be its separant. The ideal s�1K[x℄=s�1(p) is isomorphi toa produt of algebrai �eld extensions of K.Proof. The ideal s�1(p) is generated by the produt of the irreduible simple fatorsof p. These fators generate omaximal ideals inK[x℄. The lemma omes from the Chineseremainders theorem (Eisenbud, 1995, setion 2, exerise page 79). 2Lemma 2.2. If R0 is a ring isomorphi to a produt of algebrai �eld extensions of Kand x is a new inderminate, p 2 R0[x℄ is a polynomial and s = �p=�x is its separantthen s�1R0[x℄=s�1(p) is isomorphi to a produt of algebrai �eld extensions of K.Proof. Let R0 ' K1 � � � � �Kh. We have R0[x℄ ' K1[x℄ � � � � �Kh[x℄. Denote �i theanonial ring homomorphism R0[x℄! Ki[x℄ (1 � i � h). We haves�1R0[x℄=s�1(p) ' hYi=1(�is)�1Ki[x℄=(�is)�1(�ip):Sine �is = ��ip=�x (1 � i � h), lemma 2.1 applies: eah (�is)�1Ki[x℄=(�is)�1(�ip) isisomorphi to a produt of algebrai �eld extensions of K thus so is s�1R0[x℄=s�1(p). 2Proposition 2.1. The ring S�1A R=S�1A (A) is isomorphi to a produt of algebrai �eldextensions of K.Proof. Apply lemma 2.2 indutively on jAj. 22.2. Non leaders form a parametri setIf i and j are two ideals of R then the quotient i : j of i by j (van der Waerden, 1966,setion 15.2) is de�ned by i : j = fp 2 R j 8q 2 j; p q 2 igLemma 2.3. Denote i = (A) : S1A . If h 2 R then for every q 2 i : (h) we have8x 2 L; �q�x = 0 ) 8x 2 N; �q�x 2 i : (h):Proof. Denote D the determinant of the jaobian matrix J of A, whih is the produtof the elements of SA sine A is triangular.J = ��p�x�p2A; x2L



Computing representations for radials of �nitely generated di�erential ideals 9Assume q 2 i : (h). Then there exists some � � 0 and some mp 2 R (p 2 A) suh thatD� h q = Xp2Amp p:Assume x 2 L. Di�erentiating w.r.t. x, multiplying by D and h and applying the fatthat �q=�x = 0 we onlude Dh Xp2Amp �p�x 2 (A):Denote ~J the ofators matrix of J and I the identity matrix. Using the fat that J ~J =D I we �nd that D2 hmp 2 (A) for eah p 2 A whih implies mp 2 i : (h) for eah p 2 Awhene �q=�x 2 i : (h) for any x 2 N . 2Corollary 2.1. Denote i = (A) : S1A . If h 2 R is a polynomial suh that i : (h) 6= Rthen i : (h) \K[N ℄ = (0).Proof. If q 2 i : (h) \K[N ℄ then for any x 2 L we have �q=�x = 0. Using lemma 2.3we see i : (h) \ K[N ℄ is stable under the ation of the partial derivations w.r.t. all theindeterminates. This ideal is therefore either equal to K[N ℄ (in whih ase i : (h) = R)or to (0). 2Proposition 2.2. If q is an isolated primary omponent of (A) : S1A then dim q = jN jand q \K[N ℄ = (0).Proof. Let h 2 R be a polynomial belonging to all the assoiated primes of i = (A):S1Abut not to the assoiated prime of q. This polynomial exists for q is isolated (van derWaerden, 1966, setion 15.6). For � � 0 great enough, h� belongs to all the primaryomponents of i but not to q and we have i:(h�) = q. Corollary 2.1 implies q\K[N ℄ = (0)whene dim q � jN j.Now, denote �R = K(N)[L℄ and denote �A the image of A by the anonial ring homor-phism � : R! �R. If p is a prime ideal minimal over i then �p = (�p) is minimal over theideal j = ( �A) : S1�A (van der Waerden, 1966, setion 15.9). The proposition 2.1 impliesthat dim �p = 0 whene dim p = jN j. 2Proposition 2.3. If q is a primary omponent of (A) : S1A then q is isolated.Proof. Assume i = (A) : S1A admits an imbedded primary omponent q. By proposi-tion 2.2 we have dim q < jN j whene q \K[N ℄ 6= (0). There exists some polynomial h(taken in all the isolated omponents of i but not in q) suh that i : (h) 6= R. Sine i : (h)ontains an intersetion of imbedded primary omponents of i we have i:(h)\K[N ℄ 6= (0).This ontradits orollary 2.1. 2Definition 2.2. (assoiated Gr�obner basis)Let A = 0; S 6= 0 be a onsistent regular algebrai system of a ring R = K[X ℄.Denote L the set of the leaders of the elements of A and N = X nL. The redued Gr�obnerbasis of the ideal (A) : S1, omputed in the ring K(N)[L℄ for the elimination orderinggiven by the ordering over X is alled the Gr�obner basis assoiated to A = 0; S 6= 0.



10 F. Boulier, D. Lazard, F. Ollivier, M. PetitotCorollary 2.2. If A = 0; S 6= 0 is a onsistent regular algebrai system of a polyno-mial ring R = K[X ℄ and xi 2 X is an indeterminate then the following onditions areequivalent1 xi is the leader of some element of A,2 xi is the leader of some element of the Gr�obner basis assoiated to A = 0; S 6= 0,3 xi is the leader of a harateristi set (for the ordering de�ned over X) of anyprime ideal minimal over (A) : S1.2.3. Computing in dimension zeroLet A = 0; S 6= 0 be a regular algebrai system of a polynomial ring R0 = K[X ℄ foran ordering R. Let L � X be the set of the leaders of the elements of A and N = X nL.Denote r0 = (A) : S1 and B0 the redued Gr�obner basis of r0 w.r.t. the eliminationordering given by R.Let R1 = K(N)[L℄ be the polynomial ring obtained by extending the ground �eld Kwith N and ' the anonial ring homomorphism R0 �! R1. Denote r1 = ('A) : ('S)1and B1 the Gr�obner basis assoiated to A = 0; S 6= 0. The basis B1 is a Gr�obner basisof r1.Beause of theorem 2.1 the ring homomorphism R0=r0 �! R1=r1 is injetive and thereis a one{to{one orrespondene between the prime ideals p1; : : : ; pm whih are minimalover r0 and the prime ideals q1; : : : ; qm whih are minimal of r1. The q's are dimensionzero ideals thus so is r1.Therefore, thoughB1 is not a Gr�obner basis of r0, many omputations an be performedusing the latter sine1 for any p 2 R0 we have p 2 r0 if and only if 'p ��!B1 0,2 a polynomial p 2 R0 is a divisor of zero modulo r0 if and only if 'p is a divisor ofzero modulo r1,3 minimal triangular subsets of B0 have the same rank as minimal triangular subsetsof B1.The basis B1 turns out to be muh smaller and faster to ompute than B0. It issometimes faster to ompute Gr�obner bases of regular algebrai ideals in dimensionzero in MAPLE than to ompute the Gr�obner bases in dimension d > 0 using the GBsoftware of Faug�ere (whih runs usually one thousand times faster than the MAPLE'simplementation of the Buhberger's algorithm).3. Di�erential algebra preliminariesThe referene book is the one of Kolhin (1973), hapters I{IV. Readers who disoverthe theory had probably better however to start with the book of Ritt (1950).A di�erential ring is a ring endowed with �nitely many derivations Æ1; : : : ; Æm whihommute pairwise. Derivation operators are denoted multipliatively � = Æa11 � � � Æammwhere the a's are nonnegative integers. The sum of the exponents a's is the order of �,denoted ord �. The identity operator has order 0. All other operators are said to beproper. If � = Æa11 � � � Æamm and � = Æb11 � � � Æbmm then �� = Æa1+b11 � � � Æam+bmm . If ai � bi



Computing representations for radials of �nitely generated di�erential ideals 11for i = 1; : : : ; m then (�=�) = Æa1�b11 � � � Æam�bmm . The monoid of derivation operators isdenoted �.If R is a di�erential ring and S � R then �S denotes the smallest subset of R ontainingS and stable under derivation. If R0 � R1 are two di�erential rings and S � R1 thenR0fSg denotes the smallest di�erential ring ontaining R0 and S i.e. R0[�S℄.We deal with a di�erential polynomial ring R = Kfu1; : : : ; ung where K is a di�er-ential �eld of harateristi zero. The u's are alled di�erential indeterminates and the�u's are alled derivatives. The set of the derivatives is denoted �U .The di�erential ring R an be viewed as a non di�erential polynomial ring K[�U ℄whose indeterminates are the derivatives of R. The de�nitions given for non di�erentialpolynomial rings hold therefore for di�erential ones.If �u and �u are derivatives of some same di�erential indeterminate u, we denoteld(�u; �u) the least ommon derivative between �u and �u. It is equal to lm(�; �)u.A ranking R is an ordering over �U ompatible with the ation of the derivationsover �U (Kolhin, 1973, page 75):1 Æv > v (for all derivation Æ and v 2 �U),2 v > w ) Æv > Æw (for all derivation Æ and v; w 2 �U).Rankings suh that ord � > ord� ) �v > �w (for all derivations operators �, � andall di�erential indeterminates v; w) are said to be orderly. Rankings suh that v > w )�v > �w (for all derivations operators �, � and all di�erential indeterminates v; w) aresaid to be elimination rankings. Any ranking is a well{ordering (Kolhin, 1973, page 75).Properties of rankings imply that the separant of a di�erential polynomial p 2 R nKis also the initial of all the proper derivatives of p.If A � RnK is a set of di�erential polynomials and v is any derivative then Av denotesthe set of the derivatives of the elements of A whose leaders are less than or equal to v:Av = f�p j p 2 A; � 2 � and ld �p � vg:Aording to this notation, Rv denotes the ring of the di�erential polynomials whoseleaders are less than or equal to v. ThereforeA \ Rv = fp 2 A j ld p � vg:Let p 2 R n K and q 2 R be di�erential polynomials. Denote rank p = vd. Thedi�erential polynomial q is said to be partially redued w.r.t. p if no proper derivativeof v appears in q; it is said to be redued w.r.t. p if q is partially redued w.r.t. p anddeg(q; v) < d.A set A � R nK is said to be autoredued if any element of A is redued w.r.t. anyother element of the set.Definition 3.1. A set A � RnK is said to be di�erentially triangular if it is triangularand if its elements are pairwise partially redued.Every autoredued set is �nite (Kolhin, 1973, page 77). The proof holds also fordi�erentially triangular sets. A harateristi set of a sety S � R is an autoreduedy This de�nition orresponds to Ritt's one (Ritt, 1950, I, 5, page 5) and oinides with Kolhin's whenS is a di�erential ideal. Kolhin only de�ned harateristi sets for ideals (Kolhin, 1973, I 10, page 81and III, 2, page 124).



12 F. Boulier, D. Lazard, F. Ollivier, M. Petitotsubset of S whih has lowest rank among the autoredued subsets of S. It is also aminimal (aording to our de�nition) element in the set of the autoredued subsets of S.If S � R admits autoredued subsets then S admits a harateristi set.A di�erential ideal of a di�erential ring R is an ideal of R stable under derivation. IfA � R then [A℄ = (�A) denotes the smallest di�erential ideal of R ontaining A. Sine Rhas harateristi zero, the radial of a di�erential ideal is a di�erential ideal. Any radialdi�erential ideal r of a di�erential polynomial ring R is a �nite intersetion of di�erentialprime ideals whih is unique when minimal (Kolhin, 1973, III, Theorem 1, page 126)or (Ritt, 1950, I, Theorem, page 10). The following is a di�erential analogue of Hilbert'stheorem of zeros (Seidenberg, 1952, Nullstellensatz, weak form) or (Kolhin, 1973, hapterIV, setion 2).Theorem 3.1. (theorem of zeros)Let R = KfUg be a di�erential polynomial ring over a di�erential �eld of harateristizero and r be a di�erential ideal of R. A di�erential polynomial p vanishes on everysolution of r, in any di�erential �eld extension of K, if and only if p 2 pr:Proof. The impliation from right to left is immediate. The impliation from left toright: if p =2 pr then p does not belong to at least one di�erential prime ideal p minimalover pr. The anonial ring homorphism whih maps R to the �eld of frations of R=pfurnishes a solution of r whih is not a solution of p. 2Corollary 3.1. A di�erential polynomial p vanishes on every solution of a system ofpolynomial di�erential equations and inequations A = 0; S 6= 0 i� p 2p[A℄ : S1.Proof. Using the de�nitions of the radial and of the saturation of an ideal, we seethat p 2 p[A℄ : S1 if and only if there exists a produt h of elements of S suh thathp 2 p[A℄. Aording to the theorem of zeros, hp 2 p[A℄ if and only if hp vanishes onevery solution of the system A = 0 i.e. if and only if p vanishes on every solution of thesystem A = 0; S 6= 0. 2The following tehnial lemma is lassial. See Ritt (1950), page 30 for instane. Weare going to use it many times.Lemma 3.1. Let A be a �nite subset of some di�erential polynomial ring R. Let q =s v + r be a di�erential polynomial with leader v, suh that deg(q; v) = 1 and v does notappear in s, r nor any element of A. For any p 2 R, if p 2 (A; q) and v does not appearin p then p 2 (A) : s1.Proof. Sine p 2 (A; q) there exists a formula (f) suh thatp = Xpi2ABi pi + C q| {z }(f)where Bi; C 2 R. Apply on the terms of (f) the substitutionv �! q � rs



