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AbstractWe present two algorithms to compute a regular di�erential system for some rank-ing, given an equivalent regular di�erential system for another ranking. Both make useof K�ahler di�erentials. One of them is a lifting for di�erential algebra of the FGLMalgorithm and relies on normal forms computations of di�erential polynomials and ofK�ahler di�erentials modulo di�erential relations. Both are implemented in MAPLE V.A straightforward adaptation of FGLM for systems of linear PDE is presented too.Examples are treated. Keywordsdi�erential algebra, K�ahler di�erentials, FGLM.IntroductionRegular1 di�erential systems permit to represent the radicals of di�erential polynomial idealsas Gr�obner bases or triangular sets permit to represent usual polynomial ideals. As forGr�obner bases, regular di�erential systems depend on admissible orderings, called rankings.The Rosenfeld{Gr�obner algorithm [4, 5] which computes regular di�erential systems givenany �nite system of polynomial ODE or PDE and any ranking R is implemented in thediffalg package of the MAPLE VR5 standard library.In this paper, we are concerned by the problem: given a di�erential system A = 0; S 6= 0regular w.r.t. some ranking R, de�ning some regular di�erential ideal r and given someranking ~R 6= R, compute a di�erential system ~A = 0; ~S 6= 0 regular w.r.t. ~R and equivalentto A = 0; S 6= 0 i.e. de�ning the same regular di�erential ideal r.A straightforward solution consists of course of running the Rosenfeld{Gr�obner algorithmover A = 0; S 6= 0 for the new ranking ~R but this is not e�cient. The algorithms describedin this paper use the fact that a representation of r by a regular di�erential system is alreadyavailable in order to compute ~A = 0; ~S 6= 0.The paper is motivated by the following fact. Let � be a di�erential system that wewant to study by representing it by regular di�erential ideals. The rankings which providethe most interesting informations (most of the time, elimination rankings) usually make thecomputation utterly memory and time expensive while there usually exists rankings whichrequire nearly no computation (most of the time, orderly rankings).The situation is indeed very similar to that of Gr�obner bases (but perhaps still morestriking): the Buchberger's algorithm is often very e�cient for total degree orderings andoften very ine�cient for elimination orderings. In the particular case of a zero dimensionalideal a of a polynomial ring R = K[X], the algorithm FGLM [11] solves the problem weconsider: computing a Gr�obner of a for an admissible ordering, knowing a Gr�obner basis ofa for some di�erent ordering. FGLM relies on the following principles.1We precise some of the terms used in this introduction in the next section.1



1. A polynomial �1t1+ � � �+�sts (where the �'s are coe�cients in K and the t's are termsover X) lies in a if and only if the terms t1; : : : ; ts are linearly dependent over K inthe factor ring R=a.2. Detecting a linear dependency between t1; : : : ; ts in R=a amounts to detect a lineardependency between the normal forms of t1; : : : ; ts, assimilating these latter to vectorsof elements of K.3. The known Gr�obner basis permits to compute normal forms.The FGLM algorithm then enumerates the terms t1; : : : ; ts by increasing order w.r.t. the newordering. The relations found are the polynomials of the new Gr�obner basis. The hypothesisdima = 0 implies there are only �nitely many irreducible terms w.r.t. any Gr�obner basisof a and ensures the termination of FGLM.The algorithms we present for di�erential algebra are not as e�cient as FGLM (apartperhaps the algorithm for systems of linear PDE which is a special case and very close toFGLM) but solve anyway the problem under consideration. They proceed in three steps:1. �rst compute only the set of leaders v1; : : : ; vt of ~A. More precisely, one computes tsets of derivatives W1; : : : ;Wt such that vi is the greatest derivative of Wi (for each i)w.r.t. the new ranking ~R and such that r \K[Wi] 6= (0). See sections 4 and 5 ;2. knowing Wi, compute a nonzero polynomial fi 2 r \K[Wi] for each i (section 6) ;3. use f1; : : : ; ft in order to speed up the computation of ~A = 0; ~S 6= 0 using Rosenfeld{Gr�obner.The second step, determining fi knowing Wi, is performed by applying exactly the sameprinciples as FGLM. To carry it out, we had to de�ne a normal form of a di�erential poly-nomial modulo a regular di�erential ideal r (algorithm NF). The known regular di�erentialsystem permits to compute normal forms.The �rst step relies on the computation of K�ahler di�erentials [14, 13] which \linearizethe problem". To perform it, we give two algorithms (we assume for a while that r is aprime ideal of a di�erential polynomial ring R and denote G the di�erential �eld of fractionsof R=r).The �rst algorithm (called K�ahler) readily applies a key theorem (theorem 5) on K�ahlerdi�erentials, using a coding trick, and calling Rosenfeld{Gr�obner.The second one (algorithm dfglm) can be viewed as a lifting of FGLM for regular di�er-ential systems but it only applies for di�erential systems the solutions of which depend on�nitely many arbitrary constants. It is however more e�cient than K�ahler. It applies thefollowing principles:1. there exists a nonzero di�erential polynomial in r\K[w1; : : : ; ws] (where w1; : : : ; ws arederivatives) if and only if the K�ahler di�erentials of w1; : : : ; ws are linearly dependentover G in 
G=K (theorem 4) ; 2



2. detecting a linear dependency over G between these di�erentials amounts to detect alinear dependency between their normal forms, assimilating these latter to vectors ofelements of G (theorem 8) ;3. the known regular di�erential system A = 0; S 6= 0 permits to compute normal formsof K�ahler di�erentials in 
G=K (algorithm DNF).The dfglm algorithm then enumerates all the derivatives of the di�erential indeterminates byincreasing order w.r.t. the new ranking. The hypothesis that the solutions of r only dependon �nitely many arbitrary constants plays the same role as the zero dimension hypothesis inFGLM and ensures the termination of dfglm.In general the di�erential ideal r is not prime but its total ring of fractions is isomorphicto a direct product of di�erential �elds which all admit a same transcendence basis over K(proposition 1) and we explain how to handle the general case.A pedagogic example is completely discussed. Applying our methods over Euler's equa-tions for a perfect uid, we prove the pressure satis�es an autonomous �fth order PDE(section 7). Fact which does not seem to be known.A secondary result of the paper is the algorithm fglm for linear PDE which only appliesfor systems of linear PDE (section 8). It is given a linear di�erential system A = 0 (there areno inequations when the system is linear) regular w.r.t. a ranking R the solutions of whichdepend on �nitely many arbitrary constants and a new ranking ~R 6= R. It does computethe desired di�erential system ~A = 0 regular w.r.t. ~R (not only its set of leaders). It is veryclose to the original FGLM. It may be useful for solving a system of linear PDE A by seekingODE in the di�erential ideal [A] and running a linear ODE solver e.g. [7]. This idea wasalready developed by [20] with a di�erent method. We apply our algorithm over a famousexample of E. Cartan.We do not address complexity issues.1 Di�erential algebraWe only provide a short presentation. The reference books are [21] and [15]. We also referto the MAPLE VR5 diffalg package and thus to the articles [4, 5] which present it. Anexample is provided in section 1.1.A derivation over a ring R is a map � : R! R which satis�es, for every a; b 2 R�(a+ b) = �a+ �b;�(a b) = (�a)b+ a(�b):A di�erential ring is a ring endowed with �nitely many derivations which commute pairwise.The commutative monoid generated by the derivations is denoted �. Its elements are thederivation operators � = �a11 � � � �amm where the ai are nonnegative integer numbers. The sum3



