
HAL Id: inria-00139660
https://hal.inria.fr/inria-00139660

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Interactive Problem Modeller and PDE Solver,
Distributed on Large Scale Architectures

Nicolas Fressengeas, Hervé Frezza-Buet, Jens Gustedt, Stéphane Vialle

To cite this version:
Nicolas Fressengeas, Hervé Frezza-Buet, Jens Gustedt, Stéphane Vialle. An Interactive Problem
Modeller and PDE Solver, Distributed on Large Scale Architectures. Third International Workshop
on Distributed Frameworks for Multimedia Applications - DFMA ’07, Jun 2007, Paris, France. �inria-
00139660�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50391917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00139660
https://hal.archives-ouvertes.fr


An Interactive Problem Modeller and PDE Solver, Distributed

on Large Scale Architectures

Nicolas Fressengeas∗, Hervé Frezza-Buet∗∗, Jens Gustedt∗∗∗, Stéphane Vialle∗∗

∗ LMOPS and Metz University, France, Firstname.Lastname@univ-metz.fr
∗∗SUPELEC, France, Firstname.Lastname@supelec.fr

∗∗∗INRIA Lorraine and LORIA, France, Firstname.Lastname@loria.fr

Abstract

This paper introduces a research project and a
software environment to speed up and size up
problem modeling with Partial Differential Equa-
tions (PDE). These PDE are defined from a
MathematicaTM interface, and are automatically
solved by a devoted cellular automata program gen-
erated to be run on mainframes, clusters and Grids.
Moreover, an interactive and graphic control of the
cellular automata running allows to analyze the
PDE model relevance. This environment improves
large scale simulation usage in early stages of re-
search projects.

1 Motivations and objectives

Simulations are currently used to study complex
systems, and large simulations become mandatory
in the early stages of any investigations as sys-
tems complexity increases. But large simulations
are resource consuming at runtime, and require of-
ten dissuasive development effort on large main-
frames, clusters and Grids. Moreover, end users
like physicists are not expert in distributed pro-
gramming, and prefer to use high level scientific
tools like MathematicaTM to investigate problems.

This difficulty to early run large simulations is
especially noticeable when investigating new real
and complex problems: when no model is avail-
able and no specific simulation tool has been de-
signed. Then, the research starting can be long,
and the design of a relevant simulator can become
a full research topic! Nevertheless, many problems
can be modeled with Partial Differential Equations

(PDE) difficult or impossible to solve and require
large simulations.

The goal of the research project introduced in
this paper is to design and implement a complete
environment interfaced with usual scientific tools
(like MathematicaTM), allowing to easily model a
new problem with PDE, and to generate automat-
ically the corresponding interactive PDE solver on
large scale distributed architectures. So the re-
searchers can enter at once a friendly and inter-
active modeling-evaluating loop to design a rele-
vant model of their real problem (see steps 1 and
2 in Figure 1). Then, they can generate a non-
interactive simulator and run series of more classi-
cal simulations in batch mode (step 3 in Figure 1).

To reach this goal several scientific locks have
been addressed in this project, and three main soft-
ware tools have been developed:

Escapade: a generic PDE solver based on gradi-
ent computations and large cellular automata
computations. Features of the cellular au-
tomata are designed by a MathematicaTM

plug-in, and the automata are finally imple-
mented on mainframes and large distributed
architectures in C++.

parXXL: a framework to implement fine grained
computations on large coarse grained architec-
tures implemented on shared memory main-
frames, cluster and Grids. It implements and
manages the large cellular automata required
to achieve PDE solving.

Grumpf: a framework to implement and control in-
teractive fine grained computations, based on



3 - Intensive
simulations

2 - Friendly
model evaluation

1- Fast problem
modeling

PDE definitions
with Mathematica

interface

Generation of
devoted code

Source files of
an interactive,
devoted and

distributed PDE
solver

standard PC

Interactive,
devoted and
distributed

server

SupercomputerInteractive, generic
and graphic client

standard PC

PDE definitions
with Mathematica

interface

Generation of
devoted code

Devoted and
distributed
simulator

Supercomputerstandard PC

Src files of
a devoted and

distributed
PDE solver

Figure 1: A complete environment for fast and friendly problem modeling and solving.

a client-server paradigm and including many
graphical investigation tools. It implements
the cellular automata computations required
by Escapade on parXXL distributed framework.

