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LÉPISME ⋆

François Boulier a Lilianne Denis�Vidal aGhislaine Joly�Blanhard b François Lemaire a

aUniversité Lille 1, 59655 Villeneuve d'Asq Frane
bUniversité de Tehnologie de CompiègneAbstratWe present a �rst version of a software dediated to an appliation of a lassialnonlinear ontrol theory problem to the study of ompartmental models in biology.The software is being developed over a new free omputer algebra library dediatedto di�erential and algebrai elimination.Key words: di�erential elimination, ompartmental models, biology, software.

1 IntrodutionThe aronym LÉPISME 1 (see the URL www.lil.fr/̃ lemaire/lepisme) standsfor � logiiel dédié à l'estimation de paramètres et à l'identi�ation systéma-tique de modèles� whih means, in Frenh: software dediated to parametersestimation and to systemati identi�ation of models. A lepism is also a smallinset, sometimes alled �silver �sh� that an be found in humid and darkplaes. Fining a lepism is also assumed to bring luk.The software we present in this paper is dediated to the parameters estima-tion problem in ompartmental models, whih are modelling tools quite usedin biology (Cherruault, 1998). There are di�erent issues. First issue: provid-ing a tool permitting to pratiotioners to prove that some of their models arefalse. Indeed, biologial systems are very di�ult to model: there are thirty
⋆ This is a full version of the artile published in ICPSS 2004 proeedings.Email addresses: boulierlifl.fr (François Boulier), denvid�attglobal.net(Lilianne Denis�Vidal), Ghislaine.Joly-Blanhard�ut.fr (GhislaineJoly�Blanhard), lemairelifl.fr (François Lemaire).
1 This work was partially funded by a Frenh MathSTIC grant.Preprint submitted to Elsevier Siene 14 Marh 2005



thousands of genes, hundreds of thousands of proteins in the ase of humanbeings, how many possible interations ? Tools able to take as input models,measures and prove that models are wrong are neessary. Our software is anattempt in that diretion. Seond issue: involving non trivial omputer alge-bra methods in suh an integrated software. Indeed, many omputer algebramethods exist in omputer algebra systems but there are basially never usedin sienti� software whih are not primarily dediated to omputer algebra.Our software is built over a omputer algebra library that we wrote in theC programming language (see the URL www.li�.fr/̃ boulier/BLAD). Our goalwhile developing this library was to provide sort of an analogue, in the ontextof di�erential elimination, of the impressive GNU Multi Preision library, alibrary easy to plug in any software, dediated to big numbers only. Thirdissue: hiding the tehnial aspets of the involved omputer algebra methods(di�erential regular hains, di�erential elimination theory . . . ) whih are a-tually impossible to understand by almost any researher working outside ourommunity. We believe that this legibility issue is ruial to develop the useof omputer algebra in sienti� omputing.Any ompartmental model an be translated as a system of nonlinear, ordi-nary di�erential equations depending on paramaters. We restrit ourselves topolynomial systems, the other ones falling outside the sope of our methods.The problem we address an be stated as follows: given a polynomial para-metri system of ODE and a set of measures (i.e. �les of points (ti, x(ti)))for some of the variables (alled observed variables), estimate the value of theparameters whih �ts the measures the best. There exist lassial methods(Walter, 1994). They assume that approximate values for the parameters areknown in advane. They improve then these initial values by means of optimi-sation methods (nonlinear least squares, whih amount to Newton's method).Their drawbak is obvious: they lead quite often to wong values of the pa-rameters (loal minima) even when the parameters values are theoretiallyuniquely determined by the measures (i.e. when the model is globally observ-able). The method we develop was validated a few years ago in (Noiret, 2000;Denis-Vidal et al., 2001, 2003). Stated in a nutshell, the idea is: by means ofdi�erential elimination (Boulier et al., 1995, 1997, 2001), the nonlinear leastsquares problem (whih require the knowledge of an initial value) an be re-formulated as a linear least square problem, for whih no a priori knowledgeis neessary. More preisely, by a mixed numeri (linear least squares) andsymboli (di�erential elimination) algorithm, one an automatially provideto the user an approximate guess of the parameters values whih an then beused as a starting point by the lassial optimisation method. Our methodannot guarantee that the provided starting point atually leads to the globalminimum but this is already an improvement.Our projet presents an interesting feature: it is omplementary to the ex-isting methods; it does not replae them. Our software only relies on open2



