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Abstract

We present two algorithms to compute a regular differential system for some rank-
ing, given an equivalent regular differential system for another ranking. Both make use
of Kéhler differentials. One of them is a lifting for differential algebra of the FGLM
algorithm and relies on normal forms computations of differential polynomials and of
Kéhler differentials modulo differential relations. Both are implemented in MAPLE V.
A straightforward adaptation of FGLM for systems of linear PDE is presented too.
Examples are treated.

Keywords
differential algebra, Kihler differentials, FGLM.

Introduction

Regular® differential systems permit to represent the radicals of differential polynomial ideals
as Grobner bases or triangular sets permit to represent usual polynomial ideals. As for
Grobner bases, regular differential systems depend on admissible orderings, called rankings.
The Rosenfeld-Groébuner algorithm [4, 5] which computes regular differential systems given
any finite system of polynomial ODE or PDE and any ranking R is implemented in the
diffalg package of the MAPLE VRS standard library.

In this paper, we are concerned by the problem: given a differential system A =0, S # 0
regular w.r.t. some ranking R, defining some regular differential ideal v and given some
ranking R # R, compute a differential system A=0, 5 # 0 regular w.r.t. R and equivalent
to A=0, S # 0 i.e. defining the same regular dlfferentlal ideal .

A straightforward solution consists of course of running the Rosenfeld—Grobner algorithm
over A =0, S # 0 for the new ranking R but this is not efficient. The algorithms described
in this paper use the fact that a representation of t by a regular differential system is already
available in order to compute A =0, S # 0.

The paper is motivated by the followmg fact. Let ¥ be a differential system that we
want to study by representing it by regular differential ideals. The rankings which provide
the most interesting informations (most of the time, elimination rankings) usually make the
computation utterly memory and time expensive while there usually exists rankings which
require nearly no computation (most of the time, orderly rankings).

The situation is indeed very similar to that of Grobner bases (but perhaps still more
striking): the Buchberger’s algorithm is often very efficient for total degree orderings and
often very inefficient for elimination orderings. In the particular case of a zero dimensional
ideal a of a polynomial ring R = K[X], the algorithm FGLM [11] solves the problem we
consider: computing a Grobner of a for an admissible ordering, knowing a Grobner basis of
a for some different ordering. FGLM relies on the following principles.

1'We precise some of the terms used in this introduction in the next section.



1. A polynomial Aty +- - -+ Asts (where the A’s are coefficients in K" and the ¢’s are terms
over X) lies in a if and only if the terms ¢1,... . are linearly dependent over K in
the factor ring R/a.

2. Detecting a linear dependency between ¢y,... ,t; in R/a amounts to detect a linear
dependency between the normal forms of 1, ... , ¢, assimilating these latter to vectors
of elements of K.

3. The known Grobner basis permits to compute normal forms.

The FGLM algorithm then enumerates the terms ¢y, ... ,t; by increasing order w.r.t. the new
ordering. The relations found are the polynomials of the new Grobner basis. The hypothesis
dima = 0 implies there are only finitely many irreducible terms w.r.t. any Grobner basis
of a and ensures the termination of FGLM.

The algorithms we present for differential algebra are not as efficient as FGLM (apart
perhaps the algorithm for systems of linear PDE which is a special case and very close to
FGLM) but solve anyway the problem under consideration. They proceed in three steps:

1. first compute only the set of leaders vy, ... ,v, of A. More precisely, one computes ¢
sets of derivatives W1y, . - , Wi such that v; is the greatest derivative of W; (for each 1)
w.r.t. the new ranking R and such that v N K[W;] # (0). See sections 4 and 5 ;

2. knowing W;, compute a nonzero polynomial f; € v N K[W;] for each ¢ (section 6) ;

3. use f1,..., [, in order to speed up the computation of A =0, S # 0 using Rosenfeld—
Grobner.

The second step, determining f; knowing W;, is performed by applying exactly the same
principles as FGLM. To carry it out, we had to define a normal form of a differential poly-
nomial modulo a regular differential ideal v (algorithm NF). The known regular differential
system permits to compute normal forms.

The first step relies on the computation of Kéhler differentials [14, 13] which “linearize
the problem”. To perform it, we give two algorithms (we assume for a while that ¢ is a
prime ideal of a differential polynomial ring R and denote ' the differential field of fractions
of R/v).

The first algorithm (called Kahler) readily applies a key theorem (theorem 5) on Kéhler
differentials, using a coding trick, and calling Rosenfeld—Grobner.

The second one (algorithm dfglm) can be viewed as a lifting of FGLM for regular differ-
ential systems but it only applies for differential systems the solutions of which depend on
finitely many arbitrary constants. It is however more efficient than Kahler. It applies the
following principles:

1. there exists a nonzero differential polynomial in tNK[wy, ... ,w,| (where wy,... ,w, are
derivatives) if and only if the Kahler differentials of wy,... ,w, are linearly dependent
over GG in Qg (theorem 4) ;



2. detecting a linear dependency over (& between these differentials amounts to detect a
linear dependency between their normal forms, assimilating these latter to vectors of
elements of ¢ (theorem 8) ;

3. the known regular differential system A =0, S # 0 permits to compute normal forms

of Kahler differentials in Q¢ 5 (algorithm DNF).

The dfglm algorithm then enumerates all the derivatives of the differential indeterminates by
increasing order w.r.t. the new ranking. The hypothesis that the solutions of v only depend
on finitely many arbitrary constants plays the same role as the zero dimension hypothesis in
FGLM and ensures the termination of dfglm.

In general the differential ideal ¢ is not prime but its total ring of fractions is isomorphic
to a direct product of differential fields which all admit a same transcendence basis over K
(proposition 1) and we explain how to handle the general case.

A pedagogic example is completely discussed. Applying our methods over Euler’s equa-
tions for a perfect fluid, we prove the pressure satisfies an autonomous fifth order PDE
(section 7). Fact which does not seem to be known.