Computing representations for radials of �nitely generated di�erential ideals 13and multiply by some power of s to erase denominators. Sine v does not appear in pand the pi one gets another formula (f 0) suh thats� p = Xpi2ADi pi +E q| {z }(f 0)where Di; E 2 R and v only appears in q. Therefore E = 0 and p 2 (A) : s1. 23.1. Ritt's redution algorithmsRitt's redution algorithms are pseudo{division (Knuth, 1966, vol. 2, page 407) al-gorithms, extended to di�erential algebra. Many suh algorithms exist (Kolhin, 1973,page 77) (Ritt, 1950, I, 6, page 5) whih may produe di�erent results. We �x one ofthem.Let q be a di�erential polynomial and A be any �nite subset of RnK. Denote v = ld q.Let �A = fp 2 A j rank p � rank qg. We distinguish the Ritt's partial redution (purelydi�erential, denoted partial{rem) from Ritt's full redution (denoted full{rem).Spei�ation of the partial redution algorithm.If �q = q partial{rem A denotes the partial remainder of q by A then1 �q is partially redued w.r.t. all the elements of A,2 there exists a power produt h of elements of S �A suh that h q � �q (mod ( �Av)).The following instrutions provide an algorithm to ompute h and �q from q. Build asequene of pairs (hi; qi). Initially, set h0 = 1 and q0 = q and stop at the �rst index nsuh that qn is partially redued w.r.t. A (then take h = hn and �q = qn). If i is an indexsuh that qi is not partially redued w.r.t. A then let w be the highest derivative whihours in qi whih is also a proper derivative of the leader of some p 2 A. If there aremany di�erent possibilities for p, take whih one you want. Now, let � be the derivationoperator suh that ld �p = w. Take for qi+1 the pseudo{remainder of qi by �p. Thereexists then some � 2 N suh that s�p qi = qi+1 (mod (�p)). Take hi+1 = s�p h.Spei�ation of the full redution algorithm.If �q = q full{rem A denotes the full remainder of q by A then1 �q is redued w.r.t. all the elements of A,2 there exists a power produt h of elements of H �A suh that h q � �q (mod ( �Av)).The following instrutions provide an algorithm to ompute h and �q from q. Build asequene of pairs (hi; qi). Initially, set h0 = 1 and q0 = q and stop at the �rst index nsuh that qn is redued w.r.t. A (then take h = hn and �q = qn). If i is an index suh thatqi is not redued w.r.t. A then let w be the highest derivative whih ours in qi suhthat one of the following onditions holds:1 w is a proper derivative of the leader of some p 2 A,2 w is the leader of some p 2 A and deg(qi; w) � deg(p; w).



14 F. Boulier, D. Lazard, F. Ollivier, M. PetitotIf the �rst ase arises then proeed as for the partial redution algorithm else if theseond ase arises then take for qi+1 the pseudo{remainder of qi by p There exists thensome � 2 N suh that i�p qi = qi+1 (mod (p)). Take hi+1 = i�p h.We have q 2 [A℄ :H1A if and only if (q full{rem A) 2 [A℄ :H1A . In partiular, q full{remA = 0) q 2 [A℄ :H1A . We have q 2 [A℄ : S1A if and only if (q partial{rem A) 2 [A℄ : S1A .4. Regular di�erential systemsAll the de�nitions given in this setion are new (e.g. the de�nitions of \pairs" and\solved pairs"). We de�ne the oherene as a property of systems of di�erential polyno-mial equations and inequations (ondition C3 of de�nition 4.4) instead of the traditionalproperty of systems of di�erential polynomials. This important hange turns out to bevery onvenient and permits us to formulate Rosenfeld's lemma for regular systems in-stead of oherent autoredued sets. Though this lemma only needs �{polynomials tobe de�ned between elements of di�erentially triangular sets, we give a more general def-inition beause we want to prove an analogue of Buhberger's seond riterion in nontriangular situations.Definition 4.1. (pairs)A set fp1; p2g of di�erential polynomials is said to be a pair if the leaders of p1 and p2have ommon derivatives. If A is a set of di�erential polynomials then pairs(A) denotesthe set of all the pairs whih an be formed between any two elements of A.We do not distinguish a pair fp1; p2g from the pair fp2; p1g.Let fp1; p2g be a pair. It may happen that the leader of (say) p2 is a (non neessarilyproper) derivative of the leader of p1. In that ase, the pair fp1; p2g is alled a redutionpair.Note however we will never onsider a pair fp1; p2g suh that rank p1 = rank p2.Definition 4.2. (�{polynomials)Let fp1; p2g be a pair. Assume rankp1 < rank p2. Denote �1u = ld p1, �2u = ld p2and �12u = ld(�1u; �2u). The �{polynomial �(p1; p2) between p1 and p2 is de�ned asfollows. If fp1; p2g is a redution pair then�(p1; p2) = p2 full{rem �2�1 p1;else �(p1; p2) = s1 �12�2 p2 � s2 �12�1 p1:If D is a set of pairs then �(D) denotes the set of all the �{polynomials of its elements.With the same notations, if �1u < �2u then ld�(p1; p2) < �12u and there exist some� 2 N and a di�erential polynomial q 2 R suh that�(p1; p2) = s�1 �12�2 p2 � q �12�1 p1:



Computing representations for radials of �nitely generated di�erential ideals 15The notation � for �{polynomials omes from Rosenfeld's papery. Seidenberg, Rosen-feld and Kolhin never onsidered redution pairs. Our de�nition oinides with theirsin the other ase. 4.1. Solved pairsDefinition 4.3. (solved pairs)A pair fp1; p2g is said to be solved by a di�erential system of equations and inequationsA = 0; S 6= 0 if there exists a derivative v < ld(ld p1; ld p2) suh that�(p1; p2) 2 (Av) : (S \Rv)1:In our algorithm, we shall apply the following riterion to test whether a pair is solvedby a di�erential system.Lemma 4.1. Let fp1; p2g be a pair suh that ld p1 6= ld p2. Let A = 0; S 6= 0 be adi�erential system suh that HA � S. If �(p1; p2) full{rem A = 0 then the pair fp1; p2gis solved by A = 0; S 6= 0.Proof. Denote v = ld�(p1; p2). Sine ld p1 6= ld p2 we have v < ld(ld p1; ld p2). De-note �A = fp 2 A j rank p � rank�(p1; p2)g. Aording to the spei�ations of Ritt'salgorithms of redution, there exist then h1; : : : ; hn 2 H �A suh that, for some positiveintegers �1; : : : ; �n we have h�11 � � �h�nn �(p1; p2) 2 ( �Av). Sine H �A � HA \ Rv and�Av � Av we have �(p1; p2) 2 (Av) : (S \ Rv)1 and the pair is solved by the di�erentialsystem A = 0; S 6= 0. 2The next lemma is a generalization to a non triangular situation of a lemma alreadyproven by Seidenberg (1956), inside theorem 6, page 51, Rosenfeld (1959), inside thelemma page 397 and Kolhin (1973), page 167.Lemma 4.2. Let p1 and p2 be two di�erential polynomials whose leaders �1u and �2uhave ommon derivatives. Denote s1 and s2 their separants. Let (�) denote a di�erentialsystem A = 0; S 6= 0. If (H1) �1u and �2u are di�erent, (H2) the pair fp1; p2g is solvedby (�) and (H3) s1; s2 2 S then for eah derivation operator  2 �, the pair fp1; p2gis solved by (�).Proof. Denote �12 = lm(�1; �2) and � = �(p1; p2). Denote also �u = �12u =ld(ld p1; ld p2).The proof is done by indution on the order of . If the order is zero then the lemma issatis�ed beause of H2 else, deompose  = Æ� where Æ is a mere derivation and denote� = ��12. Assume (indution hypothesis) that the pair f�p1; �p2g is solved by (�).There exists then a derivative v < �u and a power produt h of elements of S \Rv suhthat h�� 2 (Av). By H1 (assuming p1 < p2) there exist some � 2 N and a di�erentialpolynomial q suh that �� = s�1 (�=�2)p2 � q (�=�1)p1.Consider the di�erential polynomial Æ(h��). The seond axiom of rankings impliesthat it belongs to (AÆv) and that Æv < �u. Multiply it by h. One gets a sum (Æh)h�� +y Note the symbol � has a di�erent meaning in Kolhin's text: it denotes the set of derivations.



16 F. Boulier, D. Lazard, F. Ollivier, M. Petitoth2 Æ�� whose �rst term is in (Av) by indution hypothesis. Sine (Av) � (AÆv) weonlude h2 Æ�� belongs to this latter ideal. Expand this polynomialh2(Æ��) = h2Æns�1 ��2 p2 � q ��1 p1o (4.1)= h2n(Æ(s�1 )) ��2 p2 � (Æq) ��1 p1o (4.2)+ h2ns�1 ��2 p2 � q ��1 p1o: (4.3)The polynomials (�=�i)pi (i = 1; 2) have both �u < �u for leaders. If w = max(�u; Æv)then w < �u and the term (4.2) is in (Aw). Thus so is the term (4.3). Sine �=�2 and �=�1are proper derivation operators, we have � = s1 (�=�2)p2 � s2 (�=�1)p1. The term (4.3)is equal to h2 s��11 � + C (�=�1)p1 where C is a di�erential polynomial. Using H3, thefat that Rv � Rw and ld s1 � ld p1 � �u � w, for some power produt h0 of elementsof S \ Rw we have h0� 2 (Aw ; (�=�1)p1). The di�erential polynomial h0� and theelements of Aw are free of �u. Lemma 3.1 applies, � 2 (Aw) : (S \ Rw)1 and the pairfp1; p2g is solved by (�). 24.2. Rosenfeld's lemmaDefinition 4.4. (regular di�erential systems)A di�erential system A = 0; S 6= 0 of a di�erential polynomial ring R is said to be aregular di�erential system (for a ranking R) ifC1 A is di�erentially triangular,C2 S ontains the separants of the elements of A and is partially redued w.r.t. A,C3 all the pairs fp; p0g 2 pairs(A) are solved by A = 0; S 6= 0 (oherene property).The di�erential ideal [A℄ :S1 is alled the regular di�erential ideal de�ned by the system.The following lemma is a generalization of Rosenfeld (1959), lemma, page 397. whihwas already proven by Boulier (1997). The �rst version is due to Seidenberg (1956),theorem 6, page 51. Another version was proven in Kolhin (1973), lemma 5, page 137but the part of Kolhin's lemma whih is not in Rosenfeld's is not proven algorithmi.Kolhin's proof onsists in a very nie trans�nite indution (van der Waerden, 1966,hapter 9). We apply the idea in the proof of theorem 4.1.Theorem 4.1. (Rosenfeld's lemma)If A = 0; S 6= 0 is a regular di�erential system of a di�erential polynomial ring Rfor a ranking R then every di�erential polynomial in [A℄ : S1 whih is partially reduedw.r.t. A belongs to (A) : S1.Proof. Let A = fp1; : : : ; png. Let q 2 [A℄ : S1 be a di�erential polynomial partiallyredued w.r.t. A. Denote F (q) the set of all the formul� (f) suh that, for some power



Computing representations for radials of �nitely generated di�erential ideals 17produt h of elements of S we have a �nite sumh q = X�2� nXj=1Bj;� �pj| {z }(f) :Assume q =2 (A) : S1. In eah formula (f) 2 F (q) appears therefore some (at leastone) proper derivatives of some leaders of elements of A. Denote v(f) the greatest ofthem aording to the ranking R. Among all the formul� (f) 2 F (q) let us onsiderone suh that v(f) is minimal w.r.t. R. Suh a formula exists for all rankings are well{orderings. We laim there exists another formula (f 0) 2 F (q) suh that v(f 0) < v(f).This ontradition will prove the lemma.By lemma 1.1 and the minimality hypothesis, v(f) is the derivative of the leader of atleast one element of A. Let v(f) = �u be a proper derivative of the leaders �1u; : : : ; �iuof the di�erential polynomials p1; : : : ; pi 2 A, renaming the p's if needed.Denote ��i pi = si �u+ r. Apply on the terms of the formula (f) the substitutionv(f)! (�=�i)pi � rsi(as in lemma 3.1) and multiply by some power s�i to erase denominators. Denotingj = (�=lm(�i; �j)) we get a formulas�i h q = D ��i pi (4.4)+ i�1Xj=1Ej �(jpi; jpj) (4.5)+ X�2� nXj=1 Cj;� �pj (4.6)suh that only derivatives less than v(f) appear in the terms of the sums (4.5) and (4.6).Sine the elements of S and q are partially redued w.r.t. A, the derivative v(f) onlyappears in the di�erential polynomial (�=�i)pi. Therefore D = 0.If A is a system of ODE the sum (4.5) is empty and there exists a derivative w < v(f)suh that q 2 (Aw) : S1. Contradition.Assume A = 0; S 6= 0 is a PDE system. Sine it is regular, ondition C3 of de�ni-tion 4.4 holds and lemma 4.2 applies: all the pairs fjpi; jpjg are solved. There existsthus a derivative w < v(f) suh that q 2 (Aw) : S1. Contradition. 2Corollary 4.1. If A = 0; S 6= 0 is a regular di�erential system of a di�erential poly-nomial ring R then1 we have [A℄ : S1 = R if and only if (A) : S1 = R,2 for any p 2 R we have p 2 [A℄ : S1 i� (p partial{rem A) 2 (A) : S1,3 a di�erential polynomial p 2 R is a divisor of zero modulo [A℄ : S1 if and only if(p partial{rem A) is a divisor of zero modulo (A) : S1.Proof. The �rst point. By Rosenfeld's lemma, 1 2 [A℄ : S1 if and only if 1 2 (A) : S1.