soure software. It is atually proteted by the GNU General Publi Liense.The paper is organised as follows: we �rst reall the basis on ompartmen-tal models, identi�ability and parameters estimation. Seond we desribe themixed numeri and smboli method that we apply. Last we desribe the soft-ware, fousing on the omputer algeba BLAD libraries.2 Compartmental models, identi�ability and parameters estima-tionThe problem states: given a ompartmental model and a set of measures,estimate the values of the model parameters.2.1 Compartmental modelsThe following ompartmental model admits a pharmaokinetis interpreta-tion. It desribes the evolution of (say) a medial produt between the blood(ompartment 1) and some organ (ompartment 2). The arrows denote ex-hanges between ompartments: the produt an go from eah ompartmentto the other one. It an also exit from the blood by the ation of kidneys.
x1 x2

k12

k21

ke, Ve

To eah ompartment is assoiated a time varying variable: xi(t) denotes theamount of produt present in ompartment i at time t. In order to derive asystem of di�erential equations from the model, one still needs to make someassumptions about the exhanges: it is assumed that the exhanges betweenthe two ompartments are linear and that the produt exits from the blood bya Mihaelis�Menten reation. This being preised, the ompartmental modelis equivalent to a system of parametri ODE:
ẋ1 = −k12 x1 + k21 x2 −

Ve x1

ke + x1

, ẋ2 = k12 x1 − k21 x2.In addition to the model, we assume we are given some measures. Here, weassume that x1(t) is known for t = t0, t1, . . . , tN and that x2(t) is known tobe zero at the origin: x2(t0) = 0. We may also make some assumptions on themodel parameters k12, k21, ke, Ve. Here, we assume ke is known: ke = 7.To allow the reader to reprodue our results, we onsider in this paper a �le of3



31 measures generated from t0 = 0 to t30 = 1.5 with k12 = 0.5, k21 = 3, Ve =
101, x1(0) = 50. We did not put any noise in our measures.2.2 Identi�ability and parameters estimationA system identi�ation based on physial laws often involves a parameter esti-mation. Before performing an estimation problem, it is neessary to investigateits identi�ability. This a mathematial and a priori problem. We state it infor-mally over our example: assume that the funtion x1(t) and all its derivativesof various orders are perfetly known ( (e.g. error free) and well "behaved"(e.g. not identially zero), would the parameters of the model be uniquely de-termined? If the answer is yes, the model is said to be globally identi�able. Ifthe model parameters may take a �nite set of values then the model is said tobe loally identi�able otherwise it is said to be unidenti�able.The notion of identi�ability has already been presented as an important notionin (Koopmans and Reiersol, 1950). But it was only in 1970 that Bellman andÅström (1970) have given formal basis for identi�ability analysis of dynamialsystems.In the ase of linear models several methods are available to analyse identi�a-bility. The following approahes are readily used. One is based on the transferfuntion (Bellman and Åström, 1970), an other uses the Markov parametermatrix (Grewal and Glover, 1976), then the exhaustive modelling has beendeveloped (Walter, 1994; Leourtier, 1985).In the ase of nonlinear models these approahes annot be used and othermethods have been proposed. The linearization of the model has been onsid-ered by Grewal and Glover (1976). Some approahes are based on the Taylorseries expansion (Pohjanpalo, 1978) or on generating power series (Walterand Leourtier, 1982; Leourtier, 1985; Leourtier et al., 1987). The similaritytransformation, based on the loal isomorphism theorem, is another way toanalyze identi�ability of nonlinear ontrolled model (Vajda et al., 1989). It isan extension to the nonlinear ase of the exhaustive modelling approah. Morereently approhes based on di�erential algebra have been proposed (Ollivier,1997; Diop and Fliess, 1991; Ljung and Glad, 1994). Finally the identi�abil-ity question was reently addressed using probabilisti methods (Sedoglavi,2002).This investigation is the �rst step of the parameter estimation whih is a pra-tial question. It only makes sense if the model is at least loally identi�able.There exists a substantial litterature onerning the parameter estimation(Ljung, 1989). Generally the estimation methods are based on the hoie of ariterion depending on the parameters and on the minimization of this rite-rion. The quadrati riteria are the most used. But few methods ombine bothidenti�bility and estimation (Ljung and Glad, 1994; Denis-Vidal et al., 2003).When the test of identi�ability is done by di�erential elimination methods,4