A secondary result of the paper is the algorithm fglm_for_linear_.PDE which only applies
for systems of linear PDE (section 8). It is given a linear differential system A = 0 (there are
no inequations when the system is linear) regular w.r.t. a ranking R the solutions of which
depend on finitely many arbitrary constants and a new ranking R # R. It does compute
the desired differential system A = 0 regular w.r.t. R (not only its set of leaders). It is very
close to the original FGLM. It may be useful for solving a system of linear PDE A by seeking
ODE in the differential ideal [A] and running a linear ODE solver e.g. [7]. This idea was
already developed by [20] with a different method. We apply our algorithm over a famous
example of E. Cartan.

We do not address complexity issues.

1 Differential algebra

We only provide a short presentation. The reference books are [21] and [15]. We also refer
to the MAPLE VR5 diffalg package and thus to the articles [4, 5] which present it. An
example is provided in section 1.1.

A derivation over a ring R is a map 6 : R — R which satisfies, for every a,b € R

da+b) = ba+ b,
§(ab) = (da)b+ a(db).
A differential ring is a ring endowed with finitely many derivations which commute pairwise.

The commutative monoid generated by the derivations is denoted ©. Its elements are the
derivation operators = 67" - - - 62" where the a; are nonnegative integer numbers. The sum



of the exponents a;, called the order of the operator 8, is denoted ord f. The identity operator
is the unique operator with order 0. The other ones are called proper. If ¢ = 5{171 <o+ 8vm then
O = §0H0r . §amtbn Tf g > b; for each 1 < i < m then /¢ = 7" ... §im=bm,

A differential ideal a of R is an ideal of R stable under derivation i.e. such that

¢ €a=da €.

Let A be a nonempty subset of R. We denote (A) the ideal generated by A. We denote [A]
and 4/[A] the differential ideal and the radical of the differential ideal generated by A which
are respectively the smallest differential ideal and the smallest radical differential ideal which

contain A. If a is an ideal of R and S = {s1,...,s;}, we denote a: S the saturation of a
by S which is the ideal

a: 5% ={pe€ R|3ay,...,a; € N, such that s{*---si'p € a}.

Let U = {uy,... ,u,} be a set of differential indeterminates. Derivation operators apply
over differential indeterminates giving derivatives fu. We denote OU the set of all the
derivatives. Let K be a differential field. The differential ring of the differential polynomials
built over the alphabet ©@U with coefficients in K is denoted R = K{U}.

A ranking is a total ordering over the set of the derivatives [15, page 75] satisfying the
following axioms

1. dv > v for each derivative v and derivation 4,
2. v>w = dv > dw for all derivatives v,w and each derivation 4.

One distinguishes orderly rankings, which satisfy:
ordd >ord¢p = Ou > ¢v for all u,v € U
from elimination rankings which satisfy:
u>v=>0u>q¢v forallu,velU andf,¢¢€ 0.

Fix a ranking. The greatest indeterminate v occuring in a differential polynomial p is
called the leader of p. The leading coefficient of p w.r.t. v is called the initial of p. The
differential polynomial dp/dv is called the separant of p. Assume p ¢ K. Let v be the leader
of p and d = deg(p,v). A differential polynomial ¢ is said to be partially reduced w.r.t. a
differential polynomial p ¢ K if no proper derivative of v occurs in ¢. It is said to be reduced
w.r.t. p if it is partially reduced w.r.t. p and deg(q,v) < d.

A set A of differential polynomials is said to be differentially triangular if it is triangular
and if its elements are pairwise partially reduced. It is said to be autoreduced if its elements
are pairwise reduced.

If A is a set of differential polynomials and v is a derivative then A, = {fp | 1d0p < v}.
Thus R, denotes the set of all the differential polynomials having leader less than or equal
to v.

A pair {p1, p2} of differential polynomials is said to be a critical pair if the leaders of p;
and py are derivatives of some same differential indeterminate u (say 1d p; = 6;u and ld py =
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Oou). If A is a set of differential polynomials then pairs(A) denotes all the pairs that can
be formed with any two elements of A. Let {py,p2} be a critical pair. Denote 6,5 the least
common multiple between 6; and 6, and assume ;5 # 6; and ;5 # 0,. The A—polynomial

A(p17p2) is 0 0
A(plapz) = 82 ﬁ]ﬁ — S5 ﬁpz
0, 0,

where sy, s9 denote the separants of p; and py. Let A =0, S # 0 be a system of differential
polynomial equations and inequations. The critical pair {p;, p2} is said to be solved by A =
0, S # 0 if there exists a derivative v < #y5u such that

A(pr,p2) € (A,): (SN R,)™.

Definition 1 (regular differential systems)
A differential system A = 0, S # 0 of a differential polynomial ring R is said to be a
regular differential system (for a ranking R) if

C1 A is differentially triangular,
C2 S contains the separants of the elements of A and is partially reduced w.r.t. A,

C3 all the pairs {p, p'} € pairs(A) are solved by A =0, S # 0 (coherence property).

If A=0, S #0is aregular differential system then the ideal [A]: S (resp. (A):.5°)
is called the regular differential ideal (vesp. regular algebraic ideal) defined by the system.

The Rosenfeld-Grobner algorithm [3, 4, 5] is implemented in the MAPLE VR5 diffalg
package. Given any finite family ¥ of differential polynomials and any ranking, it represents
the radical of the differential ideal [¥] generated by ¥ as an intersection of regular differential
ideals presented by regular differential systems.

(Y] = [Ay] 579NN [A]: 577,

If A=0, S # 0 is a regular differential system, we call derivatives under the stairs of A
the elements of ©U which are not derivatives of any leader of element of A. See section 1.1
for an explanation of this terminology. Denote N this set and L the set of the leaders of
the elements of A. Then K[L, N] is the ring of the differential polynomials partially reduced
w.r.t. A.

Regular systems enjoy the following properties. See [5].