2 Previous and related work

A previous version of the cellular automata gen-
erated by Escapade was implemented only on top
of Grumpf, which in turn was implemented on top
of ParCeL-6: a fine grained and parallel program-
ming environment limited to shared memory mul-
tiprocessors. ParCeL-6 and Grumpf were initially de-
signed to allow the development of biologically in-
spired neural networks [7], a complex kind of fine
grained computations. Then ParCeL-6 and the opti-
mized communication library SSCRAP [2] have been
merged and have led to the more generic and pow-
erful parXXL distributed framework, available on
various parallel and distributed architectures [4].
So, the new version of the software suite Escapade

+Grumpf +parXXL will process larger problems on
large distributed architectures.

Many development environments and tools ex-
ist to distribute and scale scientific computations.

GridMathematicaTM is a MathematicaTM plug-in
mainly designed to parallelize multi-parameter in-
vestigations. But it does not include a generic
PDE solver, and does not allows to automatically
speed up or size up PDE solving. Network Enabled
Servers like DIET [1] have been designed to run
programs including Grid remote procedure call to
achieve large and time consuming computations,
and have been interfaced with MathematicaTM.
But they do not automatically solve PDE, nor run
fine grained computations (a Grid-RPC has to be
a coarse computation to achieve efficiency). More
complex Grid environments, such as GridLab [9],
are generic high-level middleware. They address
many issues, like scheduling, load balancing and
fault tolerance, but delegate scientific computations
to the different tools or Problem Solving Environ-
ments they support, and distribute coarse grained
tasks. Finally, some Grid environments focuss on
scientific domains and usual numerical computa-
tions, like OpenSees [5] for earthquake engineering
using finite element methods, but do not supply
generic PDE solvers.

Subsequently, our software suite could be inter-
faced with GridLab or DIET environments, to be-
come a generic PDE solver to be called on demand



for various kinds of large Grid applications.

3 Architecture overview

Figure 2 illustrates the global software architecture
of our environment to quickly model and solve var-
ious problems based on PDE.

Escapade is the acronym for Ergonomic Solver
using Cellular Automata for solving of PArtial
Differential Equations. It consists in two pieces
of software called Dempf and Simpf which respec-
tively stand for Differential Equation Mapping for
SimPF and SIMulation with grumPF. Dempf is im-
plemented as a MathematicaTM package, the goal
of which is the design of a continuous automaton
specifically adapted to a given discretized differen-
tial problem given in a MathematicaTM formalism.
It works by transforming the differential problem
solution seeking scheme into an error minimization
one to be performed over the cell network. The
calculations involved in the process are local only
(see e-print math-ph/0610037 [3]) and are thus to
be implemented in a Cellular Automaton.

parXXL is a framework mainly designed to eas-
ily implement fine grained computations on coarse
grained parallel architectures. It is based on 8 soft-
ware layers and some portable runtime mechanisms
(see the bottom of Figure 2). These different lay-
ers allows to choose a predefined cellular network
template, to define some cell behavior functions, to
run some supersteps with relaxed synchronization,
and to ensure efficient and large memory manage-
ment and communications (see Section 5). parXXL

achieves to create and run the very large cellular
automata required by Escapade, equally on shared
memory machines, on clusters and on Grids. A
dynamic runtime support optimizes the execution
on any coarse grained architecture, choosing auto-
matically the most efficient runtime. Moreover, a
parXXL application can be a sequential server con-
trolling a set of worker processors and interacting
with a Grumpf client (Figure 2, on the right).