relations between parameters,inputs and outputs are obtained. Thus it shouldbe interesting to use these relations in the parameter estimation.In this ontribution we propose an algorithm whih links identi�ability withnumerial parameter estimation.In the following we assume we deal with a ompartment model whih is atleast loally identi�able. Our example is globally identi�able.
2.3 A numerial algorithmEstimating parameters may be solved by means of purely numerial methodse.g. by nonlinear least squares. We have implemented this well known methodusing the Levenberg�Marquardt algorithm (Gill et al., 1988) whih is a variantof the Newton method. We state it over our example.Algorithm: optimize(1) Assign random values to the parameters k̄12, k̄21, V̄e (reall that ke isknown).(2) Integrate numerially the di�erential system. This provides some valuesfor x1(t) whih are denoted x̄1(t0), x̄1(t1), . . . , x̄1(tN).(3) The riterion to minimize is r = f 2

1 + · · ·+ f 2
N where fi = x1(ti)− x̄1(ti).Evaluate it. If the error is small enough stop omputations else updatethe values of the parameters by the Levenberg�Marquardt method andgo to step 2.Remarks. The problem of suh a method is well known: the algorithm mayvery well end up in a loal minimum and miss the atual values of the pa-rameters. Trying with Ve = 90, k12 = 0.4, k21 = 0.01 one ends up with

k12 = 0.77, k21 = 0.17, V e = 82.82 and a 3. 10−1 error.The method may also fail (omputations being interrupted by a �timeout�exeption in our implementation) when the adaptive step�size numerial in-tegrators of the Gnu Sienti� Library enter di�ult areas. Try with Ve =
40, k12 = 0.4, k21 = 0.01.The method needs to integrate not only the two ODE system but also six extraODE (the Fisher sensibility matrix) whih give the sensitivities of x1(t) and
x2(t) w.r.t. the variation of eah parameter. These six ODE are symboliallygenerated by our BLAD libraries. 5



3 Guessing a good starting point3.1 OverviewThe numerial algorithm optimize presented above is sensitive to the valuesof the parameters you start with. It is proved in (Noiret, 2000; Denis-Vidalet al., 2003) that optimize an be greatly improved by guessing good initialvalues for the parameters using the following omputer algebra method, basedon di�erential elimination.Let's assume that the right hand sides of the system equations are multivariaterational frations.Algorithm: guess1. Di�erential elimination. By di�erential elimination methods, ompute aset of di�erential polynomials whih are onsequenes of the dynamial sys-tem and whih only involve the measured variables, some of their derivativesof various orders and the unknown system parameters. Those di�erential poly-nomials, often alled �input/output equations�, have the form c1 t1 + · · ·+ cq tqwhere the t1, . . . , tq are polynomials over the alphabet of the measured vari-ables and their derivatives and the oe�ients c1, . . . , cq are multivariate poly-nomials over the alphabet of the system parameters. We all them �bloks ofparameters�. Our example leads to only one input/output equation: the bloksof unknown parameters are enlosed between square brakets. They are mul-tiplied by power produts of the measured variables (x1 and its derivatives)and the known parameter ke:
ẍ1 (x1 + ke)

2 + [k12 + k21] ẋ1 (x1 + ke)
2 + [Ve] ẋ1 ke + [k21 Ve] x1 (x1 + ke).2. Estimating the blok values. Using the measures, evaluate numerially thepolynomials ti for many di�erent values of the time t = t0, . . . , tN . This pro-vides an overdetermined linear system of N + 1 equations whose unknownsare the bloks of parameters ci. Solve this system using (say) the linear leastsquares method. This provides estimated values c̄i for the ci. Over our exam-ple, one gets