Theorem 1 Let A =0, S # 0 be a reqular differential system of R = K{U}. Let L denote
the set of leaders of A and N the set of the derivatives under the stairs of A. Then

o the reqular algebraic ideal (A): S is radical (Lazard’s lemma) ;

e if b denotes a prime ideal minimal over (A): S°° then the set N furnishes a transcen-

dence basis of the field of fractions of R/b over K (Lazard’s lemma) ;
o we have [A]: SN K[L,N]| = (A): S (Rosenfeld’s lemma) ;
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o the reqular differential ideal [A]: S is radical (lifting of Lazard’s lemma) ;

o there is a bijection between the prime differential ideals 9y, ... ,p; which are minimal
over [A] : S° and the prime ideals by, ... b, which are minimal over (A): S given

by p; N K[L, N] = b, (lifting of Lazard’s lemma) ;

o the system A =0, S # 0 admits a purely algebraic solution, viewed as a polynomial
system of K[L,N], if and only if it admits a differential solution ;

o cvery purely algebraic solution of the system A = 0, S # 0, viewed as a polynomial
system of K[L,N], can be extended in a unique way as a differential solution.

Proposition 1 seems to be new.

Proposition 1 Let A = 0, S # 0 be a reqular differential system of R and py,... ,p: be
the differential prime components of [A]: S°°. Let K; be the differential field of fractions
of R/p;. Then the total ring of fractions of RJ/[A]: S is isomorphic to the direct product
of differential fields G = Ky x --- x K.

Proof Let 1 <i# j <t be two indices. By the Chinese Remainder Theorem [10, Exercise
2.6, page 79] it is sufficient to prove that the sum p;+p; = (1) in G. Since [A]: 5% is radical
by the lifting of Lazard’s lemma, this amounts to prove that there exists f; € p; and f; € p;
such that f; + f; belongs to none of the p.

Let X denote the finite set of derivatives occuring in AU S. Let b, = p; N K[X]. By
the lifting of Lazard’s lemma again by, ..., b; are the minimal primes of (A): 5% in K[X].
By Lazard’s lemma, all these ideals have the same dimension d. We claim b; + b; is not
contained in the union of the b. On one hand, if it were, it would be contained in one of them
by the prime avoidance lemma and would have dimension* > d. On another hand, b; + b; is
a proper divisor of b; and b; since both are minimal over (A): .S°°. Thus dimb; + b; < d.

Thus there exists f; € b; and f; € b; such that f; + f; belongs to none of the b. The
polynomial f;+ f; € K[X] thus it belongs to none of the p by the lifting of Lazard’s lemma.
Since f; € p; and f; € p;, the proposition is proved. O

1.1 An example

We will follow the next example throughout this paper. It is a system of three differential
polynomial equations.
u? —4u = 0,
by UpyVy — U+ 1 =0,
Ve — Uy = 0.
There are two derivations d/dx and d/dy and two differential indeterminates u, v (meaning

we are looking for two functions v(x,y) and u(x,y) of two independent variables). We
denote u, = du/dx and u,, = 9*u/dxdy. The derivatives ocuring in ¥ are wu,, u, vy, Uy, Vyz-

2We use the fact that if p C p’ are two prime ideals then dimyp > dimp’ ; if moreover dimp = dimp’ then
p =p’. See for instance [15, proposition 4, page 20].



Let’s fix the following ranking R. This is the ranking w.r.t. which computations are nearly
immediate.

T D Uy D Ugy 2 Uy 2 Upy 2 Ugy 2> Uy 2> Uy > Uy > Uy 2> Uy >V > U

The leaders of the elements of ¥ w.r.t. R are u,, Uy, vy, Running the Rosenfeld—Grobner
algorithm over 3 and R, we get only one regular differential ideal

5] = [4]: 5%
where
Vg — Ug,
A dvyu + Uzty — UgUyu,
u? — 4u,
uf/ — 2u
and S = {s2,83,84} where sy = 4u, s3 = 2u, and sy = 2u, is the set of the noncon-

stant separants of the elements of A. The set of leaders of the elements of A w.r.t. R is
L = {vgs, vy, uz, uy }. The following diagrams show the sets of derivatives of the differential
indeterminates v and v. The leaders are presented by black circles. The areas which contain

their derivatives are striped.
d/dy d/dy

///// 7
e

°
/

/

u didx v drdx

The set of derivatives lying in the nonstriped areas is the set N of the derivatives under
the stairs. The set N = {v,, v, u} is finite here but does not need in general to be so. When
finite, its cardinal is an invariant of the ideal® and gives the number of arbitrary constants
the solutions of the system depend on. Here are the solutions of X, computed using the
diffalg package, the arbitrary constants being denoted ¢, ¢; and c,.

2 204 1 2
u(z,y) = cotertayte’+——ay+oy
3
C4C3 — C4C3C c
v(z,y) = 01+02$—M9+—3$2+C4wy
400 2

1 1
+c—0y2—|-—x3—|-c—4:1:2y—|-—xy2—l-c—4y3.
C3 3 c3 2 6 c5

The other constants ¢3 and ¢4 are algebraic over ¢g, ¢; and ¢y. They satisfy:

2 2
s =4¢cy, c3=2cy, o F#0.

31t is the degree of algebraic transcendency of the field of fractions of R/p over K, where p is any
differential prime component of [A] : S°°.



Finally, let’s say that we would like to compute a differential system gl =0, S # 0 regular
w.r.t. the following elimination ranking R and such that [A]: 5% = [A] : .

D Uy DUy DU D Uy D Vg > Uy 2> Uy > Uy > V.

Running Rosenfeld—Grobner directly over ¥ and R makes the memory of the computer
explode.

1.2 Grobner bases

Grobner bases are presented in [9, 2]. Let R = K[X] be a polynomial ring. A term over X is
a power product of elements of X. If B is a Grébner basis then —— denotes the reduction

by the basis B, using the classical reduction algorithm of the Grgbner basis theory, which
rewrites a term as a polynomial.

Let S = {s1,...,s:}. To each s, we associate an indeterminate 35 over R and denote
S ={51,...,5}. A Grobner basis of S7'(A) is obtained by computing a Grobner basis of
(AU{ss—1]s € S}). Modulo the relation ss— 1, each 5§ = 1/s. See [10, Exercise 2.2, page
79].