of the exponents ai, called the order of the operator �, is denoted ord �. The identity operatoris the unique operator with order 0. The other ones are called proper. If � = �b11 � � � �bmm then�� = �a1+b11 � � � �am+bmm . If ai > bi for each 1 � i � m then �=� = �a1�b11 � � � �am�bmm .A di�erential ideal a of R is an ideal of R stable under derivation i.e. such thata 2 a) �a 2 a:Let A be a nonempty subset of R. We denote (A) the ideal generated by A. We denote [A]andp[A] the di�erential ideal and the radical of the di�erential ideal generated by A whichare respectively the smallest di�erential ideal and the smallest radical di�erential ideal whichcontain A. If a is an ideal of R and S = fs1; : : : ; stg, we denote a : S1 the saturation of aby S which is the ideala : S1 = fp 2 R j 9a1; : : : ; at 2 N; such that sa11 � � � satt p 2 ag:Let U = fu1; : : : ; ung be a set of di�erential indeterminates. Derivation operators applyover di�erential indeterminates giving derivatives �u. We denote �U the set of all thederivatives. Let K be a di�erential �eld. The di�erential ring of the di�erential polynomialsbuilt over the alphabet �U with coe�cients in K is denoted R = KfUg.A ranking is a total ordering over the set of the derivatives [15, page 75] satisfying thefollowing axioms1. �v > v for each derivative v and derivation �,2. v > w) �v > �w for all derivatives v;w and each derivation �.One distinguishes orderly rankings, which satisfy:ord � > ord �) �u > �v for all u; v 2 Ufrom elimination rankings which satisfy:u > v) �u > �v for all u; v 2 U and �; � 2 �:Fix a ranking. The greatest indeterminate v occuring in a di�erential polynomial p iscalled the leader of p. The leading coe�cient of p w.r.t. v is called the initial of p. Thedi�erential polynomial @p=@v is called the separant of p. Assume p =2 K. Let v be the leaderof p and d = deg(p; v). A di�erential polynomial q is said to be partially reduced w.r.t. adi�erential polynomial p =2 K if no proper derivative of v occurs in q. It is said to be reducedw.r.t. p if it is partially reduced w.r.t. p and deg(q; v) < d.A set A of di�erential polynomials is said to be di�erentially triangular if it is triangularand if its elements are pairwise partially reduced. It is said to be autoreduced if its elementsare pairwise reduced.If A is a set of di�erential polynomials and v is a derivative then Av = f�p j ld �p � vg.Thus Rv denotes the set of all the di�erential polynomials having leader less than or equalto v.A pair fp1; p2g of di�erential polynomials is said to be a critical pair if the leaders of p1and p2 are derivatives of some same di�erential indeterminate u (say ld p1 = �1u and ld p2 =4



�2u). If A is a set of di�erential polynomials then pairs(A) denotes all the pairs that canbe formed with any two elements of A. Let fp1; p2g be a critical pair. Denote �12 the leastcommon multiple between �1 and �2 and assume �12 6= �1 and �12 6= �2. The �{polynomial�(p1; p2) is �(p1; p2) = s2 �12�1 p1 � s1 �12�2 p2where s1; s2 denote the separants of p1 and p2. Let A = 0; S 6= 0 be a system of di�erentialpolynomial equations and inequations. The critical pair fp1; p2g is said to be solved by A =0; S 6= 0 if there exists a derivative v < �12u such that�(p1; p2) 2 (Av) : (S \Rv)1:De�nition 1 (regular di�erential systems)A di�erential system A = 0; S 6= 0 of a di�erential polynomial ring R is said to be aregular di�erential system (for a ranking R) ifC1 A is di�erentially triangular,C2 S contains the separants of the elements of A and is partially reduced w.r.t. A,C3 all the pairs fp; p0g 2 pairs(A) are solved by A = 0; S 6= 0 (coherence property).If A = 0; S 6= 0 is a regular di�erential system then the ideal [A] : S1 (resp. (A) : S1)is called the regular di�erential ideal (resp. regular algebraic ideal) de�ned by the system.The Rosenfeld{Gr�obner algorithm [3, 4, 5] is implemented in the MAPLE VR5 diffalgpackage. Given any �nite family � of di�erential polynomials and any ranking, it representsthe radical of the di�erential ideal [�] generated by � as an intersection of regular di�erentialideals presented by regular di�erential systems.p[�] = [A1] : S11 \ � � � \ [At] : S1t :If A = 0; S 6= 0 is a regular di�erential system, we call derivatives under the stairs of Athe elements of �U which are not derivatives of any leader of element of A. See section 1.1for an explanation of this terminology. Denote N this set and L the set of the leaders ofthe elements of A. Then K[L;N ] is the ring of the di�erential polynomials partially reducedw.r.t. A.Regular systems enjoy the following properties. See [5].Theorem 1 Let A = 0; S 6= 0 be a regular di�erential system of R = KfUg. Let L denotethe set of leaders of A and N the set of the derivatives under the stairs of A. Then� the regular algebraic ideal (A) : S1 is radical (Lazard's lemma) ;� if b denotes a prime ideal minimal over (A) : S1 then the set N furnishes a transcen-dence basis of the �eld of fractions of R=b over K (Lazard's lemma) ;� we have [A] : S1 \K[L;N ] = (A) : S1 (Rosenfeld's lemma) ;5