(k12 + k21) = 2.1, Ve = 87.29, k21 Ve = 144.01.Compare with the right values: (k12 + k21) = 3.5, Ve = 101, k21 Ve = 303.3. Estimating the parameters values. Form a polynomial system ci = c̄i for
1 ≤ i ≤ q (eah ci being replaed by its expression in the parameters and eah
c̄i being approximated by a numerial value) and solve it (see subsetion 3.46



for details). The solution of the polynomial system provides estimated valuesfor the system parameters. Over our example, one gets
k12 = 0.45, k21 = 1.65, Ve = 87.29.If one provides the above values to the optimize algorithm, one gets the rightvalues with a 10−5 error.3.2 Di�erential eliminationThe di�erential method used in LÉPISME is PODI (Boulier et al., 2001) whihis a variant of PARDI for ordinary di�erential equations. The �input/output�equations are obtained by omputing a di�erential regular hain 2 of the initialsystem for a speial ranking. We do not reall details of the underlying theory(the di�erential algebra (Ritt, 1950; Kolhin, 1973)) for reasons of brevity. Weonly explain how our algorithm works on our example.Our example an be viewed as follows C : ẋ1 = −k12 x1 + k21 x2 − Ve x1

ke+x1

,
ẋ2 = k12 x1 − k21 x2, k̇12 = k̇21 = V̇E = k̇E = 0 where the parameters are seenas onstant funtions of the time.The system C is a di�erential regular hain of the di�erential ideal I that itde�nes w.r.t the ranking R : · · · > ẍ1 > ẍ2 > ẋ1 > ẋ2 > x1 > x2 > · · · >
k̇12 > k̇21 > V̇E > k̇E > k12 > k21 > VE > kE.This means that C an be viewed as the following rewriting system: ẋ1 →
−k12 x1 + k21 x2 −

Ve x1

ke+x1

, ẋ2 → k12 x1 − k21 x2, k̇12 → 0, k̇21 → 0, V̇E →

0, k̇E → 0. Derivatives of the left hand sides of the rewriting rules an berewritten by di�erentiating the right hand sides (for example the term ẍ1 anbe rewritten using the derivative of the �rst rule).A normal form algorithm is desribed in (Boulier and Lemaire, 2000) (it isbased on the Ritt pseudo redution). Beause C is a di�erential regular hain,we have the nie property p ∈ I ⇐⇒ NF(p, C) = 0The whole idea to ompute the �input/output� equations is to ompute adi�erential regular hain C of I for a well hosen ranking R. On our example,it su�es to hoose R : · · · >
...
x 2 > ẍ2 > x2 > · · · >

...
x 1 > ẍ1 > x1 > · · · >

k̇12 > k̇21 > V̇E > k̇E > k12 > k21 > VE > kE.The input/output equation whih only involves x1, its derivatives and theparameters is a �smallest� polynomial of I w.r.t R. It must belong to C.
2 a di�erential regular hain is equivalent to a Ritt harateristi set7



Although it is possible to ompute C diretly using a generi method likeRosenfeld�Gröbner (available in the MAPLE pakage Diffalg), it is more e�-ient to reuse the known di�erential regular hain C to guide the omputationsusing the membership test provided by C: this is done by PODI. Moreover,
PODI is written to handle prime ideals (whih is the ase on our example).The set C is omputed by onverting the system C into C. The set C is buildinrementally by taking the equations in C one by one. PODI performs thefollowing steps on our example:
• step 1: set C = ∅
• step 2: pik an equation in C, say ẋ1 = −k12 x1 +k21 x2−