2 Normal form of a differential polynomial

Let A =0, S # 0 be a regular differential system. Denote L the set of its leaders and N
the derivatives under the stairs. Given any differential polynomial f € R, the following
algorithm (Ritt’s algorithm of partial reduction) computes a triple [k, k, 7] such that & is
a power product of s’s and h is the corresponding product of 3’s and r € K[L, N] is a
differential polynomial satisfying

hf = r (mod[A]),
f = hr (mod ST[A]).

By prem(f, g, u) we denote a function which computes the pseudo-remainder of the poly-
nomial f by the polynomial ¢, viewed as univariate polynomials in the indeterminate w.

partial_rem(f, A)
begin
hi=1h:=1r:=f
while r ¢ K[L, N] do
let w be the highest derivative w.r.t. the ranking which appears
in r and is also a proper derivative of the leader v of some p € A
let 8 € © be such that v = w and s denote the separant of p
h = hsdestnw), f= pgdesnw). .= prem(r, Op,w)
od
return [h, h, 7]
end



Lemma 1 Let f = f' (mod [A]:S%) be two polynomials and denote [h, b, r] = partial_rem(f, A)
and [W', B, r'] = partial_rem(f’, A). Then hr =h'r' (mod S=1(A)).

Proof Using the specifications of the reduction algorithm we have rh’ = r'h (mod [A]:5°°)
whence, using Rosenfeld’s lemma, rh’ = r'h (mod (A) : S°). Multiply both sides by m/,
simplify by hh = K'E =1 and use the fact that S~! ((A):5%°) = S5"1A). O

Notice that, if [k, h, r] = partial_rem(f, A), then the fraction r/h is not necessarily a
canonical representative of f. Consider again the example of section 1.1 and take f = 2vy,.
Then r/h = 4u/u,. Take f" = u,. Then r'/h’ = u, /1. Observe we have r/h # r'/h' though
2v,, = u,; (mod [A]:5%°) for u? — 4u € [A]: 5.

NF(/, A)

begin
[h, R, 7] := partial_rem(f, A)
let B be a Grobner basis of S7H(A)
let f be such that A r # f

return ?
end

Theorem 2 The polynomial NF(f, A) belongs to K[L, N,S] and we have
f=NF(f,A) (mod S'[A]).
It is a canonical representative of the residue class of f in ST'R/S™[A].

Proof The first claim comes from the specifications of the reduction algorithm partial _rem
and of the Grobner basis reduction algorithm [2, proposition 5.27]. Let’s assume now that
f=f (mod [A]: S*). Let [h,h,r] = partial_rem(f, A) and [h’,ﬁl,r’] = partial_rem(f’, A).
By lemma 1 we have rh = 'R (mod (B)). Since a polynomial which is irreducible by a
Grobner basis B is a canonical representative of its residue class modulo (B) [2, proposition
5.38 (vi)], the canonicity claim is proved. O

Using our implementation of the NF algorithm, we find NF(2v,,, A) = u, = NF(u,, A).
This example shows also that theorem 3 below would not hold at all if NF did not compute
canonical representatives ! This theorem is important: it basically says that determining if
there exists a linear dependency between differential polynomials py, ... ,p; in a factor ring
R/[A]: S°° amounts to determine if there exists a linear dependency between their normal
forms, regarding them as vectors of elements of KA.

Theorem 3 Let py,...,p; € R be differential polynomials. There exists A\y,... , A\ € K
such that Aipy + -+ -+ pe € [A] 1 S°° if and only if Ay NF(p1, A) +--- + A NF(ps, A) = 0.

Proof On one hand p € [A]: S if and only if NF(p, A) = 0 (theorem 2); on another one
A NF(p1, A)+ - + A NF(ps, A) is equal to its normal form. O

9



3 Kahler differentials

See [10, chapter 16] for a presentation of Kéhler differentials in the purely algebraic case and
[13] for K&hler differentials in differential algebra.

Definition 2 Let K be a field. If G is an algebra over K then the module of Kdhler differ-
entials of G over K, denoted Qg is the module over G generated by the set {d(b) | b € G}
such that

db+0b) = d(b)+d(b) forald b € G
d(bb') = bd(d)+Vd(b) foralbb e
d(a) = 0 forallae K.

From the definition, follows the fact that d(a/b) = (d(a)b— ad(b))/b? for every a/b € G.

Proposition 2 [f K is a differential field and G is a differential algebra over K then Qg i
has a canonical structure of differential module over G such that

dd(b) = d(db) for all b€ G and derivation § over 5.
Proof [13, proposition, page 93]. O
The following theorem is purely algebraic.

Theorem 4 [f K s a field of characteristic zero and G is a field extension of K then the
elements 0y, ... ,n, of G are algebraically independent over K if and only if d(m1),... ,d(n,)
are linearly independent over .

Proof [10, theorem 16.14, page 400] or [13, lemma, page 94]. O

Theorem 5 Let K be a differential field. If G is a finitely generated differential field exten-
sion of K, say G = K(n,... ), then Qg is generated by d(ny), ... ,d(n,) as a differential
vector space over (3.

Proof [13, lemma, page 94]. O
Theorem 6 [f Gy,...,G, are algebras over K and G = Gy x -+ x GG, then
QG/K = QGl/K X X QGT/K-

Proof [10, proposition 16.10, page 398]. O
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4 The algorithm Kahler

Let’s consider again the system of R = K{U} given in section 1.1.

Vegg — Uy,

A 412Jyu + Uty — Ug Uy,
us — 4u,
uf/ — 2u.

We are looking for a differential system A=0, S # 0 equivalent to A = 0, S # 0 for the
elimination ranking

D Uy DUy DU D Uy D Vg > Uy 2> Uy > Uy > V.