� the regular di�erential ideal [A] : S1 is radical (lifting of Lazard's lemma) ;� there is a bijection between the prime di�erential ideals p1; : : : ; pt which are minimalover [A] : S1 and the prime ideals b1; : : : ; bt which are minimal over (A) : S1 givenby pi \K[L;N ] = bi (lifting of Lazard's lemma) ;� the system A = 0; S 6= 0 admits a purely algebraic solution, viewed as a polynomialsystem of K[L;N ], if and only if it admits a di�erential solution ;� every purely algebraic solution of the system A = 0; S 6= 0, viewed as a polynomialsystem of K[L;N ], can be extended in a unique way as a di�erential solution.Proposition 1 seems to be new.Proposition 1 Let A = 0; S 6= 0 be a regular di�erential system of R and p1; : : : ; pt bethe di�erential prime components of [A] : S1. Let Ki be the di�erential �eld of fractionsof R=pi. Then the total ring of fractions of R=[A] : S1 is isomorphic to the direct productof di�erential �elds G = K1 � � � � �Kt.Proof Let 1 � i 6= j � t be two indices. By the Chinese Remainder Theorem [10, Exercise2.6, page 79] it is su�cient to prove that the sum pi+pj = (1) in G. Since [A] :S1 is radicalby the lifting of Lazard's lemma, this amounts to prove that there exists fi 2 pi and fj 2 pjsuch that fi + fj belongs to none of the p.Let X denote the �nite set of derivatives occuring in A [ S. Let bi = pi \ K[X]. Bythe lifting of Lazard's lemma again b1; : : : ; bt are the minimal primes of (A) : S1 in K[X].By Lazard's lemma, all these ideals have the same dimension d. We claim bi + bj is notcontained in the union of the b. On one hand, if it were, it would be contained in one of themby the prime avoidance lemma and would have dimension2 � d. On another hand, bi+ bj isa proper divisor of bi and bj since both are minimal over (A) : S1. Thus dimbi + bj < d.Thus there exists fi 2 bi and fj 2 bj such that fi + fj belongs to none of the b. Thepolynomial fi+ fj 2 K[X] thus it belongs to none of the p by the lifting of Lazard's lemma.Since fi 2 pi and fj 2 pj, the proposition is proved.1.1 An exampleWe will follow the next example throughout this paper. It is a system of three di�erentialpolynomial equations. �8<: u2x � 4u = 0;uxyvy � u+ 1 = 0;vxx � ux = 0:There are two derivations @=@x and @=@y and two di�erential indeterminates u; v (meaningwe are looking for two functions v(x; y) and u(x; y) of two independent variables). Wedenote ux = @u=@x and uxy = @2u=@x@y. The derivatives ocuring in � are ux; u; vy; uxy; vxx.2We use the fact that if p � p0 are two prime ideals then dimp � dimp0 ; if moreover dimp = dimp0 thenp = p0. See for instance [15, proposition 4, page 20]. 6



Let's �x the following ranking R. This is the ranking w.r.t. which computations are nearlyimmediate.� � � > vxx > vxy > vyy > uxx > uxy > uyy > vx > vy > ux > uy > v > u:The leaders of the elements of � w.r.t. R are ux; uxy; vxx. Running the Rosenfeld{Gr�obneralgorithm over � and R, we get only one regular di�erential idealp[�] = [A] : S1where A8>><>>: vxx � ux;4vyu+ uxuy � uxuyu;u2x � 4u;u2y � 2uand S = fs2; s3; s4g where s2 = 4u, s3 = 2ux and s4 = 2uy is the set of the noncon-stant separants of the elements of A. The set of leaders of the elements of A w.r.t. R isL = fvxx; vy; ux; uyg. The following diagrams show the sets of derivatives of the di�erentialindeterminates u and v. The leaders are presented by black circles. The areas which containtheir derivatives are striped.
d/dy

d/dxd/dx

d/dy

vuThe set of derivatives lying in the nonstriped areas is the set N of the derivatives underthe stairs. The set N = fvx; v; ug is �nite here but does not need in general to be so. When�nite, its cardinal is an invariant of the ideal3 and gives the number of arbitrary constantsthe solutions of the system depend on. Here are the solutions of �, computed using thediffalg package, the arbitrary constants being denoted c0; c1 and c2.u(x; y) = c0 + c3 x+ c4 y + x2 + 2 c4c3 xy + 12 y2;v(x; y) = c1 + c2 x� c4c3 � c4c3c04 c0 y + c32 x2 + c4 xy+ c0c3 y2 + 13 x3 + c4c3 x2y + 12 xy2 + c46 c3 y3:The other constants c3 and c4 are algebraic over c0, c1 and c2. They satisfy:c23 = 4 c0; c24 = 2 c0; c0 6= 0:3It is the degree of algebraic transcendency of the �eld of fractions of R=p over K, where p is anydi�erential prime component of [A] : S1. 7



Finally, let's say that we would like to compute a di�erential system ~A = 0; ~S 6= 0 regularw.r.t. the following elimination ranking ~R and such that [A] : S1 = [ ~A] : ~S1.� � � > ux > uy > u > � � � > vxx > vxy > vyy > vx > vy > v:Running Rosenfeld{Gr�obner directly over � and ~R makes the memory of the computerexplode.1.2 Gr�obner basesGr�obner bases are presented in [9, 2]. Let R = K[X] be a polynomial ring. A term over X isa power product of elements of X. If B is a Gr�obner basis then ����!B denotes the reductionby the basis B, using the classical reduction algorithm of the Gr�obner basis theory, whichrewrites a term as a polynomial.Let S = fs1; : : : ; stg. To each sk we associate an indeterminate sk over R and denoteS = fs1; : : : ; stg. A Gr�obner basis of S�1(A) is obtained by computing a Gr�obner basis of(A[ fss� 1 j s 2 Sg). Modulo the relation ss� 1, each s = 1=s. See [10, Exercise 2.2, page79].2 Normal form of a di�erential polynomialLet A = 0; S 6= 0 be a regular di�erential system. Denote L the set of its leaders and Nthe derivatives under the stairs. Given any di�erential polynomial f 2 R, the followingalgorithm (Ritt's algorithm of partial reduction) computes a triple [h; h; r] such that h isa power product of s's and h is the corresponding product of s's and r 2 K[L;N ] is adi�erential polynomial satisfyingh f = r (mod [A]);f = h r (mod S�1[A]):By prem(f; g; u) we denote a function which computes the pseudo{remainder of the poly-nomial f by the polynomial g, viewed as univariate polynomials in the indeterminate u.partial rem(f; A)beginh := 1; h := 1; r := fwhile r =2 K[L;N ] dolet w be the highest derivative w.r.t. the ranking which appearsin r and is also a proper derivative of the leader v of some p 2 Alet � 2 � be such that �v = w and s denote the separant of ph := h sdeg(r;w); h := h sdeg(r;w); r := prem(r; �p; w)odreturn [h; h; r]end 8