Ve x1

ke+x1

. For the newranking R, the leading variable of this equation is x2. Writing the equationas a rewriting rule, set: C = {x2 →
1

k21

(ẋ1 + k12 x1 + Ve x1

ke+x1

)}

• step 3: pik the equation ẋ2 = k12 x1−k21 x2. Before inserting it in C, rewriteit using C yielding an equation with leading variable ẍ1. We now have:
C =











x2 →
1

k21

(ẋ1 + k12 x1 + Ve x1

ke+x1

),

ẍ1 → −(k12 + k21) ẋ1 −
Ve ẋ1 ke

(x1+ke)2
− k21 Ve x1

(x1+ke)The algorithm PODI terminates for the equations are pairwise irreduible.At step 3, it got to make sure using the known hain C that k12 is nonzerodivisor modulo I. Over this example, there are no purely algebrai simpli�-ations to perform over the result. The seond equation in C is preisely the�input/output� equation presented at the beginning of the setion.
3.3 Estimating the bloks valuesThe di�ulty omes from the fat that one needs to estimate the values of ẋ1and ẍ1 at t0, t1, . . . , tN and this annot be done very preisely. Observe thatone ould work around the equation and transform it as an integral equation.This would improve the result but one annot anyway ompletely evauatethe di�ulty.In our implementation we interpolate the values of x1 and evaluate derivativesover the interpolating urves. We use the splines of degree 3 provided by theGnu Sienti� Library. Céline Noiret used interpolation polynomials of higherdegrees. 8



3.4 Estimating the parameters valuesSolving the system ci = c̄i leads to di�ulties: the system an be over orunder determined and involves only exat oe�ients apart the c̄i. Severalapproahes are possible.A numerial approah. One an diretly solve the system with numerialmethods (as Céline Noiret does with nonlinear least squares). However theobtained solution is only meaningful if the system is globally identi�able and ifthe numerial algorithm has not been stuk in a loal minimum. Note that theloal/global identi�ability ould be tested using probabilisti tests (Sedoglavi,2002).Symboli solving. This is what we use in the urrent version of LÉPISME.It onsists in symbolially solving w.r.t. to the parameters the system ci = biwhere the bi are new indeterminates. We use the PALGIE algorithm. If theparameters are rational funtions of the bi's, the system is globally identi�-able. If the parameters are impliit funtions of the bi's, the system is loallyidenti�able. Otherwise, the system is not identi�able.This method is naive and an require extensive omputations. It ould beoptimized using the following ideas. First, one an get rid of non identi�ablesystems by performing a probabilisti test over the model equations using(Sedoglavi, 2002). Then, the idea onsists in symbolially solving the system
ci = c̄i (replaing the c̄i by rational numbers). However, a di�ulty arises:there sometimes exist algebrai relations between the ci that the c̄i may notsatisfy. By overoming this di�ulty, one ould be redued to the problem ofsolving a zerodimensional algebrai system. Advantage of this method: onegets all the possible values for the parameters.Last, in our implementation of guess, when many di�erent input/output equa-tions are available, we �rst solve the simplest ones (the ones of lowest order)and rewrite the other ones using the obtained values. This turns out to providemore aurate results than solving all equations together.4 The softwareThe software is deomposed in di�erent layers. The lower layers may beused independently of the upper ones. It has been developed using the au-tomake/autoonf system whih makes it easy to test if some partiular soft-wares or libraries (e.g. GB+RS, TRIADE (Moreno Maza, 2000), SCILAB,MATLAB . . . ) are available on the user's omputer. It relies on the Gnu Si-9