The Kahler differentials in {2p, i of the elements of A are

d(vge) — d(uy),

() + (o — tyu)d(a) + (1 — i) + (40 — iy},
2u,d(uy) — 4d(uw),

2u,d(uy) — 2d(u).

d(4)

Let’s assume that the differential ideal [A] : S° is prime and denote (& the differential field
of fractions of R/[A]:5°°. We apply theorem 5 to compute the set of leaders of A. To make
the set d(A) generates Qi as a differential vector space over (¢, we may just

1. define two new differential indeterminates du and dv ;

2. code the differentials d(fu) and d(¢v) which occur in d(A) as derivatives fdu and ¢dv

of the new differential indeterminates ;

3. enlarge the so transformed system d(A) with the equations A = 0 and the inequations®

S # 0 in order to have the coefficients of the differentials taken in G (i.e. mod [A]:5°°) ;

dve, — du,,

dudvy + (uy — uyu)du, + (uy — ugpu)duy, + (dvy, — upuy)du,

2updu, — 4du,
2uydu, — 2du,

Vegg — Uy,

dvyu + Uzty — UgUyu,
u? — 4u,

uf/ — 2u.

4. run Rosenfeld—Grobner over the enlarged system for the suitable ranking:

(a) the derivatives of du and dv are ranked according to R ;

*The inequations are important, to avoid useless splittings.
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(b) every derivative of du or dv is ranked higher than any derivative of u or v ;

(c) the derivatives of u and v are ranked according to R (so that Rosenfeld-Grébner
does not waste time modifying the equations of A).

The Rosenfeld—Grobner algorithm quickly computes a regular differential system. We do
not give the equations in R which are the ones of A. The other ones are
Uy Uy U Ug (3
du = ~"dv,, dv,, = Uydvy, dvy, = %dvy, dvy, = idvy.

2u

We can immediately deduce from this computation that the leaders of A are u, v,,, Vg Vyy
and, using theorem 4, that for each set Wy = {u,v,}, Wy = {vgs, vy}, W5 = {vgy,v,} and
Wy = {vyy,v,} we have [A]: S° N K[W,] # (0).

The following diagram shows the derivatives of u and v. The leaders of the elements of A
are presented by black circles. The areas which contain their derivatives are striped. We
may then verify that the number of derivatives lying under the stairs for the ranking R is

),

e
| e
//// Bt

[ ‘
u didx v drdx

What if [A]: 9% is not prime ? We may consider (proposition 1 and theorem 6) that we

the same as for R.
d/dy d/dy

perform the computations separately modulo the differential prime components of [A] : S°°.
We give in section 6.1 a method to verify the correctness of the result.

5 The algorithm dfglm

5.1 Normal form of a Kahler differential

Consider again the example of section 1.1. The system d(A) may be viewed as a rewrite
system which rewrites the differentials of the leaders of the elements of A as linear combi-
nations of d(w) where w € N with coefficients in K[L, N,S]. Recall 5 denotes the formal
inverse of s.

d(vpe) — d(ug),

A(g) = —53(1ts — t0yu)(1tz) — 53(1ts — w0} (1) — 5340, — tyts (1),

d(u,) — 433d(u),

d(uy) — 255d(u).

d(4)

We denote ﬁ the reduction by the rewrite system d(A). For instance,
d(A

3d(vge) + d(v) ﬁ 3d(ug) + d(v).

12



Let’s generalize and consider any regular differential system A = 0, S # 0 of R. Denote L
the set of leaders of A and N the set of derivatives lying under the stairs. Consider the
following algorithm.

DNF(f, A)

begin
let B be a Grobner basis of S71(A)
[h, R, 7] := partial_rem(f, A)
d = (d(r)h — rd(h))R’

let d be such that d — ——— d
d(A) B

return 3
end

Proposition 3 Denote G = S~ R/S™'[A]. The differential DNF(f, A) is a linear combi-
nation of d(w) where w € N with coefficients in K[L,N,S]|. It is equivalent to d(f) in
Qa/k -

Proof The specifications of the reduction algorithm imply that d is a linear combination of
d(w) where w € L U N with coefficients in K[L, N, S]. Since d(A) rewrites the d(w) where
w € L in terms of the d(w’) where w’ € N, the first claim is proved.

The second claim comes from the facts that if p € S7'[A] then d(p) = 0 in Qg/k, that
f = hr (mod S7![A]) and that A C S7![A]. O

Proposition 4 Let A=0, S #0 be a reqular differential system of R and G the total ring
of fractions of R/[A]:S°°. For every A1,... A € G and wy,... ,w; € N, if

Md(wy) 4+ Ad(we) =0 in Qg (1)
then \y =--- =X =0.

Proof Let py,...,p, be the differential prime components of [A]: S°°. Denote G; the field
of fractions of R/p;. By proposition 1 and theorem 6 Qg/x =~ Qg /x % -+ X Qg k. 1f
a nontrivial relation (1) held in Qg k then such a nontrivial relation would hold in some
Q¢ /K too and by theorem 4 the set N would be algebraically dependent modulo p;. This
contradiction to theorem 1 proves the proposition. O

Theorem 7 Let A =10, S # 0 be a regular differential system. Denote G = S~'R/S™![A].
The differential DNF(f, A) is a canonical representative of d(f) in Qq/x.

Proof Assume d(f) =d(f’) in Qq/x. We have DNF(f, A) = DNF(f’, A) in Qg x by propo-
sition 3. Both these differentials are linear combinations of d(w) where w € N. Proposition 4
implies their coefficients are pairwise equal (as elements of (¢). Since these coefficients are de-
noted by canonical representatives (proposition 2) the differentials DNF(f, A) and DNF(f', A)
are syntactically equal. O

13



Theorem 8 Assume [A]: S° is prime. Let {vy,... v} be a set of derivatives. Then
Klv1, ... 0] N [A]: 5% % (0) if and only if there exist Ay,... A\ € K[L, N, S] such that

A DNF(vr, A) + -+ + A DNF(v, A) —— 0

where B is a Grobner basis of the ideal S™'(A) (the reduction applying on the coefficients of
the differential).