Lemma 1 Let f � f 0 (mod [A]:S1) be two polynomials and denote [h; h; r] = partial rem(f; A)and [h0; h0; r0] = partial rem(f 0; A). Then hr � h0r0 (mod S�1(A)).Proof Using the speci�cations of the reduction algorithm we have rh0 � r0h (mod [A] :S1)whence, using Rosenfeld's lemma, rh0 � r0h (mod (A) : S1). Multiply both sides by hh0,simplify by hh = h0h0 = 1 and use the fact that S�1 ((A) : S1) = S�1(A).Notice that, if [h; h; r] = partial rem(f; A), then the fraction r=h is not necessarily acanonical representative of f . Consider again the example of section 1.1 and take f = 2vyy.Then r=h = 4u=ux. Take f 0 = ux. Then r0=h0 = ux=1. Observe we have r=h 6= r0=h0 though2vyy � ux (mod [A] : S1) for u2x � 4u 2 [A] : S1.NF(f; A)begin[h; h; r] := partial rem(f; A)let B be a Gr�obner basis of S�1(A)let f be such that h r ����!B freturn fendTheorem 2 The polynomial NF(f; A) belongs to K[L;N; S] and we havef � NF(f;A) (mod S�1[A]):It is a canonical representative of the residue class of f in S�1R=S�1[A].Proof The �rst claim comes from the speci�cations of the reduction algorithm partial remand of the Gr�obner basis reduction algorithm [2, proposition 5.27]. Let's assume now thatf � f 0 (mod [A] : S1). Let [h; h; r] = partial rem(f; A) and [h0; h0; r0] = partial rem(f 0; A).By lemma 1 we have rh � r0h0 (mod (B)). Since a polynomial which is irreducible by aGr�obner basis B is a canonical representative of its residue class modulo (B) [2, proposition5.38 (vi)], the canonicity claim is proved.Using our implementation of the NF algorithm, we �nd NF(2vyy ; A) = ux = NF(ux; A).This example shows also that theorem 3 below would not hold at all if NF did not computecanonical representatives ! This theorem is important: it basically says that determining ifthere exists a linear dependency between di�erential polynomials p1; : : : ; pt in a factor ringR=[A] : S1 amounts to determine if there exists a linear dependency between their normalforms, regarding them as vectors of elements of K.Theorem 3 Let p1; : : : ; pt 2 R be di�erential polynomials. There exists �1; : : : ; �t 2 Ksuch that �1p1 + � � �+ �tpt 2 [A] : S1 if and only if �1NF(p1; A) + � � �+ �t NF(pt; A) = 0.Proof On one hand p 2 [A] : S1 if and only if NF(p;A) = 0 (theorem 2); on another one�1NF(p1; A) + � � �+ �t NF(pt; A) is equal to its normal form.9



3 K�ahler di�erentialsSee [10, chapter 16] for a presentation of K�ahler di�erentials in the purely algebraic case and[13] for K�ahler di�erentials in di�erential algebra.De�nition 2 Let K be a �eld. If G is an algebra over K then the module of K�ahler di�er-entials of G over K, denoted 
G=K is the module over G generated by the set fd(b) j b 2 Ggsuch that d(b+ b0) = d(b) + d(b0) for all b; b0 2 Gd(b b0) = bd(b0) + b0 d(b) for all b; b0 2 Gd(a) = 0 for all a 2 K:From the de�nition, follows the fact that d(a=b) = (d(a) b� ad(b))=b2 for every a=b 2 G.Proposition 2 If K is a di�erential �eld and G is a di�erential algebra over K then 
G=Khas a canonical structure of di�erential module over G such that�d(b) = d(�b) for all b 2 G and derivation � over G.Proof [13, proposition, page 93].The following theorem is purely algebraic.Theorem 4 If K is a �eld of characteristic zero and G is a �eld extension of K then theelements �1; : : : ; �r of G are algebraically independent over K if and only if d(�1); : : : ;d(�r)are linearly independent over G.Proof [10, theorem 16.14, page 400] or [13, lemma, page 94].Theorem 5 Let K be a di�erential �eld. If G is a �nitely generated di�erential �eld exten-sion of K, say G = Kh�1; : : : ; �ri, then 
G=K is generated by d(�1); : : : ;d(�r) as a di�erentialvector space over G.Proof [13, lemma, page 94].Theorem 6 If G1; : : : ; Gr are algebras over K and G = G1 � � � � �Gr then
G=K = 
G1=K � � � � � 
Gr=K:Proof [10, proposition 16.10, page 398]. 10



4 The algorithm K�ahlerLet's consider again the system of R = KfUg given in section 1.1.A8>><>>: vxx � ux;4vyu+ uxuy � uxuyu;u2x � 4u;u2y � 2u:We are looking for a di�erential system ~A = 0; ~S 6= 0 equivalent to A = 0; S 6= 0 for theelimination ranking� � � > ux > uy > u > � � � > vxx > vxy > vyy > vx > vy > v:The K�ahler di�erentials in 
R=K of the elements of A ared(A)8>><>>: d(vxx)� d(ux);4ud(vy) + (ux � uyu)d(ux) + (ux � uxu)d(uy) + (4vy � uxuy)d(u);2uxd(ux)� 4d(u);2uyd(uy)� 2d(u):Let's assume that the di�erential ideal [A] : S1 is prime and denote G the di�erential �eldof fractions of R=[A] :S1. We apply theorem 5 to compute the set of leaders of ~A. To makethe set d(A) generates 
G=K as a di�erential vector space over G, we may just1. de�ne two new di�erential indeterminates du and dv ;2. code the di�erentials d(�u) and d(�v) which occur in d(A) as derivatives �du and �dvof the new di�erential indeterminates ;3. enlarge the so transformed system d(A) with the equations A = 0 and the inequations4S 6= 0 in order to have the coe�cients of the di�erentials taken in G (i.e. mod [A]:S1) ;8>>>>>>>>>><>>>>>>>>>>: dvxx � dux;4udvy + (ux � uyu)dux + (ux � uxu)duy + (4vy � uxuy)du;2uxdux � 4du;2uyduy � 2du;vxx � ux;4vyu+ uxuy � uxuyu;u2x � 4u;u2y � 2u:4. run Rosenfeld{Gr�obner over the enlarged system for the suitable ranking:(a) the derivatives of du and dv are ranked according to ~R ;4The inequations are important, to avoid useless splittings.11