18 F. Boulier, D. Lazard, F. Ollivier, M. PetitotLet p 2 R be a di�erential polynomial. The seond point relies on the two followingfats: beause of ondition C2, p 2 [A℄ : S1 if and only if (p partial{rem A) 2 [A℄ : S1;the di�erential polynomial (p partial{rem A) is partially redued w.r.t. A.The third point. Let p; q 2 R be di�erential polynomials. Denote �p = p partial{rem Aand �q = q partial{rem A. Aording to the seond point above, we havep 2 [A℄ : S1 , �p 2 (A) : S1 and q 2 [A℄ : S1 , �q 2 (A) : S1:We also have p q 2 [A℄ : S1 if and only if �p �q 2 (A) : S1. Therefore, p q 2 [A℄ : S1,p; q =2 [A℄ : S1 (i.e. p is a divisor of zero modulo [A℄ : S1) if and only if �p �q 2 (A) : S1,�p; �q =2 (A) : S1 (i.e. �p is a divisor of zero modulo (A) : S1). 2Theorem 4.2. (lifting of Lazard's lemma)If A = 0; S 6= 0 is a onsistent regular di�erential system of a di�erential polynomialring R and R0 � R denotes the ring of the di�erential polynomials partially reduedw.r.t. A then1 the regular di�erential ideal [A℄ : S1 is radial,2 there is a bijetion between the minimal di�erential prime omponents p1; : : : ; pnof [A℄ : S1 and the minimal prime omponents b1; : : : ; bn of (A) : S1 given bybi = (pi \ R0) ; moreover, if Ci is a harateristi set of bi then Ci is also aharateristi set of pi and pi = [Ci℄ :H1Ci .Proof. Assume pk 2 [A℄ : S1 for some k 2 N . Denote �p = (p partial{rem A). ByRosenfeld's lemma �pk 2 (A) : S1. By Lazard's lemma �p 2 (A) : S1. By the orollarybelow Rosenfeld's lemma (point 2), p 2 [A℄ : S1 thus [A℄ : S1 is radial.The ideals b's are prime and their intersetion is equal to (A) :S1. Let's assume (H1)that b1 is redundant w.r.t. (A) : S1 and seek a ontradition. Let f 2 p2 \ � � � \ pnbe a di�erential polynomial and g = f partial{rem A. Sine A � pi we have g 2 pifor every 2 � i � n. Sine g 2 R0 we have g 2 b2 \ � � � \ bn. Using H1 we onludeg 2 (A) : S1. Let's summarize: (f partial{rem A) 2 (A) : S1. By the orollary (point 2)below Rosenfeld's lemma f 2 [A℄ :S1 thus p1 is redundant w.r.t. [A℄ :S1. Contradition.Assume Ci is a harateristi set of (pi \R0). Let p 2 pi and denote q = p full{rem Ci.We have q 2 pi. By Lazard's lemma, ldA = ldCi thus q 2 R0. Sine q 2 pi\R0 is reduedw.r.t. Ci we have q = 0. Therefore Ci is a harateristi set of pi and pi = [Ci℄ :H1Ci . 2If A = 0; S 6= 0 is a regular di�erential system then the set of leaders of the ele-ments of A is equal to the set of leaders of eah of the di�erential prime ideals whih areminimal over [A℄ : S1. All these di�erential prime ideals have therefore the same di�er-ential Hilbert's funtion. The omputation of this funtion is then a purely ombinatorialproblem (Kolhin, 1973, hapter II, setion 12).Moreover, by applying a primary deomposition algorithm over (A) : S1 we get thedi�erential prime deomposition of the di�erential ideal [A℄ : S1. Charateristi sets forthe minimal di�erential prime omponents of [A℄ : S1 an then be omputed using themethod given by Boulier et al. (1995), Theorem 6, page 164.



Computing representations for radials of �nitely generated di�erential ideals 194.3. Testing the ohereneLet A = 0; S 6= 0 be a di�erential system of R whih satis�es onditions C1 and C2 ofde�nition 4.4. If A is di�erentially triangular, HA � S and �(p; p0) full{rem A = 0 for allpairs fp; p0g 2 pairs(A) then the di�erential system A = 0; S 6= 0 is regular (lemma 4.1).This riterion is useful for pratial purposes but only gives a suÆient ondition.Consider the next di�erential system A = 0; SA 6= 0 for any elimination ranking suhthat u > v. It generates only one �{polynomial �(p1; p2) = vy. Now, �(p1; p2) (vy+1)2 2(A�) for some derivative � < uxy. Sine (vy+1) is a multiple fator of p3, it is also a fatorof the separant of p3 whene �(p1; p2) 2 (A�) : (S \ R�)1. Therefore A = 0; SA 6= 0 isa regular di�erential system. However, the �{polynomial vy is redued w.r.t. A.A8<: p1 = ux + v;p2 = uy;p3 = vy(vy + 1)2:Given a di�erential system and a ranking, one may deide whether the system is regularor not. The deision algorithm is quite expensive and not very useful: the followingexample (borrowed from Boulier (1997)) shows that the oherene property is only asuÆient ondition for Rosenfeld's lemma.Consider the following system A of Qft; u; v; wg endowed with derivations w.r.t. xand y, for any ranking suh that tx, ux, uy and vy are the leaders of p1, p2, p3 and p4 re-spetively. It generates only one pair fp2; p3g. The assoiated �{polynomial is �(p2; p3) =vy � wx. A8>><>>: p1 = t2x + vy;p2 = ux + v;p3 = uy + w;p4 = (vy � wx)vy:If the ranking is orderly, then there exists a derivative � suh that tx; ux; uy; vy � � <uxy. Then A � A� and tx 2 SA\R�. Using p1 and p4 it is lear that �(p2; p3) t2x 2 (A�).Sine tx 2 SA \R� it follows that �(p2; p3) 2 (A�) : (SA \R�)1 i.e. the pair fp2; p3g issolved by A = 0; S 6= 0. This di�erential system is thus regular and Rosenfeld's lemmaapplies.If the ranking is an elimination ranking suh that t > u then for eah derivative� < uxy we have p1 =2 A� and tx =2 SA \ R�. It an be proven (Boulier, 1997, lemma 6)| but this is quite obvious | that �(p2; p3) =2 (A�) : (S \ R�)1 i.e. the pair fp2; p3gis not solved by A = 0; S 6= 0. This di�erential system is not regular w.r.t. this latterranking. However, sine the leaders and the families SA are the same for both rankings,the onlusion of Rosenfeld's lemma still holds.4.3.1. Buhberger's riteriaMost of the results of this setion are borrowed from Boulier (1997). Buhberger (1979)established a few riteria whih predit that some S{polynomials (Beker and Weispfen-ning, 1991, def. 5.46, page 211) are redued to zero without having to atually reduethem. They turn out to be very important in pratie sine most of the CPU time isspent in S{polynomials redutions. Remark however they do not hange the theoretial



20 F. Boulier, D. Lazard, F. Ollivier, M. Petitotomplexity of Gr�obner bases sine this omplexity expresses the size of the Gr�obner basis(whih does not depend on the algorithm) in terms of the size of the input system.Buhberger's �rst riterion (Beker and Weispfenning, 1991, lemma 5.66, page 222)states that if the leading terms of two polynomials p and q are disjoint (i.e. their leastommon multiple is equal to their produt) then the S{polynomial S(p; q) ��!fp;qg 0.In di�erential algebra, we might onjeture that if p and q are two di�erential polynomi-als with leaders �u and �u respetively and if � and � are disjoint then the �{polynomial�(p; q) full{rem fp; qg = 0. This onjeture is false in general but true in the next ase.Proposition 4.1. (analogue of Buhberger's �rst riterion)If p and q are two di�erential polynomials whih are linear, homogeneous, in onedi�erential indeterminate, with onstant oeÆients and if (denoting ld p = �u and ld q =�u) we have ld(�u; �u) = ��u then �(p; q) full{rem fp; qg = 0.Proof. Let R = Kfug be a di�erential polynomial ring endowed with a ranking and aset of derivations fÆ1; : : : ; Æmg. Let �R = K[x1; : : : ; xm℄ be a non di�erential polynomialring.To eah di�erential polynomial f = �1u + � � � + �su whih is linear, homogeneousand with onstant oeÆients we may assoiate a polynomial f 2 �R de�ned by f =�1u + � � � + �su and  =  for every  2 K and (Æ�11 � � � Æ�mm u) = x�11 � � �x�mm . Themonoid of terms over the alphabet fx1; : : : ; xmg is endowed with the admissible ordering(Beker and Weispfenning, 1991, def. 4.59, page 167) given by the ranking.Let p; q; r 2 R satisfying the hypotheses of the proposition. On one hand, �(p; q) =�1S(p; q) ; on another hand r full{rem fp; qg = �r if and only if r ��!fp; qg �r.By Buhberger's �rst riterion, S(p; q) ��!fp; qg 0 so �(p; q) full{rem fp; qg = 0. 2The following example shows that the onjeture is false if the equations are nothomogeneous: take p = ux + 1 and q = uy + u. The �{polynomial �(p; q) = ux isredued to 1 by the set fp; qg.This one shows that the onjeture is false if the oeÆients of the equations are notonstants: assume the oeÆient  is suh that y = 1 and take p = ux + u and q = uy.The �{polynomial �(p; q) = uy + u is redued to u by fp; qg.In proposition 4.2, we prove an analogue of Buhberger's seond riterion. Howeverwe impose restritions on the di�erential polynomials whih have no ounterpart in theGr�obner bases theory. This makes the proof of its implementation in the Rosenfeld{Gr�obner algorithm more painful than in the non di�erential ase.Proposition 4.2. (analogue of Buhberger's seond riterion)Let hp1; p2; p3i be a triple of di�erential polynomials suh that (H1) the leaders �1u,�2u and �3u of the p's have ommon derivatives and are pairwise di�erent, (H2) ld(�1u; �3u)is a derivative of �2u and (H3) one of the following onditions holds:1 ld pi is not a derivative of ld pj (1 � i; j � 3 and i 6= j),2 p1 < p2 < p3 or p3 < p2 < p1,3 p2 < p1 < p3 and deg(p1; �1u) = 1,4 p1 < p3 < p2 and deg(p3; �3u) = 1.



Computing representations for radials of �nitely generated di�erential ideals 21Let A = 0; S 6= 0 be a di�erential system. If (H4) the pairs fp1; p2g and fp2; p3gare solved by A = 0; S 6= 0 and (H5) s1; s2; s3 2 S then the pair fp1; p3g is solvedby A = 0; S 6= 0.Proof. Denote �iju = ld(�iu; �ju). Beause of H2 the derivation operators (�13=�12)and (�13=�23) exist. Denote �3 = ���13�12 p1; �13�12 p2� ;�1 = ���13�23 p2; �13�23 p3� :Lemma: if there exist di�erential polynomials B, C and D and a power produt h ofelements of S suh that ldh < �13u andh�(p1; p3) = B�3 + C�1 +D �13�1 p1 (4.7)then the pair fp1; p3g is solved by A = 0; S 6= 0. Proof: by H4 and lemma 4.2 thereexists a derivative v < �13u suh that �3; �1 2 (Av) : (S \ Rv)1. By H5 there exists apower produt h0 of elements of S suh that h0�(p1; p3) 2 (Av ; (�13=�1)p1) and ldh0 =max(ldh; v) < �13u. Denote w = max(�1u; ldh0). Beause of H1 we have w < �13u.By H5 and lemma 3.1, �(p1; p3) 2 (Aw) : (S \ Rw)1 and the pair fp1; p3g is solvedby A = 0; S 6= 0. 2If ld pi is not a derivative of ld pj (1 � i; j � 3 and i 6= j) then s2�(p1; p3) =s1�1 + s3�3. Beause of H1 we have ld s2 < �13u. By H5 our lemma above applies andthe pair fp1; p3g is solved by A = 0; S 6= 0.If p1 < p2 < p3 then there exist some �1; �2; �3 2 N and some di�erential polynomialsq1; q2 and q3 suh that �3 = s�31 �13�2 p2 � q3 �13�1 p1;�1 = s�12 �13�3 p3 � q1 �13�2 p2;�(p1; p3) = s�21 �13�3 p3 � q2 �13�1 p1:Denoting � = max(�2; �3), there exists a di�erential polynomial C suh thats���21 s�12 �(p1; p3) = s�1�1 + q1 s���31 �3 + C �13�1 p1:Beause of H1 we have ld(s���21 s�12 ) < �13u. By H5 our lemma applies and the pairfp1; p3g is solved by A = 0; S 6= 0.If p2 < p1 < p3 then �3 = s�32 �13�1 p1 � q3 �13�2 p2:Computing as above we �nd a relationq3 s�12 �(p1; p3) = q1 s�21 �3 � q3 s�21 �1 + C �13�1 p1:In the general ase, one annot apply our lemma for q3 =2 S. Assume deg(p1; �1u) = 1.