enti� Library for numerial omputations and on the Gnu Multiple Preisionlibrary for big numbers. Today, the software is restrited to small globallyidenti�able unontrolled models but this is going to hange.LÉPISME interfae: model solver model editor JAVALÉPISME ore methods: optimize, guess JGraph C and JAVABLAD GSL CGMP C
4.1 The LÉPISME graphial interfaeThe interfae is made of two distint appliations: amodel editor whih permitsto the user to enter the model graphially and a model solver whih permitsto launh the LÉPISME ore methods: optimize and guess.The main funtionnality of the model editor is to graphially manipulate (re-ation/modi�ation by mouse) ompartmental models desribed by graphs: theuser an easily enter a ompartmental model in a graphial way, avoiding typ-ing equations diretly.The model solver looks is a graphial interfae permitting to the user to launhthe LÉPISME ore methods (reall that the identi�ability methods are notyet implemented and do not even appear on the model solver). The main goalof this interfae is to hide as muh as possible to the user the tehnial onsid-erations. For instane, the model equations, the omputed regular di�erentialhains, the bloks of parameters are never displayed.Conerning the implementation, we have hosen to write the interfae inJAVA. The reasons for this are the portability and the large builtin failities toreate graphial appliations that JAVA provides. Moreover, ompartmentalmodels are niely implemented using objets : any new type of exhange anbe introdued by only oding a few new lasses. The display and manipula-tion of the ompartmental models are ahieved using the graph manipulatinglibrary JGraph (see http://www.jgraph.om) 3 .
3 JAVA itself does not provide suh graph libraries10



4.2 The LÉPISME ore methodsThe algorithms optimize and guess are implemented as two exeutables inthe C programming language. They take as input ompartmental models de-sribed in a model �le and a data �le (this design is inspired from that of theAMPL (Fourer et al., 1993) mathematial programming software) generatedby the graphial interfae. A model �le is a text �les omposed of setions de-sribing the ompartments, the exhanges, the parameters and the ommands.A data �le is a text �le omposed of one setion ontaining the numerial val-ues of the known parameters and ompartments. By splitting the model anddata �les, one an onsider di�erent data �les (i.e. di�erent sets of measures)orresponding to the same model.We are today working on hanging the syntax of our �les. We plan to swithto an SBML syntax. SBML is a variant of the XML data desription languagesuited to biologial models. It is an aronym standing for �Systems BiologyMarkup Language� (Huka et al., 2004). The use of this standard would in-rease the interoperability of our software with other softwares dediated tomodelling biologial systems. In partiular, we ould o�er to the user thealternative software suh as say, Cell Designer (see the URL www.systems-biology.org), in plae of our model editor.4.3 The BLAD librariesThe BLAD libraries (read �Bibliothèques Lilloises d'Algèbre Di�érentielle�),written in the C programming language are dediated to di�erential elimina-tion. Their �rst version was released in August 2004, by the Computer Algebrateam of the university Lille 1 (see the URL www.li�.fr/̃boulier/BLAD). Thereare four libraries, the lower ones being independent of the upper ones. Thefollowing table gives the library names and some of their key features.BAD di�erential elimination methods: PARDI, Rosenfeld�GröbnerBAP multivariate polynomials over GMPBAV di�erential rankings, orderingsBA0 memory management, exeption handling, parsersThe BAD library. The main data struture provided by the BAD library isa uni�ed onept of �regular hain� whih applies as well to the algebrai asto the di�erential setting. The onept of regular hain generalizes the oneof �harateristi set�. In the algebrai ase, it was initiated in (Kalkbrener,1993) and then muh developed in the omputer algebra team of Daniel Lazard11