(b) every derivative of du or dv is ranked higher than any derivative of u or v ;(c) the derivatives of u and v are ranked according to R (so that Rosenfeld{Gr�obnerdoes not waste time modifying the equations of A).The Rosenfeld{Gr�obner algorithm quickly computes a regular di�erential system. We donot give the equations in R which are the ones of A. The other ones aredu = uyux2u dvy; dvxx = uyu dvy; dvxy = ux2udvy; dvyy = uy2udvy:We can immediately deduce from this computation that the leaders of ~A are u; vxx; vxy; vyyand, using theorem 4, that for each set W1 = fu; vyg, W2 = fvxx; vyg, W3 = fvxy; vyg andW4 = fvyy; vyg we have [A] : S1 \K[Wi] 6= (0).The following diagram shows the derivatives of u and v. The leaders of the elements of ~Aare presented by black circles. The areas which contain their derivatives are striped. Wemay then verify that the number of derivatives lying under the stairs for the ranking ~R isthe same as for R.
d/dy

d/dxd/dx

d/dy

vuWhat if [A] :S1 is not prime ? We may consider (proposition 1 and theorem 6) that weperform the computations separately modulo the di�erential prime components of [A] :S1.We give in section 6.1 a method to verify the correctness of the result.5 The algorithm dfglm5.1 Normal form of a K�ahler di�erentialConsider again the example of section 1.1. The system d(A) may be viewed as a rewritesystem which rewrites the di�erentials of the leaders of the elements of A as linear combi-nations of d(w) where w 2 N with coe�cients in K[L;N; S]. Recall s denotes the formalinverse of s.d(A)8>><>>: d(vxx)! d(ux);d(vy)!�s2(ux � uyu)d(ux)� s2(ux � uxu)d(uy)� s2(4vy � uxuy)d(u);d(ux)! 4s3d(u);d(uy)! 2s4d(u):We denote ����!d(A) the reduction by the rewrite system d(A). For instance,3d(vxx) + d(v) ����!d(A) 3d(ux) + d(v):12



Let's generalize and consider any regular di�erential systemA = 0; S 6= 0 of R. Denote Lthe set of leaders of A and N the set of derivatives lying under the stairs. Consider thefollowing algorithm.DNF(f; A)beginlet B be a Gr�obner basis of S�1(A)[h; h; r] := partial rem(f; A)d := (d(r)h� rd(h))h2let d be such that d ����!d(A) ����!B dreturn dendProposition 3 Denote G = S�1R=S�1[A]. The di�erential DNF(f; A) is a linear combi-nation of d(w) where w 2 N with coe�cients in K[L;N; S]. It is equivalent to d(f) in
G=K .Proof The speci�cations of the reduction algorithm imply that d is a linear combination ofd(w) where w 2 L [ N with coe�cients in K[L;N; S]. Since d(A) rewrites the d(w) wherew 2 L in terms of the d(w0) where w0 2 N , the �rst claim is proved.The second claim comes from the facts that if p 2 S�1[A] then d(p) = 0 in 
G=K , thatf = hr (mod S�1[A]) and that A � S�1[A].Proposition 4 Let A = 0; S 6= 0 be a regular di�erential system of R and G the total ringof fractions of R=[A] : S1. For every �1; : : : ; �t 2 G and w1; : : : ; wt 2 N , if�1d(w1) + � � �+ �td(wt) = 0 in 
G=K (1)then �1 = � � � = �t = 0.Proof Let p1; : : : ; pn be the di�erential prime components of [A] : S1. Denote Gi the �eldof fractions of R=pi. By proposition 1 and theorem 6 
G=K ' 
G1=K � � � � � 
Gn=K. Ifa nontrivial relation (1) held in 
G=K then such a nontrivial relation would hold in some
Gi=K too and by theorem 4 the set N would be algebraically dependent modulo pi. Thiscontradiction to theorem 1 proves the proposition.Theorem 7 Let A = 0; S 6= 0 be a regular di�erential system. Denote G = S�1R=S�1[A].The di�erential DNF(f; A) is a canonical representative of d(f) in 
G=K .Proof Assume d(f) = d(f 0) in 
G=K . We have DNF(f;A) = DNF(f 0; A) in 
G=K by propo-sition 3. Both these di�erentials are linear combinations of d(w) where w 2 N . Proposition 4implies their coe�cients are pairwise equal (as elements of G). Since these coe�cients are de-noted by canonical representatives (proposition 2) the di�erentialsDNF(f;A) and DNF(f 0; A)are syntactically equal. 13



Theorem 8 Assume [A] : S1 is prime. Let fv1; : : : ; vtg be a set of derivatives. ThenK[v1; : : : ; vt] \ [A] : S1 6= (0) if and only if there exist �1; : : : ; �t 2 K[L;N; S] such that�1DNF(v1; A) + � � �+ �t DNF(vt; A) ����!B 0where B is a Gr�obner basis of the ideal S�1(A) (the reduction applying on the coe�cients ofthe di�erential).Proof Denote G the fraction �eld of R=[A]:S1. By de�nition,K[v1; : : : ; vt]\[A]:S1 6= (0)if and only if the images in G of the derivatives v1; : : : ; vt are algebraically dependent over Ki.e. (theorem 4) if and only if there exists �1; : : : ; �t 2 G such that�1d(v1) + � � �+ �td(vt) = 0 in 
G=K (2)Multiplying the � coe�cients by some nonzero element of G to clear the denominators, re-placing them by their normal forms and substituting DNF(vi; A) to each d(vi) (using propo-sition 3) we see relation (2) is equivalent to�1DNF(v1; A) + � � �+ �t DNF(vt; A) = 0 in 
G=K (3)where the � coe�cients belong to K[L;N; S]. By proposition 3 the di�erential on the lefthand side of (3) is a linear combination of d(w) where w 2 N . Thus by proposition 4 rela-tion (3) holds if and only if all its coe�cients are zero modulo S�1[A] i.e. (using Rosenfeld'slemma) if and only if they are all reduced to zero by the Gr�obner basis B of S�1(A).Assume [A] : S1 is prime. The above theorem permits us to look for the existence of adi�erential polynomial in [A] :S1\K[v1; : : : ; vt] by interpreting DNF(v1; A); : : : ;DNF(vt; A)as vectors and performing (say) gaussian elimination. A Gr�obner basis of S�1(A) beingsu�cient to test equality with zero. This is applied in the dfglm algorithm of the nextsection.The ideal [A]:S1 is prime if and only if (A):S1 is prime (this is a corollary to Rosenfeld'slemma). So the primality test is algorithmic.Assume [A] :S1 is not prime. Then the total ring of fractions of R=[A] :S1 is isomorphicto a product of �elds K1 � � � � �Kn (proposition 1). We may run the gaussian eliminationalgorithm over the product and consider we are computing in parallel over each component.If a linear combination of DNF(vi; A) is reduced to zero then it is zero over all the components;if nonzero, then it is nonzero over at least one of the components. More satisfactory, eachtime we need to invert some element in G, we could test if it is invertible or not (this isalgorithmic by [5, corollary 4.1, point 3] but rather expensive). If it is not then a splittingof the ideal [A] :S1 is discovered and computations can go on by considering separately thetwo cases. This is the same idea as the one applied in commutative algebra in [16, 17, 1].It is also sometimes possible to perform computations as if G were a �eld and verify thecorrectness of the result afterwards (section 6.1).14