22 F. Boulier, D. Lazard, F. Ollivier, M. PetitotBy H5 we have q3 = s1 2 S. Beause of H1, we have ld(q3 s�12 ) < �13u. Our lemmaapplies and the pair fp1; p3g is solved by A = 0; S 6= 0.The last ase is similar to the former one. 2p1 = vu3xx + u2xx + ux;p2 = uxy;p3 = uyy + u2y;p4 = vy;p5 = vxxx + u3xx;�(p1; p2) = vyu3xx + uxy;�(p2; p3) = uyuxy: -Æy0 1 2
6Æx

01
2 uxx(�1u) uxy(�2u) uyy (�3u)

�12u �23u�13u- 6 - 6�12=�2 �23=�3The piture illustrates proposition 4.2 in the triangular ase. Both �(p1; p2) and�(p2; p3) are redued to zero by A. Therefore the pairs fp1; p2g and fp2; p3g are solvedby the system A = 0; HA 6= 0. The least ommon derivative between the leaders of p1and p3 is a derivative of the leader of p2. Thus the pair fp1; p3g is solved by the system.5. Computing a regular deompositionThis setion aims at proving the theorem 5.1 whih onstitutes the ore of the Rosenfeld{Gr�obner algorithm. Our implementation of the algorithm an be viewed as a mere trans-lation in the MAPLE programming language of the e�etive proof of this theorem.Our implementation arries the analogue of Buhberger's seond riterion out. It is alifting for the di�erential algebra of the version of Buhberger's algorithm by Gebauerand M�oller (1988). The book of Beker and Weispfenning (1991), pages 230{232 furnishedus many important informations on that subjet. It is muh more eÆient than the onesgiven by Boulier (1994) or Boulier et al. (1995).Theorem 5.1. (omputing a regular deomposition)If P0 = 0; S0 6= 0 is a di�erential system of a di�erential polynomial ring R then it ispossible to ompute �nitely many onsistent regular di�erential systems Ai = 0; Si 6= 0(1 � i � n) suh thatp =q[P0℄ : S10 = [A1℄ : S11 \ � � � \ [An℄ : S1n : (5.1)This deomposition may ontain omponents redundant w.r.t. p. Operations needed areaddition, multipliation, di�erentiation and equality test with zero in the base �eld of R.A quadruple G = hA; D; P; Si is a data struture whih ontains a di�erential systembeing proessed until it is regular. The set A � R ontains equations already proessed.The set P � R ontains the equations whih are not yet proessed. The set D ontainspairs whih have to be solved and S � R ontains the inequations.Initially, P = P0, S = S0 and A = D = ;. If P 6= ; orD 6= ; then the urrent quadrupleis rewritten as �nitely many quadruples by a ompletion and splitting proess. If P =D = ; then an autoredution proess transforms the di�erential system A = 0; S 6= 0



Computing representations for radials of �nitely generated di�erential ideals 23as an equivalent regular di�erential system �A = 0; �S 6= 0. The autoredution proessdeides if the system is onsistent or not. In the former ase, the regular di�erential ideal[ �A℄ : �S1 beomes one of the omponents of intersetion 5.1; in the latter, the system isdisarded.Let G = hA; D; P; Si be a quadruple. We denote P(D) the set of all the di�erentialpolynomials p suh that there exists a redution pairy fp; p0g 2 D with rank p > rank p0.We denote F(G) = A[P(D)[P and I(G) =p[F(G)℄ : S1. The solutions of a quadru-ple G are de�ned as the solutions of the di�erential system F(G) = 0; S 6= 0. A pairis said to be solved by G if it is solved by the system F(G) = 0; S 6= 0. The followingaxioms give the de�nition of pairs nearly solved by G.A1 Every pair whih is solved by G is nearly solved by G.A2 Every pair whih belongs to D is nearly solved by G.A3 If fp1; p2g and fp2; p3g are pairs nearly solved by G and if the triple hp1; p2; p3isatis�es the hypotheses H1, H2 and H3 of proposition 4.2 then the pair fp1; p3gis nearly solved by G.We are now ready to state some properties whih will beome loop invariants of ourimplementation of the Rosenfeld{Gr�obner algorithm. Let G = hA; D; P; Si be a quadru-ple.I1 The rank of the set A is autoredued.I2 If fp; p0g 2 D is a redution pair with rank p > rankp0 = vd and F = ff 2 F(G) jrankf � vdg then p0 2 (Fv) : (S \ Rv)1.I3 Every pair fp; p0g 2 pairs(A) is nearly solved by G.I4 If p 2 A or p belongs to some pair of D then ip; sp 2 S.I5 If fp; p0g 2 D is not a redution pair then �(p; p0) 2 I(G).I6 If fp; p0g 2 D is a pair then rank p 6= rank p0.5.1. The final autoredution proessLet G = hA; D; P; Si be a quadruple satisfying the invariants and s.t. D = P = ;.The di�erential system is not neessarily regular. We present here one possible wayto transform it as an equivalent regular di�erential system. This proess may showthat I(G) = R. In that ase, the quadruple G is disarded. We build a sequene ofdi�erential systems. Let A0 = A; S0 = S:Let k � 0 be an index. If Ak is not di�erentially triangular then let �u be the greatestderivative ouring in some p 2 Ak being also a proper derivative of the leader �0u ofsome p0 2 Ak. Denoting � = �=�0, ompute �p = p full{rem �p0 andAk+1 = Ak n fpg [ f�pg;Sk+1 = Sk [ fi�p; s�pg:If rankAk 6= rankAk+1 then I(G) = R (proved below) and the quadruple is disarded.Let's assume rankAk = rankAk+1. If Ak is di�erentially triangular then take�A = Ak; �S = Sk partial{rem �A:y Reall we don't distinguish fp; p0g from fp0; pg.



24 F. Boulier, D. Lazard, F. Ollivier, M. PetitotProposition 5.1. The autoredution proess terminates.Proof. The sequene of the rewritten derivatives �u is stritly dereasing and rankingsare well orderings. 2Proposition 5.2. For eah index k � 0 we have HAk � Sk. Moreover, H �A � �S.Proof. The �rst statement is lear. The seond one is due to the fat that, sine �Ais di�erentially triangular, the initials and the separants of its elements are partiallyredued w.r.t. it, and are thus left inhanged by the �nal partial redution. 2Proposition 5.3. For eah index k � 0, if rankAk 6= rankAk+1 then [Ak℄ : S1k = R.Proof. If rankAk 6= rankAk+1 then some initial ip of some element of Ak has been re-dued to zero. By proposition 5.2 we have ip 2 [Ak ℄:S1k . Sine ip 2 Sk (by proposition 5.2again) [Ak℄ : S1k = R. 2Let us now expliit the values of �p, its initial and its separant. Let k � 0 be anindex. Sine rankAk is autoredued, ld�p0 = �u < ld p and there exist some � 2 N anddi�erential polynomials q0; q1; q2 2 R�u suh that�p = s�p0 p� q0 �p0; (5.2)s�p = s�p0 sp � q1 �p0; (5.3)i�p = s�p0 ip � q2 �p0: (5.4)Lemma 5.1. If rankAk = rankAk+1 then for every derivative v we havey(Ak;v) : (Sk \ Rv)1 � (Ak+1;v) : (Sk+1 \ Rv)1:Proof. First observe Sk � Sk+1. If v < ld p then Ak;v = Ak+1;v . If v � ld p, it suÆesto prove p 2 (Ak+1;v) : (Sk+1 \ Rv)1. Sine ld p = ld �p we have �p 2 Ak+1;v . Sineld�p0 = �u < ld p we have �p0 2 Ak+1;v and sp0 2 Rv . Using proposition 5.2 andrelation (5.2) we onlude p 2 (Ak+1;v) : (Sk+1 \ Rv)1. 2Proposition 5.4. For eah index k � 0, we have [Ak ℄ : S1k = [Ak+1℄ : S1k+1.Proof. The inlusion [Ak℄ : S1k � [Ak+1℄ : S1k+1 omes from lemma 5.1. The onverseone. Assume f is a di�erential polynomial suh that, for some �;  2 N we have i��ps�pf 2[Ak+1℄. By relation (5.2) we have �p 2 [Ak℄:S1k hene [Ak+1℄ � [Ak ℄:S1k . By relations (5.3)and (5.4) and the fat that sp; sp0 ; ip 2 Sk (proposition 5.2) f 2 [Ak ℄ : S1k . 2Lemma 5.2. Assume all the sets Ak have the same rank. All pairs in pairs(Ak) are solvedby Ak = 0; Sk 6= 0.y By Ak;v we mean Ev where E = Ak.



Computing representations for radials of �nitely generated di�erential ideals 25Proof. The proof is an indution on k. Basis of the indution. Beause of I3, the fatthat D = ; and proposition 4.2 every pair fp; p0g 2 pairs(A0) is solved by the di�erentialsystem A0 = 0; S0 6= 0.The general ase. Let k � 0 be an index. We assume (indution hypothesis) thatall pairs in pairs(Ak) are solved by Ak = 0; Sk 6= 0 and we prove that, if fp1; p2g 2pairs(Ak+1) then fp1; p2g is solved by Ak+1 = 0; Sk+1 6= 0.First subase: p1 6= �p and p2 6= �p. Then fp1; p2g 2 pairs(Ak) is solved by the systemAk = 0; Sk 6= 0 i.e. there exists some v < ld(ld p1; ld p2) suh that �(p1; p2) 2 (Ak;v) :(Sk \Rv)1. By lemma 5.1 �(p1; p2) 2 (Ak+1;v) : (Sk+1 \Rv)1 and the pair is solved byAk+1 = 0; Sk+1 6= 0.Seond subase: p1 = �p. Sine rankAk = rankAk+1 we have ld p = ld �p = ld p1 = �1uand (assuming with no loss of generality that �p < p2)�(�p; p2) = s�p �12�2 p2 � sp2 �12�1 �p:Expanding the value of �(�p; p2) using formul� (5.2) and (5.3) and realling ld�p0 < ld p1we see there exists a derivative v < �12u suh that s�p0�(p; p2) � �(�p; p2) (mod (Ak;v)).By the fat that the pair fp; p2g is solved by Ak = 0; Sk 6= 0 (indution hypothesis) andlemma 5.1 the pair f�p; p2g is solved by Ak+1 = 0; Sk+1 6= 0. 2Proposition 5.5. Every pair in pairs( �A) is solved by �A = 0; �S 6= 0.Proof. By lemma 5.2 every pair in pairs( �A) is solved by �A = 0; Sk 6= 0, where k is theindex suh that �A = Ak is di�erentially triangular.It suÆes to prove that for any derivative v we have ( �Av):(Sk\Rv)1 � ( �Av):( �S\Rv)1.Let s 2 Sk\Rv be not partially redued w.r.t. A and �s = s partial{rem A. There exists apower produt h of elements of SA\Rv suh that h s � �s (mod (Av)). By proposition 5.2we have SA � �S and the proposition is proved. 2By propositions 5.3 and 5.4, if the rank of the set Ak hanges during the autoredutionproess then the di�erential system A = 0; S 6= 0 is proved to be inonsistent and anbe disarded. Let's assume this is not the ase. The system �A = 0; �S 6= 0 is a regulardi�erential system. Indeed �A is di�erentially triangular (ondition C1 is satis�ed); �SontainsH �A (proposition 5.2) and is partially redued w.r.t. �A (onditionC2 is satis�ed);proposition 5.5 proves ondition C3 holds for �A = 0; �S 6= 0. Computing a Gr�obner basisof the ideal ( �A) : �S1 in dimension zero, one deides whether the regular di�erentialsystem �A = 0; �S 6= 0 is onsistent (orollary below Rosenfeld's lemma, point 1). If it isinonsistent, it is disarded. Otherwise, I(G) = [ �A℄ : �S1 by theorem 4.2 (point 1).5.2. The ompletion proessWe onsider a quadruple G = hA; D; P; Si satisfying the invariants and suh thatD 6= ; or P 6= ;. Roughly, we pik a new equation q = 0 from these sets, redue it by Aand enlarge A with it (if non zero of ourse). Applying the analogues of Buhberger'sriteria, we do not only try to generate as few pairs as possible but also to remove asmany pairs as possible from D. The method is not optimal. Gebauer and M�oller's versionof the Buhberger algorithm is not either.Pik either a di�erential polynomial q0 2 P or a pair fp0; p00g 2 D. In the former



26 F. Boulier, D. Lazard, F. Ollivier, M. Petitotase, let P � = P n fq0g let D� = D and q = q0 full{rem A. In the latter let P � = P ,let D� = D n ffp0; p00gg and q = �(p0; p00) full{rem A. Assume q 6= 0 and denoteG0 = hA0; D0; P 0; S0i any quadruple satisfying:A0 = fqg [ fp 2 A j ld p is not a derivative of ld qg.D0 = D1 [D2 whereD1 � D0 = ffp; qg j p 2 A and ld p has ommon derivatives with ld qgA pair fp; qg 2 D0 is not kept in D1 only if ondition (a) or (b) holds:(a) p and q are linear homogeneous di�erential polynomials in one di�erentialindeterminate with onstant oeÆients and lm(�; �) = ��(where ld q = �u and ld p = �u),(b) there exists a pair fp0; qg 2 D1 suh that the triple hq; p0; pi satis�es thehypotheses H1, H2 and H3 of proposition 4.2.D2 � D�.A pair fp; p0g 2 D� is not kept in D2 only if the triple hp; q; p0i satis�esthe hypotheses H1, H2 and H3 of proposition 4.2 and ld(ld p; ld p0)is di�erent from both ld(ld p; ld q) and ld(ld p0; ld q).P 0 = P �.S0 = S [ fiq; sqg.Lemma 5.3. A � A0 [ P(D0).Proof. It suÆes to show that if p 2 A is suh that ld p is a derivative of ld q then theredution pair fp; qg is kepty in D1. By the hypothesis H2 of proposition 4.2, if fp; qg isnot kept in D1, there exists a di�erential polynomial p0 2 A suh that ld(ld p; ld q) = ld pis a derivative of ld p0. This is impossible for p; p0 2 A and rankA is autoredued. 2Lemma 5.4. If fp; p0g 2 D� is a redution pair then fp; p0g 2 D2.Proof. Assume rank p > rankp0. Sine fp; p0g is a redution pair we have ld(ld p; ld p0) =ld p. Thus, if the triple hp; q; p0i satis�es the hypothesisH2 of proposition 4.2 then ld p isa derivative of ld q hene ld(ld p; ld q) = ld p = ld(ld p; ld p0) and the pair is kept in D2.2Lemma 5.5. If vd is any rank, F = fp 2 F(G) j rank p � vdg and F 0 = fp 2 F(G0) jrank p � vdg then (Fv) : (S \ Rv)1 � (F 0v) : (S0 \ Rv)1.Proof. Denote F � = fp 2 A [ P(D�) [ P � j rank p � vdg. By lemmas 5.3 and 5.4 wehave F � � F 0. We thus have two ases to onsider.First ase: P � 6= P . More preisely, we assume q = q0 full{rem A with q0 2 P and weprove that, if rank q0 � vd then q0 2 (F 0v) : (S0 \Rv)1.This omes from lemma 5.3, the fat that the elements of A involved in the redutionproess of q0 have rank lower than or equal to that of q0 that HA � S � S0 that q 2 A0and rank q � rank q0.y Atually, the lemma is false when p; q are linear homogeneous di�erential polynomials, in onedi�erential indeterminate u, with onstant oeÆients and when ld q = u. In that ase, the equation pis lost. However, this does not matter for q := u = 0 makes superuous all other linear homogeneousdi�erential polynomials in u alone and with onstant oeÆients.