Grumpf adds more utilities and interfaces to
parXXL framework. At a programming point of
view, it allows to define a set of cell updating proce-
dures by inheritance from a general class. Instances
of such subclasses are to be gathered within maps,
that are 2D arrays of cells used for viewing purpose.
A programmer thus defines first some cell classes,

then creates instances of them that are put within
maps, and connect them together. Once this is
done, Grumpf allows to start a TCP/IP server where
the computation of the whole network is managed,
based on parXXL functionalities. Clients may trig-
ger execution of the server step by step, but also file
saving and visualisation. The advantage of Grumpf

is that the programmer only cares about design-
ing updating rules and how to link cells together.
The TCP/IP part, including remote control and
viewing, as well as parallelization by parXXL, are
hidden. The ad hoc generated automata obtained
from Escapade is then a parallel process that can be
queried from remote clients for ergonomic viewing
and manipulation.

4 Escapade: solving PDE with

cellular automata

4.1 Principle of generic PDE solving

Our strategy for solving Partial Differential Equa-
tions builds upon the local nature of most such
problems as follows: first, a differential problem
is discretized by, for example, a finite difference
method. This yields to an approximation of the
problem by means of cells of a discrete mesh and
a relationship that has to be verified among these
cells. Finding the appropriate values in each cell
that meet the discrete equations (i.e. which are
consistent) solves the problem. The local nature
of the differential problem implies that this consis-
tency is expressed for each cell as a function of its
neighbors only.

If the entire cell mesh is thought of as a unique
vector Ω, a positive error function E (Ω) can be de-
signed so that the error is zero if and only if all the
cells are filled with values that are actually consis-
tent. In this way, the solution to the initial dif-
ferential problem can be reached through the min-
imization of E (Ω), its zero value being verified a
posteriori. This minimization can then be carried
out by an adaptation of the Newton’s Method [8]
as known from mathematical optimization.

4.2 Generated Cellular Automata

The design of the cellular automaton results from
the implementation of Newton’s Method. The com-



Non-interactive
devoted simulator

parXXL runtime

MPI Posix threads Posix mmap

parXXLrun

dynamic runtime support

par::cellnet
par::cell
par::step
par::cntrl
par::mem
par::sys
par::cpp

p
ar

::
b

en
ch

parXXL library

C++
compilation

C++
compilation

Interactive
devoted simulator

Large object (segments
& files) management

Execution on 
clusters and Grids

Execution on shared
memory mainframes

IO stream
(camera image, ...)

parXXL generic
skeleton of Escapade

cellular automata

Simpf compiler

Mathematica Dempf (plug in)

Simpf files:
cellular automata
specifications

Partial Differential Equations

C++/parXXL files: 
'cell' definitions for
parXXL cellular network

C++/Grumpf files:
'Grumpf unit' definitions
for Grumpf server

Grumpf interactive
and generic server
of parXXL cell net

Generic and
interactive Grumpf

client

Generation of a non-interactive
simulator, for benchmark and
batch execution

Generation of an interactive
simulator, for debug and 

model research steps

Grumpf

Escapade

parXXL

Interactive
control

at runtime

Figure 2: Global architecture of our interactive problem modeller and PDE solver on large parallel and
distributed computers



putations that need to be carried out on Ω in-
volve only the neighboring cells (see e-print math-
ph/0610037 [3]) and can be carried out indepen-
dently without global knowledge. They can thus
be described as cellular automata that are assigned
to each cell of the mesh. The task of Dempf is
to use the formal language of MathematicaTM to
automatically derive such an automaton from the
equation. This automaton implements the problem
specific optimization procedure and relaxes to the
consistent state, which is the problem solution, as
mentioned above. Our implementation of Dempf is
currently restricted to use only 4 dimensions (time
and space) but an extension to higher dimensions
will be considered.

The output of Dempf is a set of text files that de-
scribe the cellular automata. These files are used
by Simpf to produce C++ source files which use the
Grumpf library or directly the parXXL library to im-
plement the cellular automata.