5.2 An analogue of the FGLM algorithmThe following algorithm applies theorem 8 in the case of a regular di�erential system A =0; S 6= 0 such that the set N of derivatives under the stairs is �nite and the ideal [A] : S1is prime. In that case, 
G=K is a �nite vector space over the �eld of fractions of R=[A] :S1.The algorithm is directly inspired from the FGLM algorithm [11]. Assume A = 0; S 6= 0is a regular di�erential system for some ranking R. Given another ranking ~R, we are lookingfor a regular di�erential system ~A = 0; ~S 6= 0 such that [A] :S1 = [ ~A] : ~S1. The algorithmdfglm below returns the list of the leaders of ~A.� to see is a list of derivatives to consider. This list is ordered increasingly w.r.t. ~R.� new leaders is the list of the leaders of the elements of ~A.� new irr is the list of the derivatives which are not derivatives of any element of ~A.� the function call update(v; to see) inserts the derivatives of v w.r.t. all the derivations�1; : : : ; �m in the list to see. Duplicates are removed. The list is sorted increasinglyw.r.t. ~R.dfglm(A = 0; S 6= 0; ~R)beginto see := the list of the di�erential indeterminates u1; : : : ; un sorted increasingly w.r.t. ~Rnew leaders := ;new irr := ;while to see 6= the empty list dov := �rst(to see)to see := tail(to see)if v is not a derivative of any element of new leaders thenif there exists a linear dependency over Gbetween DNF(v;A) and fDNF(w;A) j w 2 new irrg thennew leaders := new leaders [ fvgelsenew irr := new irr [ fvg�to see := update(v; to see)�odnew leadersendWhy should dfglm be better than K�ahler ? We do not have any proof of that conjecturebut a strong hint: the completion process performed by Rosenfeld{Gr�obner over systems oflinear PDE is close to the completion process performed by the Buchberger's algorithm (itis the same when the linear PDE depend on only one di�erential indeterminate and haveconstant coe�cients) while the behaviour of dfglm is close to the one of FGLM. And it isknown that computing a Gr�obner basis by change of orderings using FGLM is much fasterthan calling the Buchberger's algorithm. 15



5.2.1 An exampleWe detail the computation over the system given in section 1.1. We assume the di�erentialideal [A] : S1 is prime. We have s2 = 1=(4u) and s3 = 1=(2ux) and s4 = 1=(2uy). Thedi�erentials DNF(v;A) are linear combinations of d(u), d(v) and d(vx). We take for ~R theelimination ranking� � � > ux > uy > u > � � � > vxx > vxy > vyy > vx > vy > v:1. Initially to see = [v; u]. The lists new irr and new leaders are empty.2. The derivative v is picked from to see and stored in new irr. We have DNF(v;A) = d(v).After update we get to see = [vy; vx; u].3. The derivative vy is picked from to see. Its di�erentialDNF(vy; A) = uxuy � 4vy4 d(u)is not linearly dependent on DNF(v;A) = d(v). Thus vy is stored in new irr. Afterupdate we get to see = [vx; vyy; vxy; u].4. The derivative vx is picked from to see. Its di�erential DNF(vx; A) = d(vx) is notlinearly dependent on DNF(v;A) and DNF(vy; A). Thus vx is stored in new irr. Afterupdate we get to see = [vyy; vxy; vxx; u].5. The derivative vyy is picked from to see. Its di�erentialDNF(vyy; A) = s4(uxuy � 4vy)2 d(u)satis�es a linear relation with DNF(vy; A). Thus vyy is stored in new leaders.6. The derivative vxy is picked from to see. Its di�erential DNF(vxy; A) = 2s4d(u) satis�esa linear relation with DNF(vy; A). Thus vxy is stored in new leaders.7. The derivative vxx is picked from to see. DNF(vxx; A) = s4(uxuy � 4vy)d(u) satis�es alinear relation with DNF(vy; A). Thus vxx is stored in new leaders.8. The derivative u is picked from to see. Its di�erential DNF(u;A) = d(u) satis�es alinear relation with DNF(vy; A) thus is stored in new leaders.9. The list to see is empty. The list [u; vxx; vxy; vyy] of the leaders of ~A is returned.The dfglm algorithm can easily be transformed to provide with each new leader v a set ofderivatives v01; : : : ; v0t such that [A] :S1 \K[v; v01; : : : ; v0t] 6= ;. Over the above example, thealgorithm would return [fu; vyg; fvxx; vyg; fvxy; vyg; fvyy; vyg]:This is the same answer as the one given by K�ahler !16