Computing representations for radials of �nitely generated di�erential ideals 27Seond ase: P(D�) 6= P(D). More preisely, we assume q = �(p0; p00) full{rem A andfp0; p00g is a redution pair with rank p0 > rankp00. We prove that, if rank p0 � vd thenp0 2 (F 0v) : (S0 \ Rv)1.Claim: there exists a power produt h of elements of S0 \ Rv suh that h p0 ��(p0; p00) (mod (F 0v)). Sine fp0; p00g is a redution pair, there exists some derivationoperator � suh that �(p0; p00) = p0 full{rem �p00. Thus there exist �; � 2 N suh thati�p00 s�p00 p0 � �(p0; p00) (mod (�p00)).Using lemmas 5.3 and 5.4, the fat that G satis�es I2 and rankp00 < rank p0 � vd wesee p00 2 (F 0v) : (S0 \ Rv)1. Sine ld�p00 = ld p0 � v, we have �p00 2 (F 0v) : (S0 \ Rv)1.Sine ip00 ; sp00 2 S0 \ Rv by I4 the laim is proved. 2Now ld�(p0; p00) � v thus, aording to the spei�ations of Ritt's algorithms of re-dution, there exists a power produt h of elements of S0 \ Rv suh that h�(p0; p00) �q (mod (F 0v)). Sine rank q � rank�(p0; p00) < vd we have q 2 F 0v . Using the laim above,the lemma is proved. 2Proposition 5.6. I(G) : fiq; sqg1 = I(G0).Proof. The inlusion I(G) : fiq; sqg1 � I(G0) is a orollary of lemma 5.5. Let's provethe onverse inlusion and �rst that q 2 I(G). For this, we onsider three ases:First ase: q = q0 full{rem A with q0 2 P . It is lear for q0 2 I(G), A � I(G) andHA � S.Seond ase: q = �(p0; p00) full{rem A when fp0; p00g is not a redution pair. It omesfrom I5 and the fat that A � I(G) and HA � S.Third ase: q = �(p0; p00) full{rem A when fp0; p00g is a redution pair (with rank p0 >rank p00). It omes from the fat that p00 2 I(G) by I2 (applied to G), p0 2 P(D) � I(G),A � I(G) and HA � S.Sine q 2 I(G), we have A0 � I(G). If p 2 P(D0) does not belong to P(D) then pbelongs to a redution pair fp; qg 2 D0 with p 2 A ; thus P(D0) � I(G). The lemmaomes now from the fat that P 0 � P and S0 = S [ fiq; sqg. 2Proposition 5.7. G0 satis�es invariants I1, I4 and I6.Proposition 5.8. G0 satis�es invariant I5.Proof. This omes from the fat that all the pairs in D0 whih are not redution pairshave the form fp; qg with p; q 2 A0 � I(G0), that I(G) � I(G0) and G satis�es I5. 2Proposition 5.9. G0 satis�es invariant I2.Proof. Invariant I2 is satis�ed for all redution pairs in D0 whih are not in D sinethose pairs have the form fp; qg with rankp > rank q and q 2 A0. Invariant I2 is satis�edfor all redution pairs in D0 whih belong also to D by lemma 5.5. 2Lemma 5.6. If v is any derivative then every fp; p0g 2 pairs(A[fqg) whih is suh thatld(ld p; ld p0) < v is nearly solved by G0.Proof. By indution on v. Basis of the indution: if v is less than or equal to the



28 F. Boulier, D. Lazard, F. Ollivier, M. Petitotminimum v0 of ld(ld p; ld p0) for all fp; p0g 2 pairs(A [ fqg) then the lemma is triviallysatis�ed. In the general ase, let us assume that v > v0 and (indution hypothesis) thatevery fp; p0g 2 pairs(A [ fqg) suh that ld(ld p; ld p0) < v is nearly solved by G0.First ase: p 6= q and p0 6= q.First subase: if fp; p0g is solved by G then, by lemma 5.5, the pair fp; p0g is solvedby G0. It is thus nearly solved by G0 aording to A1.Seond subase: if fp; p0g 2 D� then either it belongs toD0 or it does not. In the formerase, it is nearly solved by G0 aording to A2. In the latter, the triple hp; q; p0i satis�esthe hypotheses H1 to H3 of proposition 4.2 and ld(ld p; ld p0) is a proper derivativeof both ld(ld p; ld q) and ld(ld p0; ld q). By the indution hypothesis and A3, the pairfp; p0g is nearly solved by G0.Third subase: if fp; p0g = fp0; p00g 2 D and q = �(p0; p00) full{rem A then fp; p0g issolved by the di�erential system A [ fqg = 0; S0 6= 0 (spei�ations of Ritt's redutionalgorithms). By lemma 5.3 and the fat that q 2 A0, the pair fp; p0g is solved by G0. Itis thus nearly solved by G0 aording to A1.Seond ase: the pair is formed by q and some p 2 A.First subase: If fp; qg 2 D1 � D0 then fp; qg is nearly solved by G0 aording to A2.Seond subase: If fp; qg =2 D0 then either it is solved byG0 aording to proposition 4.1or there exists a pair fp0; qg 2 D1 � D0 suh that the triple hq; p0; pi satis�es thehypothesesH1 toH3 of proposition 4.2. In this latter ase, ld(ld p; ld q) is a derivative ofld(ld p; ld p0) and, aording to the �rst ase onsidered above, the pair fp; p0g 2 pairs(A)is solved by G0. Aording to A3 the pair fp; qg is nearly solved by G0. 2Proposition 5.10. G0 satis�es I3.Proof. This is a onsequene of lemma 5.6 and of the fat that A0 � A [ fqg. 25.3. SplittingsWhen the ompletion proess enlarges A with a new equation q = 0, the set S isalso enlarged with two inequations iq 6= 0; sq 6= 0. In order not to loose solutions ofthe urrent quadruple, we must also onsider its solutions whih anel the initial or theseparant of q. This we do by splitting ases as in Seidenberg's elimination algorithms. Theargument relies on the di�erential analogue of Hilbert's theorem of zeros (theorem 3.1).Lemma 5.7. If A = 0; S 6= 0 is a di�erential system and h is a di�erential polynomialthen every solution of A = 0; S 6= 0 is a solution of A[ fhg = 0; S 6= 0 or a solution ofA = 0; S [ fhg 6= 0 and onversely.Corollary 5.1. p[A℄ : S1 =p[A; h℄ : S1 \p[A℄ : (S [ fhg)1.Proof. The orollary omes from lemma 5.7 and the orollary 3.1 of the theorem ofzeros. 2Let's ome bak to the quadruples G, G0 and to the di�erential polynomial q of se-tion 5.2. Denote rank q = vd. Let qi = q � iq vd and qs = d q � v sq . DenoteGi = hA; D�; P � [ fiq; qig; Si;Gs = hA; D�; P � [ fsq; qsg; S [ fiqgi:



Computing representations for radials of �nitely generated di�erential ideals 29Proposition 5.11. I(G) = I(Gi) \ I(Gs) \ I(G0).Proof. Using lemma 5.7, every solution of F(G) = 0; S 6= 0 is a solution of F(G) [fiqg = 0; S 6= 0 (denoted �i) or a solution of F(G) = 0; S [ fiqg 6= 0 and onversely.Using lemma 5.7 again, every solution of the latter system is a solution of F(G)[fsqg =0; S [ fiqg 6= 0 (denoted �s) or a solution of F(G) = 0; S [ fiq; sqg 6= 0 (denoted �0)and onversely.The system �i (respetively �s) has the same solutions as the quadruple Gi (respe-tively Gs). By proposition 5.6, the system �0 has the same solutions as the quadruple G0.The proposition follows now from orollary 5.1. 2Observe that if a di�erential polynomial h does not divide zero modulo p[�℄ thenthere is no need of splitting on h sine in that ase p[�℄ = p[�℄ : h1. This is the asefor instane if h 2 K (h 6= 0).5.3.1. The system Gi satisfies all the invariantsNote: the proofs are simpler variants of the ones given for G0 in setion 5.2. They relyon the fat that q 2 (iq; qi) and rank iq; qi < rank q. Therefore, sine q 2 (sq ; qs) andrank sq ; qs < rank q the same proofs hold for Gs ; if q = 0 then they hold for the quadrupleG� = hA; D�; P �; Si too.Lemma 5.8. If vd is any rank, F = fp 2 F(G) j rank p � vdg and Fi = fp 2 F(Gi) jrank p � vdg then (Fv) : (S \ Rv)1 � (Fi;v) : (Si \ Rv)1.Proof. We only have to onsider two ases.First ase: P � 6= P . More preisely, we assume q = q0 full{rem A with q0 2 P and weprove that, if rank q0 � vd then q0 2 (Fi;v) : (Si \ Rv)1.This omes from the fat that the elements of A involved in the redution proess of q0have rank lower than or equal to that of q0, the fat that HA � S � S0 and the fat thatq 2 (iq; qi) � (Fi;v).Seond ase: P(D�) 6= P(D). More preisely, we assume q = �(p0; p00) full{rem A andfp0; p00g is a redution pair with rank p0 > rankp00. We prove that, if rank p0 � vd thenp0 2 (Fi;v) : (Si \Rv)1.Claim: there exists a power produt h of elements of Si \ Rv suh that h p0 ��(p0; p00) (mod (Fi;v)). Sine fp0; p00g is a redution pair, there exists some derivationoperator � suh that �(p0; p00) = p0 full{rem �p00. Thus there exist �; � 2 N suh thati�p00 s�p00 p0 � �(p0; p00) (mod (�p00)).Using the fat that G satis�es I2 and rankp00 < rank p0 � vd we see p00 2 (Fi;v) : (Si \Rv)1. Sine ld�p00 = ld p0 � v, we have �p00 2 (Fi;v): (Si\Rv)1. Sine ip00 ; sp00 2 Si\Rvby I4 the laim is proved. 2Now ld�(p0; p00) � v thus, aording to the spei�ations of Ritt's algorithms of re-dution, there exists a power produt h of elements of Si \ Rv suh that h�(p0; p00) �q (mod (Fi;v)). Sine rank iq; qi < rank�(p0; p00) < vd and q 2 (iq ; qi) we have q 2 (Fi;v).Using the laim above, the lemma is proved. 2Proposition 5.12. Gi satis�es invariants I1, I4 and I6.