(Moreno Maza, 1997; Aubry et al., 1999; Aubry, 1999). The above de�nitionwas adapted to the di�erential setting in (Lemaire, 2002) under the name:�di�erential regular hain�.In the BAD library, a regular hain is de�ned by two sets of polynomials andtwo sets of properties. The two sets of polynomials are on the one hand themathematial regular hain itself and on the other hand an heuristi set ofpolynomials whih lie in the ideal de�ned by the hain and help proessingredutions. This is indeed an idea borrowed from Faugère: do not forget poly-nomials whih arise early in omputations: they often turn out to simplify alot redutions.The two sets of properties are on the one hand a set of strutural propertiesand on the other hand a set of desired properties. Strutural properties areproperties of the hain whih annot be hanged or ahieved algorithmially:does the hain de�ne a di�erential or a nondi�erential ideal ? is the ideal de-�ned by the hain prime or not ? The desired properties are properties of thehain whih an be hanged or ahieved algorithmially: is the hain primi-tive ? is it squarefree ? is it autoredued ? (Aubry et al., 1999) is it stronglynormalized (Boulier and Lemaire, 2000) ? is it oherent (Rosenfeld, 1959) ?There are relationships between these properties: if the ideal is di�erentialthen the hain must be squarefree; the oherene property only makes sensefor systems of PDE.The main implemented algorithms are the PARDI (Boulier et al., 2001) andthe Rosenfeld�Gröbner (Boulier et al., 1995, 1997) simpli�ers. The normal for-mal algorithm desribed in (Boulier and Lemaire, 2000) is implemented too. Aspeial are was given to the implementation of the Ritt redution algorithm:There are di�erent implementations whih di�er of the way polynomials arerepresented. In partiular the implementation whih seems the most e�ienttries to keep polynomials fatored (not neessarily ompletely) and to per-form pseudoredutions fatorwise. Indeed, after a few steps and beause ofthe pseudoredution algorithm, the simpli�ers suh as PARDI tend to pro-due polynomials whih involve as fators powers of initials and separants ofother polynomials used for simpli�ation.The BAP library. It primarily aims at implementing di�erential polynomialsfor the BAD library. It implements them as multivariate polynomials over(mainly) the ring of the integers. For instane the di�erential polynomial ẋ−t xis viewed in the BAD library as an element of the di�erential polynomial ring
Q(t){x}. It is viewed, in the BAP library, as a plain multivariate polynomialin Z[t, x, ẋ].A speial are was taken to implement the gd of two multivariate polynomialsover the ring of the integer numbers. It was implemented using modular and12



ideal�adi methods as desribed in (Geddes et al., 1992) and is thus lose tothat of the MAPLE software. It is a very large and di�ult algorithm whihrelies for instane on the fatorization of multivariate polynomials to avoidthe expression swell in the Hensel lifting (Zassenhaus, 1969) and whih makesuse of multivariate polynomials with oe�ients in Z/pkZ.Sine the BAP library polynomials are assumed to be involved in simpli�a-tion proesses of di�erential polynomials whih involve many parameters, aspeial are was taken for implementing di�erentiation. Eah parameter k ishandled internally as a plain di�erential indeterminate (thus enoding a timevarying funtion) and the dynamial system in onsideration is enlarged withan extra rule k̇ = 0 to express the fat that it's value does not atually varywith the time. Without any further are, some expression swell would ariseduring di�erentiation: this operation would �rst generate monomials involvingderivatives of the parameters; these monomials would afterwards be rewrit-ten to zero. To avoid this behaviour, the di�erentiation algorithm reeives asan extra argument a table of the variables whose derivatives are going to beredued to zero in order not to generate the pointless monomials.The representation of the polynomials is a variant of the so alled distributedrepresentation. During the design of the library, the following features weredesired:(1) to provide an easy aess to the oe�ients of the polynomials w.r.t. anysubset of its variables,(2) to permit some ompression mehanism.Here are some reasons whih make the �rt point important: the pseudoredu-tion is involved in many algorithms and it implies to aess to the oe�ientsof a polynomial w.r.t. its leading variable; the key algorithms based on Henselliftings need also to aess to the oe�ients of the polynomials w.r.t. somevariable, usually hosen heuristially; many basi algorithms suh as the mul-tipliation of two polynomials P and Q are muh more e�ient if one ansplit the set of the variables into three sets (that whih appear in P but notin Q, that whih appear in Q and not in P and that whih appear in both)and view P and Q as polynomials with oe�ients in the ring of polynomialswhih depend on their ommon variables.The seond point was motivated by the size of some intermediate polynomialswhih already reahed (even for tratable problems) hundreds of thousands ofmonomials.We hose a variant of the distributed representation. In this variant, polynomi-als are de�ned as �piees� of an underlying sorted linear ombination of terms.The underlying linear ombination is made of a dynamial array of numerialoe�ients and a dynamial array of terms. Di�erent representations of terms13