4.3 Example of PDE solving

Let us now illustrate this with a simple academic
example of solving a Poisson Equation for V in the
three spatial dimensions and restricted to a cube,
where the boundary conditions △V (x, y, z) = 0
are set on the sides of the cube. The corre-
sponding discrete problem is straightforward and
is obtained through finite difference centered sec-
ond derivatives on each dimensions of space, for
the same space discretization δ. The automa-
ton obtained from Dempf has 28 different update
rules, to account for the boundary conditions. The
most generic of them concerns the majority of the
cells, namely those which are far enough from the
boundaries (distance 3 or more). It is a centro-
symmetric three dimensional convolution kernel, a
two-dimensional slice of which is as follows:

V ←−
1

42
∗ V













-1
-2 12 -2

-1 12 0 12 -1
-2 12 -2

-1













When launched, the system converges to a fixed
point. We obtain the same result as, in that sim-
ple case, can be obtained with more conventional
methods. For a cube of 20 × 20 × 20 cells, the a

posteriori computed remaining error E (after nor-
malization) is 7×10−3 for δ = 1 and decreases with
it.

5 parXXL: distributing fine

grained computations

5.1 Cellular programming model

The parXXL framework includes 8 software layers, as
shown in Figure 2. The top of parXXL is composed
of 2 cellular layers:

par::cellnet: a library of optimized and generic
cellular network templates. It allows to quickly
implement ad hoc networks with optimized cell
distribution on any number of processors. Pro-
cessors are load balanced and they host neigh-
bor cells in order to limit inter-processor com-
munications. One of these templates is used
to implement the 4 dimensional cubic network
required by Escapade cellular automata.

par::cell: a set of functionalities and a program-
ming model to design and implement fine
grained computations. This layer allows to
define cell behavior functions, to create cells,
and to dynamically connect these cells to es-
tablish cellular networks. This last operation
can be fastidious and is usually done by the
par::cellnet layer.

Cell nets are executed cyclicly, and cells can com-
municate in a synchronous mode: cell inputs are
all updated at the end of each computation cy-
cle (buffered mode), or in a more asynchronous
mode (hybrid mode): cells are split in different sub-
sets and their cell outputs are routed to connected
cell inputs at different time during each computa-
tion cycle. As the Dempf resolution method of Es-

capade is based on a stochastic gradient descent, a
pure asynchronous evaluation should be chosen but
would need on demand cell input update and would
lead to poor efficient processor communications. At
the opposite, synchronous evaluation can be im-
plemented with efficient processor communication
steps (at the end of each cell computation cycles)
but could be inappropriate for Escapade computa-
tions. The hybrid cell communication mode has
been designed both to satisfy Escapade computation



requirements and to allow efficient processor com-
munications. Its efficiency will be tested during the
next phase of the project.

5.2 Efficient implementation of

BSP-like programming

The next 3 parXXL layers define some strategic func-
tionalities to support any application development.

par::step: A set of utilities that help for the orga-
nization of supersteps (as in the BSP model)
and implement fundamental algorithms such
as, e.g, an efficient sorting routine.

par::cntrl: The control layer implements the ba-
sic control and communication task on top of
the different run-times. Currently supported
run-times are POSIX threads and MPI. They
are generally not compiled into the executable
but flexibly choosen through dynamic linkage
at the startup of the program.

par::mem: The memory layer efficiently imple-
ments an abstraction from the address space
of the underlying system that eases access
to large objects (several GiB) independently
whether or not they are realized on the
heap (malloc), as shared memory segments
(shm open) or within a disk or NFS file. This
functionality allows to integrate remote ap-
plicative IO (e.g user interaction or camera
images) and transparent check-pointing.

Then parXXL includes 2 other layers implement-
ing basic functionalities and insuring portability :
par::sys for system-level interfaces and par::cpp

for C++ interfaces.
Finally, to ease benchmarking in the development

process, par::bench transversal layer supplies a set
of tools to easily implement some performance mea-
surements on parallel and distributed architectures.