6 Searching a polynomial knowing the alphabetThis algorithm follows either K�ahler or dfglm. Let W be a set of derivatives such that[A] :S1\K[W ] 6= (0). We are looking for a nonzero polynomial. For this, we enumerate allthe terms t1; : : : over W by increasing total degree. At every step j we consider t1; : : : ; tjand we apply theorem 3 to search �1; : : : ; �j 2 K such that �1t1 + � � � + �jtj 2 [A] : S1 orto determine no such coe�cients exist. Continuing the example of section 1.1 and applyingthis method, we obtain the systemÂ8>><>>: f1 = u2 � 2u� 2v2y + 1;f2 = v4xx � 8v2xx � 32v2y + 16;f3 = v4xy � 4v2xy � 8v2y + 4;f4 = v4yy � 2v2yy � 2v2y + 1:Observe in general Â 6= ~A and even [Â] : Ŝ1 6= [ ~A] : ~S1. However the elements of Â aredi�erential polynomials of lowest order w.r.t. ~R which belong to [A] : S1. They are veryuseful to speed up the completion process of the Rosenfeld{Gr�obner algorithm. ApplyingRosenfeld{Gr�obner over A [ Â = 0; S 6= 0 (where A = 0; S 6= 0 is the system obtained insection 1.1) for the ranking ~R we immediately get the desired system~A8>><>>: u� v2yy;vxx � 2vyy;vyvxy � v3yy + vyy;v4yy � 2v2yy � 2v2y + 1:6.1 Verifying the correctness of the resultNow, we may verify [A] : S1 = [ ~A] : ~S1 by verifying [5, corollary 4.1] on one hand thatA � [ ~A] : ~S1 and no element of S divides zero modulo [ ~A] : ~S1, on another hand that~A � [A] : S1 and that no element of ~S divides zero modulo [A] : S1. This �nal veri�cationproves that the computations we performed assuming [A] : S1 was prime were correct.7 Euler's equations for an incompressible uidWritten as a system of polynomial di�erential equations, Euler's equations for an incom-pressible uid in two dimensions are (example taken from [19])�8<: v1t + v1v1x + v2v1y + px = 0;v2t + v1v2x + v2v2y + py = 0;v1x + v2y = 0:The di�erential indeterminates are v1; v2; p where v1 and v2 are the two coordinates of thespeed and p is the pressure. The derivations are @=@x; @=@y and @=@t. The base �eld is the�eld K = Q of the rational numbers. 17



For some orderly ranking, the Rosenfeld{Gr�obner algorithm applied over � returns aunique regular di�erential system A = 0 (the leaders appear on the left hand side of theequations) A8>><>>: pxx = �2v2xv1y � 2(v2y)2 � pyy;v1t = �v2v1y � px + v2yv1;v1x = �v2y;v2t = �v1v2x � v2v2y � py:The system A is orthonomic (i.e. all leaders appear linearly and the initials are 1). Thisproves the di�erential ideal [�] = [A] is prime [15, lemma 2, page 167]. A derivative of eachdi�erential indeterminate appears as a leader of some element of A. Since the ranking isorderly, the ideal has di�erential dimension zero [15, theorem 6, page 115]. This proves that[�] \Kfpg 6= (0).Observe it is not di�cult to compute a nonzero di�erential polynomial in [�] \ Kfv1gor in [�] \ Kfv2g (see [19] for a sixth order polynomial and [3, page 94] for a �fth orderone). It is however a challenge to compute some nonzero di�erential polynomial belongingto [�] \Kfpg !Using theorem 8 we could solve a �rst step of this problem by (nearly) proving that[�] \K[X] 6= (0) where X is the following alphabet of 39 derivatives:X = fpttxxx; pttxxy; pttxyy; pttyyy; ptxxxx; ptxxxy; ptxxyy ; ptxyyy; ptyyyy ; pxxxxx; pxxxxy; pxxxyy ;pxxyyy ; pxyyyy ; pyyyyy ; pttxx; pttyy; ptxxx; ptxxy; ptxyy ; ptyyy ; pxxxx; pxxxy; pxxyy ; pxyyy ; pyyyy ;ptxx; ptxy; ptyy ; pxxx; pxxy; pxyy; pyyy ; pxx; pxy; pyy; px; pygThe idea was: enumerating the derivatives of the pressure p by increasing order and applytheorem 8 to determine the existence of a relation in the di�erential ideal. Observe we arenot in the hypotheses of the dfglm algorithm for the solutions of � do not depend on �nitelymany arbitrary constants (i.e. N is in�nite). We can however use this algorithm by haltingcomputations as soon as a leader is found. We make sure to �nd one because the di�erentialdimension is zero. However, the coe�cients of the normal forms of the K�ahler di�erentialswere huge and made the memory of the computer explode. So we applied the fact that A isorthonomic which implies that the factor ring K[L;N ]=(A) is a free algebra: the sum andthe product of two normal forms is still a normal form. For this reason, we could evaluatethe normal forms as integer numbers to simplify computations. This is because of this useof evaluation that we say we only nearly proved our claim.We tried afterwards to seek a di�erential polynomial in [�] \K[X] using theorem 3 butcould not succeed (even evaluating normal forms to oating point numbers and using PSLQ[12]) because of the large number of monomials to consider.
18



8 A linear example of CartanThe situation is simpler in the case of a system of linear PDE (there is no need of K�ahlerdi�erentials). We illustrate it over the following system � of six linear PDE.�12(x2)2V 1x2 + V 5x2 = 0;�x2x3V 1x3 + x2V 4x3 � V 3 + V 4x1 � x3V 1x1 + x3V 4x4 � (x3)2V 1x4 + 12(x2)2V 4x5 � 12(x2)2x3V 1x5 = 0;�(x2)2V 1x3 + x2V 3x3 � V 2 + V 3x1 � x2V 1x1 + x3V 3x4 � x3x2V 1x4 + 12(x2)2V 3x5 � 12(x2)3V 1x5 = 0;�12(x2)3V 1x3 + x2V 5x3 � V 2x2 + V 5x1 � 12(x2)2V 1x1 + x3V 5x4�12x3(x2)2V 1x4 + 12(x2)2V 5x5 � 14(x2)4V 1x5 = 0;�x3V 1x2 + V 4x2 = 0;�x2V 1x2 + V 3x2 = 0:Applying the Rosenfeld{Gr�obner algorithm over � for some orderly ranking R, we �nd aregular di�erential system A = 0 made of linear PDE with coe�cients in Q(x1; : : : ; x5) thesolutions of which depend on 14 arbitrary constants. There are no inequations since theelements of A are linear. Here is the ranking R� if j�j > j�j then �V i > �V j for any i; j,� if j�j = j�j and � > � w.r.t. the lex. order x1 > � � � > x5 then �V i > �V j for any i; j,� if i < j then �V i > �V j.We do not give A which is a bit too large, just its set of leaders:V 5x4x5x5 ; V 5x5x5x5 ; V 3x4x4 ; V 4x4x4; V 5x4x4; V 3x4x5; V 4x4x5; V 2x5x5; V 3x5x5; V 4x5x5; V 1x1 ; V 2x1 ;V 3x1 ; V 4x1 ; V 5x1; V 1x2 ; V 2x2 ; V 3x2 ; V 4x2; V 5x2; V 1x3 ; V 2x3 ; V 3x3 ; V 4x3; V 5x3 ; V 1x4 ; V 2x4 ; V 1x5:We are looking now for a di�erential system ~A = 0 regular w.r.t. the following ranking ~Rand such that [A] = [ ~A]. The ranking ~R is the elimination ranking V 1 > � � � > V 5 wherethe derivatives of each V i are ranked w.r.t. the orderly ranking:� if j�j > j�j then �V i > �V i,� if j�j = j�j then �V i > �V i if � > � for w.r.t. lexical ordering x1 > � � � > x5.Applying the Rosenfeld{Gr�obner algorithm over � and ~R takes a lot of time. We interruptedthe computation after a few minutes.Now, for linear PDE, we can design a variant of the FGLM algorithm which does computethe desired di�erential system ~A = 0 (and not only its set of leaders !) regular w.r.t. ~R ina few seconds, starting from the di�erential system regular w.r.t. R. Indeed, this variant ofFGLM is very close to FGLM.fglm for linear PDE(A = 0; ~R)beginto see := the list of the di�erential indeterminates u1; : : : ; un sorted increasingly w.r.t. ~Rnew leaders := ; 19