Proof Denote (i the fraction field of R/[A]:5°°. By definition, K[vq,... ,v]N[A]: 5% # (0)

if and only if the images in GG of the derivatives vy,... ,v; are algebraically dependent over K
i.e. (theorem 4) if and only if there exists p1,... , s € G such that
pad(vy) + - 4 ped(ve) =0 in Qi (2)

Multiplying the i coefficients by some nonzero element of (¢ to clear the denominators, re-
placing them by their normal forms and substituting DNF(v;, A) to each d(v;) (using propo-
sition 3) we see relation (2) is equivalent to

A DNF(v1, A) + -+ A DNF(v, A) = 0 in Qg 3)

where the A coefficients belong to K[L, N, S]. By proposition 3 the differential on the left
hand side of (3) is a linear combination of d(w) where w € N. Thus by proposition 4 rela-
tion (3) holds if and only if all its coefficients are zero modulo S™'[A] i.e. (using Rosenfeld’s
lemma) if and only if they are all reduced to zero by the Grobner basis B of S™(A). O

Assume [A] : S°° is prime. The above theorem permits us to look for the existence of a
differential polynomial in [A]:5°°N Kvy, ..., v by interpreting DNF(vy, A),... ,DNF(v;, A)
as vectors and performing (say) gaussian elimination. A Grobner basis of S™'(A) being
sufficient to test equality with zero. This is applied in the dfglm algorithm of the next
section.

The ideal [A]: S is prime if and only if (A):5°° is prime (this is a corollary to Rosenfeld’s
lemma). So the primality test is algorithmic.

Assume [A]: 5% is not prime. Then the total ring of fractions of R/[A]:5% is isomorphic
to a product of fields Ky x --- x K,, (proposition 1). We may run the gaussian elimination
algorithm over the product and consider we are computing in parallel over each component.
If a linear combination of DNF(v;, A) is reduced to zero then it is zero over all the components;
if nonzero, then it is nonzero over at least one of the components. More satisfactory, each
time we need to invert some element in (7, we could test if it is invertible or not (this is
algorithmic by [5, corollary 4.1, point 3] but rather expensive). If it is not then a splitting
of the ideal [A]: S is discovered and computations can go on by considering separately the
two cases. This is the same idea as the one applied in commutative algebra in [16, 17, 1].

It is also sometimes possible to perform computations as if G were a field and verify the
correctness of the result afterwards (section 6.1).
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5.2 An analogue of the FGLM algorithm

The following algorithm applies theorem 8 in the case of a regular differential system A =
0, S # 0 such that the set N of derivatives under the stairs is finite and the ideal [A]: S°°
is prime. In that case, Qg is a finite vector space over the field of fractions of R/[A]: 5.

The algorithm is directly inspired from the FGLM algorithm [11]. Assume A =10, S # 0
is a regular differential system for some ranking R. Given another ranking R, we are looking
for a regular differential system A = 0, S # 0 such that [A]: 5% = [A]: 5. The algorithm
dfglm below returns the list of the leaders of A.

e to_see is a list of derivatives to consider. This list is ordered increasingly w.r.t. K.
e new_leaders is the list of the leaders of the elements of A.
e new_irris the list of the derivatives which are not derivatives of any element of A.

e the function call update(v, to_see) inserts the derivatives of v w.r.t. all the derivations

01,0, in the list to_see. Duplicates are removed. The list is sorted increasingly
w.r.t. R.
dfgim(A =0, S#0, R)
begin
to_see := the list of the differential indeterminates uy, ... ,u, sorted increasingly w.r.t. R

new_leaders := ()
new_irr := ()
while to_see # the empty list do
v = first(to_see)
to_see := tail(to_see)
if v is not a derivative of any element of new_leaders then
if there exists a linear dependency over ¢
between DNF(v, A) and {DNF(w, A) | w € new_irr} then
new_leaders := new_leaders U {v}
else
new_irr := new_irrJ {v}
fi
to_see := update(v, to_see)
fi
od
new_leaders
end

Why should dfglm be better than Kahler 7 We do not have any proof of that conjecture
but a strong hint: the completion process performed by Rosenfeld—Grobner over systems of
linear PDE is close to the completion process performed by the Buchberger’s algorithm (it
is the same when the linear PDE depend on only one differential indeterminate and have
constant coefficients) while the behaviour of dfglm is close to the one of FGLM. And it is
known that computing a Grobner basis by change of orderings using FGLM is much faster
than calling the Buchberger’s algorithm.
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5.2.1 An example

We detail the computation over the system given in section 1.1. We assume the differential
ideal [A]: 5% is prime. We have 55 = 1/(4u) and 53 = 1/(2u,) and 35 = 1/(2u,). The
differentials DNF(v, A) are linear combinations of d(u), d(v) and d(v,). We take for R the

elimination ranking
D Uy DUy DU D Uy D Vg > Uy 2> Uy > Uy > V.
1. Initially to_see = [v, u]. The lists new_irr and new_leaders are empty.

2. The derivative v is picked from to_see and stored in new_irr. We have DNF(v, A) = d(v).
After update we get to_see = [vy, vy, ul.

3. The derivative v, is picked from to_see. Its differential

Uply — 4vyd

DNF(v,, A) = — (u)

is not linearly dependent on DNF(v, A) = d(v). Thus v, is stored in new_irr. After
update we get to_see = [vg, Uy, Vgy, U]

4. The derivative v, is picked from to_see. Its differential DNF(v,, A) = d(v,) is not
linearly dependent on DNF(v, A) and DNF(v,, A). Thus v, is stored in new_irr. After
update we get to_see = [vyy, Vay, Vg, U).

5. The derivative v, is picked from to_see. Its differential

Sa(uzpuy, — 4vy)

DNF(v,,, A) = .

d(u)

satisfies a linear relation with DNF(v,, A). Thus v, is stored in new_leaders.

6. The derivative vy, is picked from to_see. Its differential DNF(v,,, A) = 253d(u) satisfies
a linear relation with DNF(v,, A). Thus v,, is stored in new_leaders.

7. The derivative v, is picked from to_see. DNF(v,,, A) = S3(uzu, — 4v,)d(u) satisfies a
linear relation with DNF(v,, A). Thus v, is stored in new_leaders.