Beyond these functionalities the parXXL cell pro-
gramming model includes a client-server model.
Each par::cell program is controlled by a sequen-
tial main routine executed on only one processor:
the master processor, that installs the cell network
and runs cell computation steps on all processors.
This master processor can be specified explicitly
such that the application may use it as a server in-
terface (like a classic TCP server). This parXXL

100

101

101 102

se
co

nd
s

procs

number of cells
8.4e+06
1.1e+07
1.3e+07
1.7e+07
6.7e+07
1.1e+08
3.4e+08
4.3e+08

Figure 3: parXXL performances on a 3D Jacobi re-
laxation on ”Grid-eXplorer” PC cluster.

feature is used to implement the Grumpf server,
running interactive PDE solvers controlled by the
graphic Grumpf client and the user (see right part
of Figure 2).

5.3 Current performances

We have experimented parXXL on a 3D-mesh Ja-
cobi relaxation run on a large PC cluster (the Grid-
eXplorer machine). We have processed meshes up
to 430 millions of points on 310 processors. Compu-
tations were simpler than required by Escapade cel-
lular automata. But the cell network was defined in
the par::cellnet library and used the same pro-
cessor mapping principle than the 4D cell network
defined for Escapade cellular automata.

Figure 3 shows the regular execution time de-
crease we achieved up to 310 processors, for differ-
ent problem size. Finally it was possible to main-
tain the execution time per cycle and per cell using
more processors constant while problem increased:
our parXXL scaled up to 310 processors and 430 mil-
lions of points.

6 Grumpf: allowing interac-

tive computations

6.1 Parallel programming model

The Grumpf programming model has initially be de-
signed for the modeling of neural network-based
cognitive systems and is still used for that purpose



[6]. In such a context, interactive visualization of
computation is crucial, since emerging effects and
relaxation dynamics are difficult to handle and de-
bug. In the present framework, using Grumpf al-
lows to benefit from neural network system design
requirements, since Grumpf offers visualization, cell
net serialization, and many other convenient utili-
ties. It addresses three main issues:

Parallel cellular computations compatible
with the fine grained cellular model of parXXL

and the requirements of the Escapade 4D cellu-
lar automata.

Organization of the graphical rendering of
the cell network activity, based on 2D maps
grouping some network cells. Maps do not in-
fluence cell computation nor connectivity, but
allow easy visualization and interpretation of
the running cell network.

Client-server architecture to implement cel-
lular computing servers, running fine grained
computations on demand, and user friendly
clients, allowing graphical visualization and in-
teractive control of the cellular computations.

To set up a simulation, some cells have to be cre-
ated, as well as the connections between them. The
resulting graph is static, but may be arbitrary. A
cell exposes an arbitrary (but constant) number of
floating values, called activities. This number can
change from one kind of cell to the other. A cell can
access all the activities of a remote cell to which it
is connected, but it is important to note that this
is done read-only. In this framework the role of a
cell is to perform successive evaluation steps, con-
sisting of reading activities of connected cell, and
writing consequently its own activities according to
some updating procedure. Within the automaton,
cells are referred by their position in some bidimen-
sional array. The programmer defines then several
arrays, called maps, and locates newly created cells
in some free position in one of the maps. Maps do
not influence the cell network, but organize graph-
ical rendering of its activity.

6.2 Parallel implementation

Grumpf fully encapsulates the parXXL library to of-
fer a more restricted programming model, and an

Figure 4: Grumpf interactive clients for execution
control and visualization. The layout of visualiza-
tion client is custom defined using glade from the
Gnome project.

extended client-server mechanism, improving inter-
active visualization and control of the cell network
activity. The Grumpf library offers a C++ interface
for designing cells by setting some activities and
updating rules. In the present framework, differ-
ent cell classes correspond to the different updating
rules computed by Dempf, due to limit conditions
as mentioned in Section 4.3. Connections are kept
local, as a consequence of the locality of the con-
sidered differential problem.

Based on parXXL functionalities introduced in
Section 5.1, evaluation of the whole network can be
done partially asynchronously using the hybrid cell
communication mode of parXXL (as for the Hopfield
neural model), or synchronously, using buffers and
buffered mode (as for the Game of Life).