30 F. Boulier, D. Lazard, F. Ollivier, M. PetitotProposition 5.13. Gi satis�es invariant I5.Proof. This omes from the fat that I(G) � I(Gi) and G satis�es invariant I5. 2Proposition 5.14. Gi satis�es invariant I2.Proof. This proposition is a orollary of lemma 5.8. 2Proposition 5.15. Gi satis�es invariant I3.Proof. Beause of lemma 5.8, all the pairs in D solved by G whih still belong to D�are also solved by Gi.It suÆes thus to show that if q = �(p0; p00) full{rem A then fp0; p00g is solved by Gi.This pair is solved by the di�erential system A [ fqg = 0; Si 6= 0. Sine q 2 (iq; qi) �F(Gi) and rank iq; qi < rank q the pair fp0; p00g is solved by Gi. 25.4. Proof of theorem 5.1The axioms below de�ne a partial ordering among quadruples. Let G = hA0; D0; P 0; S0iand G = hA; D; P; Si be two quadruples suh that rankA and rankA0 are autoredued.O1 If A0 < A then G0 is said to be less than G.O2 If A0 = A and D0 has fewer elements than D then G0 is said to be less than G.O3 Assume A0 = A and D0 = D. If there exists a di�erential polynomial p 2 P and a�nite set E (possibly empty) of di�erential polynomials all less than p suh thatP 0 = P n fpg [ E then G0 is said to be less than G.Lemma 5.9. The ordering de�ned above is artinian (i.e. every stritly dereasing se-quene of quadruples is �nite).Proof. We assume there exists an in�nite stritly dereasing sequene (Gn) of quadru-ples and seek a ontradition. Denote Gn = hAn; Dn; Pn; Sni. Sine the ordering onautoredued sets of di�erential polynomials is artinian, (Gn) ontains an in�nite subse-quene (Gin) of quadruples suh that all Ai's have the same rank. By a similar argument,(Gin) ontains itself an in�nite subsequene (Gjn) of quadruples suh that all Aj 's havethe same rank and all Dj have the same number of elements. By an argument of graphtheory (K�onig, 1950, Satz 6.6) (i.e. every in�nite loally �nitey tree ontains a branh ofin�nite length) there exists (taken from the Pj) an in�nite stritly dereasing sequeneof di�erential polynomials. This annot be for rankings are well{orderings. This �nalontradition proves the lemma. 2Proof of theorem 5.1. Di�erential systems are represented using quadruples. LetG = hA; D; P; Si be a quadruple of R satisfying the invariant properties I1 up to I6.The initial system, oded h;; ;; P0; S0i satis�es them. We assume indutively that thetheorem holds for any quadruple G0 < G satisfying the invariants. The indution istrans�nite (lemma 5.9).y A tree is said to be loally �nite if only �nitely many branhes start from eah of its nodes.



Computing representations for radials of �nitely generated di�erential ideals 31Assume D and P are empty (basis of the indution). Applying the method desribed insetion 5.1, one deides whether the di�erential system A = 0; S 6= 0 is onsistent or not.It is disarded if it is inonsistent else one gets a regular di�erential system �A = 0; �S 6= 0suh that I(G) = [ �A℄ : �S1.AssumeD or P not empty (general ase). Pik either a di�erential polynomial q0 2 P ora pair fp0; p00g 2 D. In the former ase, let P � = P nfq0g let D� = D and q = q0 full{remA. In the latter let P � = P , let D� = D n ffp0; p00gg and q = �(p0; p00) full{rem A.Assume q = 0 and denote G� = hA; D�; P �; Si. The quadruple G� satis�es the invari-ants (f. the note in setion 5.3.1). Sine I(G) = I(G�) and G� < G by O2 or O3 thequadruple G� an be disposed of by indution.Assume q 6= 0. Let G0 be any quadruple obtained following setion 5.2. The quadru-ple G0 satis�es the invariants and is less than G aording to O1. It an be disposed ofby indution.Denote rank q = vd. Let qi = q � iq vd and qs = d q � v sq . Form two quadruples Giand Gs as in setion 5.3. Sine qi; qs; iq; sq < q the quadruples Gi and Gs are both lessthan G aording to O2 or O3. They satisfy the invariants. They an be disposed of byindution.The proof of the theorem is now ompleted by proposition 5.11. 25.5. About the implementationThe following pseudo{ode furnishes the method arried out by implementation of theRosenfeld{Gr�obner algorithm for onstruting D0 from D0 and D�. Note the �rst loopkeeps the pairs whih ould be disarded using the analogue of Buhberger's �rst riterion(proposition 4.1). Let's pseudo{quote Beker and Weispfenning (1991), page 231: if twoor more pairs have the same least ommon derivative of leaders, so that there is a hoieas to whih one(s) should be deleted, then it is advantageous to try and keep one whihwill be disarded later by the analogue of Buhberger's �rst riterion. That way, oneeventually gets rid of all of them.D1 := ;while D0 6= ; dopik a pair fp; qg 2 D0D0 := D0 n ffp; qggif p; q are linear homogeneous di�erential polynomials in one di�erentialindeterminate and with onstant oeÆients or if there does notexist any pair fp0; qg 2 D0 [D1 suh that the triple hq; p0; pi satis�esthe hypotheses H1 to H3 of proposition 4.2 thenD1 := D1 [ ffp; qgg�odRemove from D1 all pairs fp; qg suh that p; q are linear homogeneous di�erentialpolynomials in one di�erential indeterminate and with onstant oeÆientsLet D2 be the subset of all the pairs fp; p0g 2 D� suh that hp; q; p0i does not satisfythe hypotheses H1, H2 and H3 of proposition 4.2 or ld(ld p; ld p0) is equal told(ld p; ld q) or ld(ld p0; ld q).D0 := D1 [D2.



32 F. Boulier, D. Lazard, F. Ollivier, M. Petitot5.5.1. Avoiding splittingsAs stated in setion 5.3, if a di�erential polynomial h does not divide zero modulop =p[P0℄ : S10 then there is nod need of splitting on h.Here is a way to apply this idea: before omputing a deomposition of p w.r.t. to somedesired ranking R �rst ompute a deomposition of p w.r.t. another ranking R0 hosenheuristially so that the representation involves only few omponents. Afterwards, useit while omputing the deomposition of p w.r.t. R: eah time the algorithm is aboutto split omputations between (say) h = 0 and h 6= 0, test whether h is a divisor ofzero modulo p. If h is proven not to be a divisor of zero, the splitting an be avoidedand the branh h = 0 disarded. The di�erential polynomial h 2 p if and only if thebranh h 6= 0 only leads to inonsistent regular di�erential systems. Suh branhes antherefore always be deteted and disarded. If h is proven to be a divisor of zero or ifnothing an be proven then the splitting must be generated.The method above is partiularly interesting when p an be represented by a uniqueregular di�erential system C = 0 whih is orthonomi (i.e. all the initials and separantsof C belong to the base �eld of R). In that ase (whih turns out to happen quiteoften) p = [C℄ is prime. No di�erential polynomial an divide zero modulo a prime ideal.The implementation of the Rosenfeld{Gr�obner algorithm in the diffalg pakage ap-plies this improvement.5.5.2. Reduing the inequationsIt is interesting to keep S partially redued w.r.t. A for inequations are usually smalldi�erential polynomials (for problems whih an be handled): reduing them is not veryCPU expensive and an point out inonsistenies. Note invariant I4must then be hangedand proofs modi�ed.5.5.3. Linear equationsIf our implementation is given linear di�erential polynomials then the analogue ofBuhberger's seond riterion always applies ; moreover, no splittings are generated. Inpartiular, if the given system is a set of non di�erential polynomials, oded as di�er-ential polynomials linear, homogeneous, in one di�erential indeterminate with onstantoeÆients then this implementation behaves exatly (up to the implementation over-head) as a good implementation of the Buhberger's algorithm (the one of Gebauer andM�oller (1988)). 6. Computing anonial representativesAording to the results of the previous setions any regular di�erential ideal may bepresented by a regular di�erential system and by its assoiated Gr�obner basis. This wasthe hoie in (Boulier et al., 1995). This representation is not only heavy but also nonanonial for di�erent regular di�erential systems may de�ne the same regular di�erentialideal. In this setion, we de�ne better representatives of regular di�erential ideals thatwe all harateristi presentations. Theorem 6.3 then shows how to ompute harater-isti presentations from regular di�erential systems. The Rosenfeld{Gr�obner algorithm(theorem 6.4) an then be stated.



Computing representations for radials of �nitely generated di�erential ideals 336.1. Charateristi presentationsThe impliation from left to right in the proof of the following theorem was alreadyproven in Boulier et al. (1995), lemma 5, page 162.Theorem 6.1. (anoniity theorem)If A1 = 0; S1 6= 0 and A2 = 0; S2 6= 0 are two regular di�erential systems of somedi�erential polynomial ring R then [A1℄ : S11 = [A2℄ : S12 i� (A1) : S11 = (A2) : S12 .Proof. The impliation from left to right. We assume (H1) that [A1℄ : S11 = [A2℄ : S12and (H2) that (A1):S11 6= (A2):S12 . We seek a ontradition. Denote B1 = p1 < � � � < pnand B2 = q1 < � � � < qm the Gr�obner bases assoiated to the algebrai regular ideals.Apply H2 and assume B1 < B2. There exists an index i � n suh that pi is not reduedto zero by B2 and pj = qj (1 � j < i). By H1 we have pi 2 [A2℄ : S12 . By the orollarybelow Lazard's lemma and the fat that pj = qj (1 � j < i), the di�erential polynomial piis partially redued w.r.t. q1; : : : ; qi�1. It is also partially redued w.r.t. qi; : : : ; qm forld pi � ld qi; : : : ; ld qm and B2 is a Gr�obner basis w.r.t. an elimination ordering de�nedby a ranking. By the orollary of Lazard's lemma, pi is partially redued w.r.t. A2. ByRosenfeld's lemma pi 2 (A2) : S12 . Contradition.The impliation from right to left now. We assume (H1) that (A1) : S11 = (A2) : S12and (H2) that p 2 [A1℄ :S11 . We laim p 2 [A2℄ :S12 . Let q = (p partial{rem A2). Thereexists thus a power produt h of elements of S2 suh that h p � q modulo [A2℄. Aordingto H1 we have A2 � [A1℄ : S11 thus h p � q modulo this latter ideal. Beause of H2 wehave q 2 [A1℄ : S11 . By the orollary below Lazard's lemma and H1 again q is partiallyredued w.r.t. A1. By Rosenfeld's lemma, it belongs to (A1) : S11 = (A2) : S12 . Let'ssummarize: (p partial{rem A2) 2 (A2) :S12 . By the orollary (point 2) below Rosenfeld'slemma, p 2 [A2℄ : S12 . 2In the next de�nition, the only purpose of onditions C2 and C3 is to ensure theanoniity property of harateristi presentations.Definition 6.1. (harateristi presentations)Let A = 0; S 6= 0 be a onsistent regular di�erential system of a di�erential polynomialring R for a ranking R and B be the Gr�obner basis assoiated to the regular algebraiideal (A) : S1, omputed in dimension zero.A di�erentially triangular set C = p1 < � � � < pn is alled a harateristi presentationof the regular di�erential ideal [A℄ : S1 if it satis�es the following onditions:C1 for any p 2 R we have p 2 [A℄ : S1 if and only if (p full{rem C) = 0,C2 the set C is a minimal di�erentially triangular subset of B,C3 if C 0 = p01 < � � � < p0n is another set whih satis�es C1 and C2 and i � n is thesmallest index suh that pi 6= p0i then the leading termy of pi is less than the oneof p0i.A harateristi presentation C of a regular di�erential ideal [A℄ : S1 is not exatly aharateristi set in the sense of Ritt of the ideal sine it is not autoredued. However,y The term ordering used is the elimination one given by the ranking.



34 F. Boulier, D. Lazard, F. Ollivier, M. Petitotit has the same rank as the harateristi sets of the ideal and it ould easily be madeautoredued by performing a few redutions. We have [A℄ :S1 = [C℄ :H1C . Remark alsothat a harateristi set of [A℄ :S1 is not neessarily a harateristi presentation of thisideal sine it may redue to zero more than the ideal.Theorem 6.2. (anoniity of harateristi presentations)If it exists, the harateristi presentation of a regular di�erential ideal is a anonialrepresentative of this ideal (it only depends on the ideal and on the ranking).Proof. It is an easy onsequene of theorem 6.1, onditions C2 and C3 and the anon-iity property of redued Gr�obner bases. 2Here is an algorithm to extrat a minimal di�erential triangular subset C from theassoiated Gr�obner basis B of a onsistent regular di�erential system A = 0; S 6= 0: foreah derivative v whih is the leader of some element of A, pik from B a di�erentialpolynomial with leader v and with minimal degree in v (among the elements of B whoseleader is v).If C is suh a set of di�erential polynomials then C is a triangular subset of B. ByLazard's lemma, a derivative v is the leader of some element of B if and only if it isthe leader of some element of A. Thus C is a minimal triangular subset of B. Sine A isdi�erentially triangular, so is C.Lemma 6.1. (algorithmi test for ondition C1)Let A = 0; S 6= 0 be a onsistent regular di�erential system of a di�erential polynomialring R for a ranking R and B be its assoiated Gr�obner basis.If C is a minimal di�erentially triangular subset of B and no element of HC is adivisor of zero modulo (A) : S1 then C satis�es C1.Proof. By the hypothesis and the orollary (point 3) below Rosenfeld's lemma, noelement of HC is a divisor of zero modulo [A℄ : S1. Sine C � [A℄ : S1, the set C onlyredues to zero elements of this di�erential ideal.By the orollary of Lazard's lemma, a derivative v is the leader of some element of Cif and only if it is the leader of some element of B. Thus if p is a non zero di�erentialpolynomial redued in the sense of Ritt w.r.t. C then p is partially redued w.r.t. A onone hand; on the other hand, the terms of p are not divisible by the leading terms of theelements of B thus p is irreduible by the Gr�obner basis B and p =2 (B) = (A) : S1. ByRosenfeld's lemma, p =2 [A℄ : S1. Therefore, every element of [A℄ : S1 is redued to zeroby C. 2Lemma 6.2. Let A = 0; S 6= 0 be a onsistent regular di�erential system of a di�erentialpolynomial ring R for a ranking R, B be its assoiated Gr�obner basis and C be a minimaldi�erentially triangular subset of B.An element h 2 HC is a divisor of zero modulo (B) if and only if the redued Gr�obnerbasis of (B) : h1 (omputed in dimension zero) is di�erent from B.Proof. First note h =2 (B) for h is irreduible by B. Now, the ideal (B) is radial byLazard's lemma; the prime ideals whih are minimal over (B) :h1 are the minimal primeideals of (B) whih do not ontain h; a polynomial h is a divisor of zero modulo a radial