are provided. For instane, terms may be stored in a hash table (equality testbetween terms gets very fast) or stored diretly in the array, in a ompressedway. Compression is ahieved by keeping up to date, for eah polynomial, abound d on its degree w.r.t. eah variable v. Then, in eah term t, the degree
deg(t, v) is stored on about log2(d) bits.A polynomial is either a full linear ombination of terms or a �piee� of it.For instane, a oe�ient of polynomial w.r.t. its leading variable is de�nedby a �rst monomial, a last monomial and the (leading) variable, whih mustbe fatored out from the terms of the linear ombination in order to get theterms of the oe�ient. The mehanism is more ompliated to aess to theoe�ients of a polynomial w.r.t. a non leading variable: one makes use ofan indiretion array in order to provide the monomial whih onstitute theoe�ient.Of ourse, some iterators are provided to make it easy for algorithms to runover the oe�ients of the polynomials.The BAV library. It implements the variables over whih polynomials arebuilt. Variables may be derivatives of dependent variables, independent vari-ables or mere onstants. Many di�erential rankings (i.e. total orderings on thein�nite set of the derivatives of the dependent variables) are implemented andmore generally orderings whih are not rankings (i.e. not ompatible with theation of the derivations). These latter ones turn out to be very useful forimplementing e�ient versions of many algorithms on polynomials.The BA0 library. It implements the low level mehanisms. In partiular, itprovides two memory management mehanisms: an implementation of themethod desribed in (Faugère, 1998) whih is used by Faugère and Rouillierin their software and a two staks mehanism. Both mehanisms share thefollowing feature: eah funtion an only reover the memory that it used orthe memory that the subfuntions it alled used: a funtion annot reoverthe memory wasted by its alling funtions.Beause of this feature, the Faugère and Rouillier method is very e�ient foriterative algorithms in whih eah loop performed in a given funtion needs arelatively small amount of memory: in this ase, memory an just be wasted upto saturation and ompletely reovered in one operation. It seems less suitablefor very reursive methods (suh as triangular sets ones) where memory mustbe reovered muh more regularly. The two staks mehanism provides thena simple and quite e�ient alternative.The library provides also an exeption handling mehanism whih permits tostop graefully omputations whih exeed some given bounds in time or inmemory. This mehanism is also used within the BLAD library. It was quiteeasy to design beause of the arried out memory management mehanisms.14



Indeed, the only di�ulty arising when implementing suh mehanisms on-sists in reovering the memory used between the moment where the exeptionathing point was set and the moment where the exeption was thrown.The library provides powerful parsers whih turn out to be very interesting forperforming esily some data type onversions. Suh onversions are very rarewithin the BLAD library but very ommon in the LÉPISME ore methods.Big numbers are handled by GMP.5 ConlusionSymboli methods are usually very di�ult to understand by pratitioners(speialists spend years studying them). For this reason, we believe that it isvery important to develop omplete softwares (up to the graphial interfae)in order to prove the usefulness of symboli methods. For the same reason,usual omputer sientists will never be able to understand our methods au-rately enough to implement them: researh papers often do not even mentionsome very di�ult and neessary subalgorithms (e.g. the multivariate polyno-mials gd used to fator out ontents from equations). It is thus our task toimplement the omplete softwares.This large work was strongly motivated by many disussions that the �rstauthor had with members of the omputer algebra team of Daniel Lazard afew years ago.ReferenesAubry, P., 1999. Ensembles triangulaires de polyn�mes et résolution de sys-tèmes algébriques. Implantation en Axiom. Ph.D. thesis, Université ParisVI.Aubry, P., Lazard, D., Moreno Maza, M., 1999. On the theories of triangularsets. Journal of Symboli Computation 28, 105�124.Bellman, R., Åström, K. J., 1970. On strutural identi�ability. Mathematialbiosienes 7, 329�339.Boulier, F., Lazard, D., Ollivier, F., Petitot, M., 1995. Representation for theradial of a �nitely generated di�erential ideal. In: proeedings of ISSAC'95.Montréal, Canada, pp. 158�166.Boulier, F., Lazard, D., Ollivier, F., Petitot, M., 1997. Computing representa-tions for radials of �nitely generated di�erential ideals. Teh. rep., Univer-sité Lille I, LIFL, 59655, Villeneuve d'Asq, Frane, (ref. IT306, deember1998 version published in the habilitation thesis of Mihel Petitot).15
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