8. The derivative u is picked from to_see. Its differential DNF(u, A) = d(u) satisfies a
linear relation with DNF(v,, A) thus is stored in new_leaders.

9. The list to_see is empty. The list [w, Vs, Vsy, vyy] of the leaders of A is returned.

The dfglm algorithm can easily be transformed to provide with each new leader v a set of
derivatives vy, ... ,v; such that [A]: S°° N K[v,v,... ,v}]] # 0. Over the above example, the
algorithm would return

s vy b {000, 0y} {Vay vy} {vyys vy -

This is the same answer as the one given by Kahler !
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6 Searching a polynomial knowing the alphabet

This algorithm follows either Kahler or dfglm. Let W be a set of derivatives such that
[A]: SN K[W] # (0). We are looking for a nonzero polynomial. For this, we enumerate all
the terms #;,... over W by increasing total degree. At every step j we consider ¢y,... ,¢;
and we apply theorem 3 to search A1,...,A; € K such that Aty +--- + X\jt; € [A]: S or
to determine no such coefficients exist. Continuing the example of section 1.1 and applying
this method, we obtain the system

h = u2—2u—2v§—|—1,
S vy, — 8vl, — 3202 + 16,
A 4 402 Q2

I3 Uy — Avg, — 8vy + 4,

fi = v;ly — 2v§y — 21}5 + 1.

Observe in general A # A and even [A] 1 §%° = [A]: §°°. However the elements of A are
differential polynomials of lowest order w.r.t. R which belong to [A]: S°°. They are very
useful to speed up the completion process of the Rosenfeld—Grobner algorithm. Applying
Rosenfeld-Grobner over AU A = 0, S # 0 (where A =0, S # 0 is the system obtained in
section 1.1) for the ranking R we immediately get the desired system

2

vy
) vpy — 20y,

3
UyVzy — Uyy + Uyy
4 9,2 9,2
Vyy ZUW 2vy—|—1.

u—v

6.1 Verifying the correctness of the result

Now, we may verify [A]: 57 = [A] : S by verifying [5, corollary 4.1] on one hand that
A C [A]: 5% and no element of S divides zero modulo [A] : S°°, on another hand that

A C [A]: 5% and that no element of S divides zero modulo [A] 1 §°°. This final verification
proves that the computations we performed assuming [A] : §°° was prime were correct.

7 Euler’s equations for an incompressible fluid

Written as a system of polynomial differential equations, Euler’s equations for an incom-
pressible fluid in two dimensions are (example taken from [19])

vy + vl +v*) 4 pe =0,
by vf + vlvz, + v2v§ +py, =0,
v; + U; =0.

The differential indeterminates are v!, v%, p where v! and v? are the two coordinates of the

speed and p is the pressure. The derivations are 9/dxz,d/0y and d/dt. The base field is the
field A = Q of the rational numbers.
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For some orderly ranking, the Rosenfeld—Grobner algorithm applied over ¥ returns a
unique regular differential system A = 0 (the leaders appear on the left hand side of the
equations)

2,,1 22
pl’l’__Qvac y_Q(Uy) — Pyy>
1 _ 2,,1 2,,1

A vy = =Y, — Py U U,
ol = 2
r Y
2 _ 1,2 2,,2
vy = VTV, — VTV, — Py

The system A is orthonomic (i.e. all leaders appear linearly and the initials are 1). This
proves the differential ideal [¥] = [A] is prime [15, lemma 2, page 167]. A derivative of each
differential indeterminate appears as a leader of some element of A. Since the ranking is
orderly, the ideal has differential dimension zero [15, theorem 6, page 115]. This proves that
510 K{p} # (0).

Observe it is not difficult to compute a nonzero differential polynomial in [¥] N K {v'}
or in [¥] N K{v?} (see [19] for a sixth order polynomial and [3, page 94] for a fifth order
one). It is however a challenge to compute some nonzero differential polynomial belonging
to [X] N K{p}!

Using theorem 8 we could solve a first step of this problem by (nearly) proving that
[¥X] N K[X] # (0) where X is the following alphabet of 39 derivatives:

X — {pttxxxa pttamcya pttxyya pttyyya Ptozzz, ptl’xxya ptamcyy 9 ptwyyya ptyyyy s Prozzx, pxxamcya pxxacyya

Pzayyy s Poyyyy s Pyyyyy » Pttes Ptiyy s Ploss; Ptezyy Ptoyy s Ptyyy s Poossy Poooys Prazyy s Poyyy s Pyyyy
Ptazs Pteyy Ptyy s Poaxs Peoy s Pryy s Pyyy s Pra s Pryy Pyys Pry py}

The idea was: enumerating the derivatives of the pressure p by increasing order and apply
theorem 8 to determine the existence of a relation in the differential ideal. Observe we are
not in the hypotheses of the dfglm algorithm for the solutions of ¥ do not depend on finitely
many arbitrary constants (i.e. N is infinite). We can however use this algorithm by halting
computations as soon as a leader is found. We make sure to find one because the differential
dimension is zero. However, the coefficients of the normal forms of the Kahler differentials
were huge and made the memory of the computer explode. So we applied the fact that A is
orthonomic which implies that the factor ring K[L, N]/(A) is a free algebra: the sum and
the product of two normal forms is still a normal form. For this reason, we could evaluate
the normal forms as integer numbers to simplify computations. This is because of this use
of evaluation that we say we only nearly proved our claim.

We tried afterwards to seek a differential polynomial in [¥] N K[X] using theorem 3 but
could not succeed (even evaluating normal forms to floating point numbers and using PSLQ
[12]) because of the large number of monomials to consider.
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8 A linear example of Cartan

The situation is simpler in the case of a system of linear PDE (there is no need of Kéhler
differentials). We illustrate it over the following system A of six linear PDE.