Computing representations for radials of �nitely generated di�erential ideals 35ideal r if and only if it belongs to some but not all of the prime ideals whih are minimalover r; redued Gr�obner bases are anonial representatives of the ideals they generate.2Theorem 6.3. (omputing harateristi presentations)If A = 0; S 6= 0 is a onsistent regular di�erential system for a ranking R of a di�er-ential polynomial ring R then it is possible to ompute �nitely many regular di�erentialideals given by harateristi presentations Ci (i = 1; : : : ; n) suh that[A℄ : S1 = [C1℄ :H1C1 \ � � � \ [Cn℄ :H1Cn : (6.1)This deomposition does not ontain redundant omponents w.r.t. [A℄ : S1. Operationsneeded are addition, multipliation and equality test with zero in the base �eld of R.Proof. Denote r = [A℄ : S1 and B the Gr�obner basis assoiated to (A) : S1. Theparagraph above lemma 6.1 shows how to extrat minimal di�erentially triangular sub-sets C from B. Lemmas 6.1 and 6.2 show how to test if one of them is a harateristipresentation of r.The proof is an indution on the number of prime omponents of (B). If (B) is primeand C is a minimal di�erentially triangular subset of B then no element of HC divideszero modulo (B) hene C satis�es C1.Assume (A) : S1 admits no harateristi presentation. Let C be a minimal di�er-entially triangular subset of B and p 2 HC be a divisor of zero modulo (B). We haver = r1 \ r2 where r1 =p[A [ fpg℄ : S1 and r2 = r : p1.Both r1 and r2 have fewer omponents than r. The latter ideal is a regular di�eren-tial system whene is disposed of by indution. Using theorem 5.1, one an ompute arepresentation of r1 as an intersetion of regular di�erential ideals. Moreover, one anmanage to ompute an irredundant intersetion by using the tehnique desribed inparagraph 5.5.1 2The method desribed in the proof above is the one applied in the diffalg pakage.It is not very eÆient. The Lextriangular algorithm of Lazard (1992) (see also MorenoMaza (1997)) would be muh more eÆient and would even permit us to ompletelyavoid the use of Gr�obner bases.6.1.1. An exampleSome regular di�erential ideals (quite unusual in pratie) have no harateristi pre-sentation. An example is given by the following triangular set A, for the eliminationordering x5 > � � � > x1. The example is purely algebrai but an be easily transformedinto a di�erential one.A8<: p3 = ((x22 + x1)x5 + x24 + x3)(x2x5 + x4);p2 = x4(x24 + x3);p1 = x2(x22 + x1):



36 F. Boulier, D. Lazard, F. Ollivier, M. PetitotBelow is the redued Gr�obner basis B (omputed over Q ) of the ideal (A) : S1A for theelimination ordering x5 > � � � > x1.B8>>>><>>>>: b5 = x5;b4 = x4(x24 + x3);b3 = x1x24 + (x22 + x1)x3;b2 = x2x4;b1 = x2(x22 + x1):It ontains only one minimal triangular subset fb1; b2; b5g, whih is not a harateristipresentation of r = (A) : S1A sine the initial x2 of b2 is a divisor of zero modulo r.Moreover, r ontains no di�erentially triangular subset satisfying C1. Let us assumethe existene of suh a set C and seek a ontradition. This set redues b2 to zero. Soit ontains either a polynomial p 2 r \ K[x1; x2℄ of degree 1 in x2 (impossible) or apolynomial p 2 r \ K[x1; : : : ; x4℄ of degree 1 in x4, say p = a1 x4 + a0. In this latterase, p 2 (b1; b2) is a multiple of x2 and so is a1 whih is thus a divisor of zero modulo r(ontradition).Aording to theorem 6.3, the regular ideal an be deomposed as an intersetionof regular ideals whih admit harateristi presentations. The ideal r = (A) : S1A isdeomposed as the intersetion r = r1 \ r2 where r1 = r : x12 and r2 = r+ (x2). Here areharateristi presentations of these two ideals.r18<: x5;x4;x22 + x1 ; r28<: x5;x24 + x3;x2:6.2. The main theoremTheorem 6.4. (the Rosenfeld{Gr�obner algorithm)If P0 = 0; S0 6= 0 is a di�erential system of a di�erential polynomial ring R then itis possible to ompute �nitely many regular di�erential systems given by harateristipresentations Ci (i = 1; : : : ; n) suh thatp =q[P0℄ : S10 = [C1℄ :H1C1 \ � � � \ [Cn℄ :H1Cn : (6.2)Operations needed are addition, multipliation, di�erentiation and equality test with zeroin the base �eld of R. This deomposition may ontain omponents redundant w.r.t. p. Itprovides a normal simpli�er for the equivalene relation modulo this ideal i.e.p 2 p () p full{rem Ci = 0 (1 � i � n):Proof. The �rst laim is proven by theorems 5.1 and 6.3. The property of being anormal simpli�er is an immediate onsequene of ondition C1 of de�nition 6.1. 2By applying a primary deomposition algorithm over the regular deomposition of p,one would get a (redundant) di�erential prime deomposition of p (see a remark belowtheorem 4.2). This algorithm would probably be muh more eÆient than the harater-isti sets algorithm of Ritt (1950) and would provide the same result.Remark that deomposition of radial di�erential ideals in regular di�erential idealsdoes not depend on the base �eld whereas the deomposition in prime di�erential idealsdoes.



Computing representations for radials of �nitely generated di�erential ideals 37The omputed representation of a radial di�erential ideal p is not anonial beause ofthe regular omponents whih may be redundant w.r.t. p. Moreover, even if r is a regulardi�erential ideal whih is not redundant w.r.t. p, there may exist among the minimaldi�erential prime omponents of r some di�erential ideals redundant w.r.t. p.Deiding whether a regular di�erential ideal is redundant or not w.r.t. a deompositionof type (6.2) is related to a famous open problem in di�erential algebra (Kolhin, 1973,page 166).The omputed representation of p is therefore not a anonial simpli�er for the equiv-alene relation modulo p. However, being a normal simpli�er is enough for deidingwhether two given di�erential polynomials p and q are equivalent modulo p for p � q ifand only if p� q � 0 modulo p.In the ase of di�erential ideals generated by only one di�erential polynomial, theproblem of the omputation of the minimal prime deomposition is solved by the LowPower Theorem (Kolhin, 1973, hapter IV, setion 15), muh studied by Ritt (1950)and Levi (1945). See also Hubert (1997) for an implementation of this theorem basedon the Rosenfeld{Gr�obner algorithm and a generalization of it to regular di�erentialdeompositions.7. Formal power series solutions of regular di�erential idealsThe ontent of this setion is a variant of Seidenberg's results (Seidenberg, 1956, the-orem 11, page 59) (Seidenberg, 1958, Embedding theorem) and (Seidenberg, 1969). Wegive proofs for the sake of ompleteness and beause the hypotheses of Seidenberg's the-orems are slightly di�erent from ours. This setion was also partly inspired by (P�eladan-Germa, 1997).Let A = 0; S 6= 0 be a di�erential system of a di�erential polynomial ring R =Kfu1; : : : ; ung and R0 be the ring of the di�erential polynomials partially reduedw.r.t. A.Let �0 be any algebrai solution of A = 0; S 6= 0, viewed as a non di�erential systemof R0. The solution �0 de�nes a K{algebra homomorphism �0 : R0 ! G where G issome �eld extension of K. Note �0 maps the elements of S to nonzero elements of G.We prove �rst (proposition 7.1) that �0 extends to a unique solution � of the di�erentialideal [A℄ : S1. Then we prove � is uniquely de�ned (proposition 7.2) and provides theoeÆients of a formal power series solution of [A℄ : S1 (proposition 7.3).Let v 2 �U be a derivative and let p = v partial{rem A. There exist then a powerprodut h of elements of S and a di�erential polynomial p 2 R0 suh thath v � p (mod [A℄): (7.1)We de�ne �(v) = �0(p)=�0(h).Lemma 7.1. The map � is well de�ned (i.e. the de�nition does not depend on the dif-ferential polynomials h and p).Proof. Let h; p be the di�erential polynomials de�ned in ongruene (7.1). Assumethere exists another power produt h0 of elements of S and another di�erential poly-nomial p0 2 R0 suh that h0 v � p0 (mod [A℄). We have hp0 � h0p 2 [A℄ : S1 \ R0.Sine A = 0; S 6= 0 is a regular di�erential system, Rosenfeld's lemma applies andhp0 � h0p 2 (A) : S1 whene �0(p)=�0(h) = �0(p0)=�0(h0). 2



38 F. Boulier, D. Lazard, F. Ollivier, M. PetitotThe map � extends to a unique K{algebra homomorphism K[�U ℄ ! G that wedenote � also.Proposition 7.1. If p 2 [A℄ : S1 then �(p) = 0.Proof. First observe that if p is a proper derivative of some element of A then thereexists a possible partial redution suh that p partial{rem A = 0 ; aording to lemma 7.1we have �(p) = 0.Now, if p 2 [A℄ : S1 then �p = (p partial{rem A) 2 (A) : S1 by Rosenfeld's lemmawhene �(�p) = 0. Moreover, there exists a power produt h of elements of S suh thath p � �p is equal to a linear ombination of proper derivatives of elements of A ; thus�(p) = �(�p)=�(h) = 0. 2Proposition 7.2. The homomorphism � is the unique K{algebra homomorphism ex-tending �0 whih maps [A℄ : S1 to zero.Proof. Assume there exists another homomorphism �0 extending �0 whih maps [A℄:S1to zero. Let v 2 �U be a derivative and h; p be the di�erential polynomials de�ned inongruene (7.1). We have �0(v) = �0(p)=�0(h) = �(v). 2If � = (�1; : : : ; �m) 2 Nm is a multi{index, and � = (�1; : : : ; �m) 2 Gm then wedenote � ! =Qmi=1 �i ! and (x� �)� = (x1 � �1)�1 � � � (xm � �m)�m and Æ� = Æ�11 � � � Æ�mm .To eah di�erential indeterminate u 2 U we an assoiate a formal power series (� is thepoint of expansion of the series):�u = X�2Nm �(Æ�u)�! (x� �)�:The derivations de�ned over R at over suh a formal power series aording to the rules:Æixi = 1; Æixj = 0; (i 6= j):Lemma 7.2. The substitution u! �u de�nes a di�erential homomorphism of K{algebraR! G[[x� �℄℄.We omit the proof whih is purely omputational.Proposition 7.3. The n{uple (�u1; : : : ; �un) is a di�erential solution of [A℄ : S1.Proof. Using lemma 7.2, for any di�erential polynomial p 2 R we havep(�u1; : : : ; �un) = X�2Nm �(Æ�p)�! (x� �)�hene p(�u1; : : : ; �un) = 0 if and only if �(Æ�p) = 0 for eah � 2 Nm. Sine � maps [A℄ :S1to zero and [A℄ : S1 is a di�erential ideal, for every p 2 [A℄ : S1 and every � 2 Nm wehave �(Æ�p) = 0 whene p(�u1; : : : ; �un) = 0. 2A regular di�erential ideal may have a formal power series solution for initial onditions



Computing representations for radials of �nitely generated di�erential ideals 39whih annihilate some elements of S. The simplest example is probably u2x�4u = 0 withux 6= 0 and �0(ux) = 0 (the solution being u(x) = x2).The formal power series de�ned here do not belong to G[[x℄℄ but to G[[x� �℄℄. Fixingthe ring of formal power series where we seek solutions would �x the expansion point.Denef and Lipshitz (1984) showed that there does not exist any algorithm whih deideswhether systems of polynomial di�erential equations have solutions in a given ring offormal power series (see however their artile for exat statements).8. ExamplesWe detail the resolution of the system presented in the introdution with the help ofthe diffalg pakage of MAPLE V.�8<: u2x � 4u = 0;uxy vy � u+ 1 = 0;vxx � ux = 0:The following instrutions load the pakage and store in R the di�erential polynomialring Q (x; y)fu; vg endowed with derivations w.r.t. x and y and an orderly ranking over�fu; vg suh that1 if ord(�) = ord(') then �u > 'v2 if ord(�) = ord(') and � > ' for the lexial order x > y then �u > 'u (idem for v).> with ( diffalg ):> R := differential_ring ( derivations = [x,y℄, ranking = [[u,v℄℄ ):The Rosenfeld{Gr�obner algorithm is alled and returns a list (understand \intersetion")of regular di�erential ideals presented by harateristi sets. The ideals are stored inMAPLE tables. Only the names of the tables (i.e. \regular") get printed. Over thisexample, the list only involves one table.> Sigma := [ u[x℄^2 - 4*u[℄, u[x,y℄*v[y℄ - u[℄ + 1, v[x,x℄ - u[x℄ ℄:> ideal := Rosenfeld_Groebner ( Sigma, R );bytes used=1002848, allo=851812, time=1.48ideal := [regular℄The following instrution displays the harateristi presentation of the regular idealas rewrite rules for Ritt's redution algorithms: let p be a di�erential polynomial withrank vd ; then p = advd + ad�1vd�1 + � � �+ a0 for some di�erential polynomials a's (theinitial of p is ad). the di�erential polynomial p is displayed asvd = �ad�1vd�1 + � � �+ a0ad �> rewrite_rules ( ideal [1℄ );[vx; x = 2 uy vy�1 + u ; ux = 2 uy vy�1 + u ; uy2 = 2u; vy2 = 12 u2 � u + 12℄