~A := ;new irr := ;while to see 6= the empty list dov := �rst(to see)to see := tail(to see)if v is not a derivative of any element of new leaders thenif there exists some �w 2 K (w 2 new irr) s.t. NF(v;A) =P�w NF(w;A) thennew leaders := new leaders [ fvg~A := ~A [ fv �P�wwgelsenew irr := new irr [ fvg�to see := update(v; to see)�od~AendRunning fglm for linear PDE over A = 0 and ~R we have got in a few seconds the desiredsystem ~A = 0. Here is the set of leaders of ~A:V 1x1; V 1x2 ; V 1x3 ; V 1x4 ; V 1x5; V 2; V 3; V 4x1x1 ; V 4x1x4 ; V 4x4x4; V 4x2; V 4x3 ; V 4x5 ;V 5x3x3x3; V 5x3x3x5; V 5x3x5x5; V 5x4x5x5; V 5x5x5x5; V 5x1x1; V 5x1x2; V 5x1x3; V 5x1x4;V 5x1x5; V 5x2x2; V 5x2x3 ; V 5x2x4 ; V 5x2x5 ; V 5x3x4 ; V 5x4x4:8.1 A note on this systemThe system � arises during the determination of the Lie symmetries of the dynamical sys-tem � below, �rst studied by E. Cartan [8]. See [18] for the mathematical theory. The system� has �ve state variables xi and two commands u1(t); u2(t) which are arbitrary functions.x1t = u1; x2t = u2; x3t = u1x1; x4t = u1x2; x5t = 12u1(x2)2:We are interested in the vector �elds which generate the Lie symmetries of � which leave tinvariant. Such symmetries are local di�eomorphisms which transform the �ve variables xiand map any admissible trajectory of � to another one. We transform � as a Pfa�an system:d(x1) = u1d(t); d(x2) = u2d(t); d(x3) = u1x1d(t);d(x4) = u1x2d(t); d(x5) = 12u1(x2)2d(t):Eliminating d(t) and the commands, we get three forms of Pfa� in �ve variables.d(x3) = x2d(x1); d(x4) = x3d(x1); d(x5) = 12(x2)2d(x1):We enlarge themwith one 2{form (below), computed using the close function of the liesymmpackage of MAPLE. Let's call 
 the so closed system.d(x1) ^ d(x2) = 0:20



The symmetries of � are then given by vector �elds V = (V 1; : : : ; V 5) with �ve componentssuch that the Lie derivative of each element of 
 w.r.t. V is equal to zero modulo 
. Com-puting modulo 
 we rewrite d(x3);d(x4);d(x5) in terms of d(x1) and d(x2). We thus geta system of four linear equations in d(x1) and d(x2) (one of them is identically zero) withlinear PDE in the V i and their derivatives for coe�cients. The symmetries are thus given bythe common zeros of these coe�cients. This is the system �, computed with the determinefunction of liesymm.ConclusionWe believe this paper contributes to prove that being able to compute normal forms isimportant since it allows to perform easily linear algebra in factor structures. In particular,the algorithms presented in this paper rely on the computation of the normal form of afraction p=s in S�1R=S�1(A) where A = 0; S 6= 0 is a triangular system. This computationis possible using Gr�obner bases methods but there does not seem to be any known methodbased on triangular sets and pseudo{reduction5. This is a pain for we implemented since1998 versions (joint work with Fran�cois Lemaire) of Rosenfeld{Gr�obner in MAPLE and C++using di�erent versions of the lextriangular triangularization algorithm [16, 17] instead ofGr�obner bases and we would like to completely avoid these latter.The author would like to thank M. Petitot for indicating him theorem 4, for the algorithmK�ahler and for the analysis of Cartan's example.References[1] Philippe Aubry. Ensembles triangulaires de polynômes et r�esolution de syst�emes al-g�ebriques. Implantation en Axiom. PhD thesis, Universit�e Paris VI, 1999.[2] Thomas Becker and Volker Weispfenning. Gr�obner Bases: a computational approach tocommutative algebra, volume 141 of Graduate Texts in Mathematics. Springer Verlag,1991.[3] Fran�cois Boulier. �Etude et implantation de quelques algorithmes en alg�ebre di��erentielle.PhD thesis, Universit�e Lille I, 59655, Villeneuve d'Ascq, France, 1994.[4] Fran�cois Boulier, Daniel Lazard, Fran�cois Ollivier, and Michel Petitot. Representationfor the radical of a �nitely generated di�erential ideal. In proceedings of ISSAC'95,pages 158{166, Montr�eal, Canada, 1995.[5] Fran�cois Boulier, Daniel Lazard, Fran�cois Ollivier, and Michel Petitot. Computingrepresentations for radicals of �nitely generated di�erential ideals. Technical report,Universit�e Lille I, LIFL, 59655, Villeneuve d'Ascq, France, 1997. (technical reportIT306 of the LIFL, available at http://www.lifl.fr/~boulier/jsc6.ps.gz).5After this paper was written, this problem was solved by Fran�cois Lemaire and the author in [6].21
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