6.3 Interaction with a parallel run

The most significant extension to Escapade and
parXXL offered by Grumpf is interactive control of
the cellular automata running on large parallel and
distributed architectures. The developer may di-
rectly control it from his work station. At the client
side, no programming effort is required. Viewing
tools are designed to visualize bidimensional maps
of cells. The user can set up a visualization by using
some utilities that define what is to be shown. For
example, as maps at the server side are bidimen-



sional collection of cells, a query of activity number
a in map m returns a mesh of floating values, that
can be displayed either with 2D or 3D rendering
(see Fig. 4). This display is updated when server
state changes. In the present case, this rendering
allows to view 2D slices of the 4D simulation.

7 Conclusion

This paper has introduced 3 software tools designed
to solve PDE using cellular automata (Escapade),
to run these fine grained computations on coarse
grained architectures (parXXL), and to interactively
control and visualize the cellular automata compu-
tations (Grumpf). These 3 tools have already been
experimented and validated, and previous versions
have been successfully integrated on share memory
multiprocessors in 2004.

In order to achieve the integration of our new
software suite, we are currently implementing the
Simpf compiler: the Escapade module generating
parXXL code for non-interactive computations or
Grumpf code for interactive ones. In parallel, the de-
sign and implementation of the new Grumpf server
have started, while the graphic Grumpf client re-
mains unchanged. Moreover, some new minor func-
tionalities of parXXL have been implemented to im-
prove its integration with Escapade and Grumpf. Im-
plementation and test of the hybrid cell communi-
cation mode (required for Escapade cell automata
computations) remains the more sensitive issue.

We plan to achieve a non-interactive version be-
fore summer 2007 and a first complete suite for the
end of 2007, allowing to quickly design a model
based on PDE with MathematicaTM and to au-
tomatically solve these equations and study the
model using a mainframe or a large cluster.

Acknowledgment:

Authors want to thank Region Lorraine that has
supported a part of this research.

References

[1] Eddy Caron and Frédéric Desprez. DIET:
A scalable toolbox to build network enabled
servers on the grid. International Journal

of High Performance Computing Applications,
20(3), 2006.

[2] Mohamed Essäıdi and Jens Gustedt. An ex-
perimental validation of the PRO model for
parallel and distributed computation. In 14th
Euromicro Conference on Parallel, Distributed
and Network based Processing, 2006.

[3] Nicolas Fressengeas and Hervé Frezza-Buet.
Generic method for solving partial differen-
tial equations through the design of problem-
specific continuous automata. Technical Report
math-ph/0610037, ArXiv.org, Nov 2006.

[4] Jens Gustedt, Stéphane Vialle, and Amelia
De Vivo. parXXL: A fine grained develop-
ment environment on coarse grained architec-
tures. In PARA-06: Worshop on state-of-the-
art in scientific and parallel computing, June
2006. Ume̊a, Sweden.

[5] F. McKenna and G. Fenves. The OpenSees
command language manual: version 1.2. Tech-
nical report, Pacific Earthquake Engineering
Center, Univ. of Calif., Berkeley, 2001.

[6] Olivier Ménard and Hervé Frezza-Buet. Model
of multi-modal cortical processing: Coherent
learning in self-organizing modules. Neural Net-
works, 18(5-6), 2005.

[7] Olivier Ménard, Stéphane Vialle, and Hervé
Frezza-Buet. Making cortically-inspired senso-
rimotor control realistic for robotics: Design
of an extended parallel cellular programming
models. In International Conference on Ad-
vances in Intelligent Systems - Theory and Ap-
plications, 2004.

[8] Isaak Newton. De analysi per aequationes nu-
mero terminorum infinitas. In William Jones,
editor, Analysis per Quantitatum Series, Flux-
iones, ac Differentias: cum Enumereratione
Linearum Tertii Ordinis. London, 1711.

[9] Ed Seidel, Gabrielle Allen, André Merzky, and
Jarek Nabrzyski. GridLab: a grid application
toolkit and testbed. Future Generation Com-
puter Systems, 18(8), october 2002.