—%( PVE+VE =0,
l‘ 3‘/13 —|—$2V4 V3 + ‘/9;11 o 1'3‘/1,11 ‘|‘$3‘/;1 o (x3)2‘/wl4 + %(12)2‘/;5 _%
T ) V13 —|—$2V3 V2 + ‘/9031 —1}2‘/1,11 ‘|‘$3‘/§1 _ 1}31’2‘/1,14 + %(1}2)2‘/;% _%

_l( ) ‘/9513 + x2‘/w5 _ V2$2 + ‘/;1 _ %(12)2‘/1 + 1}3‘/5

—E PV SV - L)L =0,

T2 z

(22)22°VY =0,
(€%)°Vs =0,

_3?3‘/1,12 + ‘/1,42 = 07
—2*VL 4+ V3 =0.

Applying the Rosenfeld—Grobner algorithm over A for some orderly ranking R, we find a
regular differential system A = 0 made of linear PDE with coefficients in Q(z?, ... ,2°) the
solutions of which depend on 14 arbitrary constants. There are no inequations since the
elements of A are linear. Here is the ranking R

o if |0] > |#| then OV > ¢V for any 1, j,
o if |0] = |¢| and § > ¢ w.r.t. the lex. order 2! > --- > 2° then OV* > ¢V for any 1, J,
o if ; < j then Vi > V7,

We do not give A which is a bit too large, just its set of leaders:

Vo Vo VA VA VA VA VA VR VY YL 2

45259 S5 s5 rdrdo rdrd rdrd 45 45 55 55 55 zl zl

Vi Vi Vi Vies Vi, Vo, Vi, Vs Viss Vi3S VRS VIR, VR, Vi, V3, Vs
We are looking now for a differential system A = 0 regular w.r.t. the following ranking R
and such that [A] = [A]. The ranking R is the elimination ranking V! > --- > V® where
the derivatives of each V* are ranked w.r.t. the orderly ranking:

o if || > |¢| then OV > V",
o if |0] = |¢| then OV > V' if § > ¢ for w.r.t. lexical ordering ! > -+ > z°.

Applying the Rosenfeld-Grébner algorithm over A and R takes a lot of time. We interrupted
the computation after a few minutes.

Now, for linear PDE, we can design a variant of the FGLM algorithm which does compute
the desn’ed differential system A = 0 (and not only its set of leaders !) regular w.r.t. R in
a few seconds, starting from the differential system regular w.r.t. R. Indeed, this variant of

FGLM is very close to FGLM.

fglm _for linear PDE(A = 0, R)

begin
to_see := the list of the differential indeterminates uy, ... ,u, sorted increasingly w.r.t. R
new_leaders := ()
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A=
new_irr := ()
while to_see # the empty list do
v = first(to_see)
to_see := tail(to_see)
if v is not a derivative of any element of new_leaders then

if there exists some A, € K (w € new_irr) s.t. NF(v, A) = > A, NF(w, A) then

new_leaders := new_leaders U {v}
A:=AU{v =3 A}
else
new_irr := new_irrJ {v}
fi
to_see := update(v, to_see)
fi
od
A
end

Running fglm_for_linear_PDE over A = 0 and R we have got in a few seconds the desired
system A = 0. Here is the set of leaders of A:

2 3 4
Vi, VE VE VL VE V2 VA VA L VE L VAL VA VE VA
5 5 5
‘/1331,31,37 ‘/1331,31,57‘/1331,51,57 ‘/1341351,57 V5l’5l’57 Vl zlo ‘/l’ 1,29 ‘/1311337 ‘/l’ 1,49

5
‘/131357 V2l’27 V2l’37 V2l’47 V2l’57 V31,47 V4l’4

xr xr xr xr xr

8.1 A note on this system

The system A arises during the determination of the Lie symmetries of the dynamical sys-
tem X below, first studied by E. Cartan [8]. See [18] for the mathematical theory. The system
Y has five state variables ° and two commands u!(t), u?(¢) which are arbitrary functions.

1
1_ 1 2 _ 2 3_ 1.1 4 _ 1.2 5 Lo1, 2y2
T, =u, ;i =ut, X =uwwx, x =ua’, :L't—2u(:1;).

We are interested in the vector fields which generate the Lie symmetries of ¥ which leave ¢
invariant. Such symmetries are local diffeomorphisms which transform the five variables z°
and map any admissible trajectory of ¥ to another one. We transform ¥ as a Pfaffian system:

d(z') = utd(t), d(z?) =w?d(t), d(z?)=u'2z'd(¢),
d(z?) = u'2?d(t), d(2®) = ju'(2?)*d(t).

2

Eliminating d(¢) and the commands, we get three forms of Pfaff in five variables.
d(2?) = 2%d(2"), d(2*) =2°d(2"), d(2°) = =(2*)d(a").

We enlarge them with one 2—form (below), computed using the close function of the 1iesymm

package of MAPLE. Let’s call ) the so closed system.
d(z') Ad(2?®) = 0.
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The symmetries of X are then given by vector fields V = (V!,... | V?) with five components
such that the Lie derivative of each element of Q w.r.t. V is equal to zero modulo ). Com-
puting modulo Q we rewrite d(z?),d(z*),d(2®) in terms of d(z') and d(z?). We thus get
a system of four linear equations in d(z') and d(z?) (one of them is identically zero) with
linear PDE in the V* and their derivatives for coefficients. The symmetries are thus given by
the common zeros of these coefficients. This is the system A, computed with the determine
function of liesymm.

Conclusion

We believe this paper contributes to prove that being able to compute normal forms is
important since it allows to perform easily linear algebra in factor structures. In particular,
the algorithms presented in this paper rely on the computation of the normal form of a
fraction p/s in ST'R/S™Y(A) where A =0, S # 0 is a triangular system. This computation
is possible using Grobner bases methods but there does not seem to be any known method
based on triangular sets and pseudo-reduction®. This is a pain for we implemented since
1998 versions (joint work with Frangois Lemaire) of Rosenfeld-Grébner in MAPLE and C++

using different versions of the lextriangular triangularization algorithm [16, 17] instead of
Grobner bases and we would like to completely avoid these latter.

The author would like to thank M. Petitot for indicating him theorem 4, for the algorithm
Kahler and for the analysis of Cartan’s example.
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