40 F. Boulier, D. Lazard, F. Ollivier, M. PetitotLooking at the leaders of the di�erential polynomials we see that there are only threederivatives (i.e. u, v and vx) whih are not derivatives of the leader of any equation ofthe harateristi presentation. The solutions of � depend therefore on three arbitraryonstants (the symbols starting with undersores denote initial onditions).> initial_onditions ( ideal [1℄ );[ Cu; Cv; Cv x℄The following funtion all omputes two objets from the omputed representation whihgive us formal power series solutions of �.1 a \generi" formal power series solution of � expanded at the origin and up toorder 100 (the series turn out to be a polynomial) ; this is the returned value of thefuntion all,2 a triangular system of non di�erential polynomial equations and inequations overthe initial onditions (this is returned in the output parameter syst).> generi_series := power_series_solution ([x=0,y=0℄,100,ideal[1℄,'syst');generi series := [u(x; y) = Cu+ 2 x Cu y Cv y�1 + Cu + y Cu y� 12 x2 (�128 Cv y Cu3 + 384 Cv y Cu2 � 384 Cv y Cu+ 128 Cv y)64 Cv y Cu3 � 192 Cv y Cu2 + 192 Cv y Cu� 64 Cv y� x y (48 Cu2 � 48 Cu� 16 Cu3 + 16)16 Cv y� 32 Cv y Cu+ 16 Cv y Cu2 + 12 y2; v(x; y) = Cv+ x Cv x+ y Cv y+ x2 Cu y Cv y�1 + Cu + x y Cu y� 18 y2 (�2 Cu Cu y+ 2 Cu y)Cv y� 16 x3 (�128 Cv y Cu3 + 384 Cv y Cu2 � 384 Cv y Cu+ 128 Cv y)64 Cv y Cu3 � 192 Cv y Cu2 + 192 Cv y Cu� 64 Cv y� 12 x2 y (48 Cu2 � 48 Cu� 16 Cu3 + 16)16 Cv y� 32 Cv y Cu+ 16 Cv y Cu2� 12 x y2 (�128 Cv y Cu2 + 256 Cv y Cu� 128 Cv y)128 Cv y Cu2 � 256 Cv y Cu+ 128 Cv y� 16 y3 (�128 Cu3 + 384 Cu2 � 384 Cu+ 128)256 Cv y Cu2 � 512 Cv y Cu+ 256 Cv y ℄> syst;[� Cv xx+ Cv xx Cu� 2 Cu y Cv y = 0;� Cu x+ Cu x Cu� 2 Cu y Cv y = 0; �2 Cu+ Cu y2 = 0;� Cu2 + 2 Cu+ 2 Cv y2 � 1 = 0; Cv y 6= 0; Cu y 6= 0; �1 + Cu 6= 0℄Aording to setion 7, every solution of syst furnishes a unique formal power seriessolution of �. Aording to Lazard's lemma Cu, Cv and Cv x furnish a family of



Computing representations for radials of �nitely generated di�erential ideals 41abitrary parameters. Let's take Cu = 5, Cv = 421 and Cv x = �. The speializedsystem has now only �nitely many solutions. Here is one of them, omputed from bottomup.algebrai solution := Cv xx = p10p2; Cu x = p10p2; Cu y = p10; Cv y = 2p2;Cu = 5; Cv = 421; Cv x = �The orresponding solutions of � are obtained by speializing the formal power series ofgeneri series at algebrai solution.> subs ( algebrai_solution, generi_series );[u(x; y) = 5 + xp10p2 + yp10 + x2 + x yp2 + 12 y2; v(x; y) = 421 + x� + 2 yp2+ 12 x2p10p2 + x yp10 + 14 y2p10p2 + 13 x3 + 12 x2 yp2 + 12 x y2 + 112 y3p2℄8.1. Lie symmetries with automati disussionThis example onsists in solving a system of linear partial di�erential equations de-pending on a parameter. By splitting ases, the Rosenfeld{Gr�obner algorithm atuallydisusses the solutions w.r.t. the parameter. The example and a part of its analysis areborrowed from Reid (1991). It deals with Lie symmetries of di�erential equations. SeeOlver (1993) and (1995) for the mathematial theory. The following di�erential equationis a variant of the wave equation. The symbol H denotes an arbitrary funtion of u(x; y)(i.e. a parameter of the di�erential equation).EH : �2�x2 u(x; y) = �2�y2 u(x; y) +H(u(x; y)) ��y u(x; y)We are onerned with the Lie symmetries of the equation (EH). Indeed, the graph of asolution of the equation (EH) is a set of points (x; y; u) 2 R3 ; a Lie symmetry of thisequation is a transformation (a loal di�eomorphism) whih maps the graphs of solutionsto the graphs of other solutions:8<: X = '1(x; y; u);Y = '2(x; y; u);U = '3(x; y; u):We are looking for vetor �eldsV = V 1(x; y; u) ��x + V 2(x; y; u) ��y + V 3(x; y; u) ��uwhose ows are the desired symmetries. The set of these vetor �elds form a Lie algebrai.e. a vetor spae endowed with a Lie braket.With the help of the liesymm pakage of MAPLE, we build a system �H of linearpartial derivatives equations in the three di�erential indeterminates V 1, V 2 and V 3 andderivations w.r.t. x, y and u.�H = [V 1xx �H V 1y � 2V 3xu � V 1yy; V 2xx � V 2yy +H V 2y + V 3Hu + 2V 3yu;V 3xx �H V 3y � V 3yy; V 1uu; V 2uu; �2V 1xu + V 3uu; V 2u ; V 1u ; V 1x � V 2y ; V 2yu � V 1xu;V 2x � V 1y ; V 2xu � V 1yu℄



42 F. Boulier, D. Lazard, F. Ollivier, M. PetitotDerivatives of the parameter H appear in the oeÆients of the linear di�erential equa-tions. We enlarge the system with the two following equations, to express the fat that Honly depends on u. Hx = 0; Hy = 0:We want to disuss w.r.t. H the struture of the Lie algebra (in partiular, its di-mension as a vetor spae). For this reason, we onsider �H as a system of polynomialdi�erential equations in four di�erential indeterminates V 1, V 2, V 3 and H and we allthe Rosenfeld{Gr�obner algorithm with a ranking whih eliminates the V 's. By split-ting ases, the Rosenfeld{Gr�obner algorithm disusses the struture of the Lie algebraw.r.t. H . Four regular systems are generated.In the paragraphs below, omputations of regular di�erential systems and Taylorexpansions of solutions are performed using the diffalg pakage. Outputs are prettyprinted. Taylors expansions are omputed in the neighborhoud of x = 0; y = 0; u = 0.The symbols starting with a C denote the onstants appearing in these developments(e.g. CH = H(0; 0; 0); CHu = Hu(0; 0; 0); : : :).8.1.1. First systemHere is the harateristi presentation of the �rst system.V 1x = 0; V 1y = 0; V 1u = 0; V 2x = 0; V 2y = 0; V 2u = 0; V 3 = 0; Hx = 0; Hy = 0There is no di�erential equation in H alone (exept the two ones we have introduedabove). This ase orresponds to the general ase. The solutions of the V 's areV 1(x; y; u) = CV1;V 2(x; y; u) = CV2;V 3(x; y; u) = 0:The allowed transformations are translations in the (x; y) plane (�; � denote onstants):X = x+ �; Y = y + �; U = u:8.1.2. Seond systemHere is the harateristi presentation of the seond system.V 1x = �V 3HuH ; V 1y = 0; V 1u = 0; V 2x = 0; V 2y = �V 3HuH ; V 2u = 0; V 3x = 0; V 3y = 0;V 3u = ��V 3Hu2 +HuuH V 3HuH ; Huuu = ��2HHuu2 +Hu2HuuHuH ; Hx = 0; Hy = 0:This ase orresponds to any funtion H whih satis�es the third order di�erential equa-tion above. Computing Taylor expansions of solutions we getV 1(x; y; u) = CV1 � x CV3 CHuCH ;V 2(x; y; u) = CV2 � y CV3 CHuCH ;



Computing representations for radials of �nitely generated di�erential ideals 43V 3(x; y; u) = CV3 � u (�CV3 CHu2 + CHuu CH CV3)CHu CHThe Lie algebra has dimension three i.e. the solutions depend on the three arbitraryonstants CV1, CV2 and CV3 (the onstants whih appear in the Taylor expansion of Hare supposed to be known).V = CV1 0� 100 1A+ CV2 0� 010 1A+ CV3 0BBBBB� �xCHuCH�yCHuCHCHu CH+ u (CHu2 � CHuu CH)
1CCCCCARemark we �nd again (setting CV3 = 0) the Lie symmetries of setion 8.1.1. Someother symmetries exist however in this partiular ase. A lass of funtions H whihsatisfy the third order di�erential equation above is given byH(u) = �u+ �where �; � are onstants (atually � = CHu and � = CH here sine solutions have beenexpanded at the origin). Setting CHu = CH = 1 we �nd the symmetry groupV = CV1 0� 100 1A+ CV2 0� 010 1A+ CV3 0� �x�yu+ 1 1AThe ows generated by the two �rst vetor �elds are translations in the (x; y) plane. Thethird vetor �eld generates the group of dilatations (where � denotes a onstant)X = x� ; Y = y�; U + 1 = � (u+ 1):8.1.3. Third systemThe third regular di�erential system orrespond to the ase H(u) = onstant.V 2xx = 0; V 3xx = H V 3y + V 3yy; V 3xu = �12 V 2x H; V 3yu = 0; V 3uu = 0; V 1x = 0;V 1y = V 2x ; V 1u = 0; V 2y = 0; V 2u = 0; Hx = 0; Hy = 0; Hu = 0:The solutions of the V 's areV 1(x; y; u) = CV1 + y CV2x;V 2(x; y; u) = CV2 + xCV2x;V 3(x; y; u) = CV3 + xCV3x + yCV3y + uCV3u + 12 x2(CH CV3y + CV3yy)+ x yCV3xy � 12 xuCV2x CH+ 12 y2 CV3yy + � � �The vetor �elds assoiated to CV1 and CV2 generate the translations we already metin the general ase. The vetor �eld assoiated to CV2x generates an hyperboli rotation� XY � = � a bb a � � xy � ; U = u e� 12 (Y�y)



44 F. Boulier, D. Lazard, F. Ollivier, M. Petitotwhere a2 � b2 = 1. The vetor �eld assoiated to CV3u generates the group of dilatationsU = �u. The other symmetries depend on an arbitrary solution �(x; y) of the equationEH sine it is linear in this ase (see Olver (1993), page 124):V = �(x; y) ��u �8.1.4. Fourth systemThe fourth system orresponds to the wave equation (H(u) = 0). There are still moresymmetries than in the third ase. See Olver (1993), page 124 for their desriptions.V 2xx = V 2yy; V 3xx = V 3yy; V 3xu = 0; V 3yu = 0; V 3uu = 0; V 1x = V 2y ; V 1y = V 2x ;V 1u = 0; V 2u = 0; H = 0:ConlusionWe have desribed an algorithm whih omputes a representation of the radial p ofany �nitely generated di�erential ideal as an intersetion of radial di�erential ideals.The representation separates the minimal di�erential prime omponents of p whih donot have the same dimension. It permits to ompute Taylor expansions of solutions of pand the Hilbert's polynomials assoiated to its minimal di�erential prime omponents.The algorithm is implemented in MAPLE within a pakage. Its implementation is quitetriky: it applies an analogue of Buhberger's seond riterion, it manages to performGr�obner bases omputations in dimension zero and is able to reuse a representation of pfor a ranking to simplify the omputation of a representation of p for another ranking.Quite surprisingly, the algebrai omputations turn out to be muh easier to handle thanone might fear.In order to prove and present our algorithm, we had to improve some of Kolhin'stheorems. Our results (e.g. Lazard's lemma) do not only apply in di�erential algebra butalso for the non di�erential ommutative algebra. Remark this phenomenon is not new:Ritt's harateristi sets theory, �rst developed for di�erential equations, has beomelater very popular for systems of usual polynomials.ReferenesBeker, T., Weispfenning, V. (1991). Gr�obner Bases: a omputational approah to ommutative algebra,volume 141 of Graduate Texts in Mathematis. Springer Verlag.Boulier, F. (1994). �Etude et implantation de quelques algorithmes en alg�ebre di��erentielle. PhD thesis,Universit�e Lille I, 59655, Villeneuve d'Asq, Frane.Boulier, F. (1997). Some improvements of a lemma of Rosenfeld. Journal of AAECC. (submitted).Boulier, F., Lazard, D., Ollivier, F., Petitot, M. (1995). Representation for the radial of a �nitelygenerated di�erential ideal. In proeedings of ISSAC'95, pages 158{166, Montr�eal, Canada.Bouziane, D., Kandri Rody, A., Maârouf, H. (1996). Unmixed{Dimensional Deomposition of a FinitelyGenerated Perfet Di�erential Ideal. Journal of Symboli Computation. (submitted).Buhberger, B. (1979). A riterion for deteting unneessary redutions in the onstrution of Gr�obnerbases, volume 72 of LNCS, pages 3{21. Springer Verlag.Carra-Ferro, G. (1987). Gr�obner bases and di�erential ideals. In Notes of AAECC 5, pages 129{140,Menora, Spain. Springer Verlag.Cox, D., Little, J., O'Shea, D. (1992). Ideals, Varieties and Algorithms. An introdution to omputa-tional algebrai geometry and ommutative algebra. Undergraduate Texts in Mathematis. SpringerVerlag, New York.
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