
HAL Id: inria-00140831
https://hal.inria.fr/inria-00140831

Submitted on 10 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Communicating Infinite State Machines
using Lattice Automata

Tristan Le Gall, Bertrand Jeannet

To cite this version:
Tristan Le Gall, Bertrand Jeannet. Analysis of Communicating Infinite State Machines using Lattice
Automata. [Research Report] PI 1839, 2007, pp.36. �inria-00140831�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50390888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00140831
https://hal.archives-ouvertes.fr

I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1839

ANALYSIS OF COMMUNICATING INFINITE STATE MACHINES USING
LATTICE AUTOMATA

TRISTAN LE GALL & BERTRAND JEANNET

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

Analysis of Communicating Infinite State Machines using Lattice

Automata

Tristan Le Gall & Bertrand Jeannet

Systèmes communicants

Projet VerTeCs

Publication interne n˚1839 — March 2007 — 36 pages

Abstract: Communication protocols can be formally described by the Communicating Finite-State
Machines (CFSM) model. This model is expressive, but not expressive enough to deal with complex
protocols that involve structured messages encapsulating integers or lists of integers. This is the reason
why we propose an extension of this model : the Symbolic Communicating Machines (SCM). We also
propose an approximate reachability analysis method, based on lattice automata. Lattice automata
are finite automata, the transitions of which are labeled with elements of an atomic lattice. We tackle
the problem of the determinization as well as the definition of a widening operator for these automata.
We also show that lattice automata are useful for the interprocedural analysis.

Key-words: Asynchronous systems, Abstract interpretation, Verification of infinite systems, FIFO
channels, Lattice automata, Interpocedural analysis

(Résumé : tsvp)

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Analyse des automates communicants étendus en utilisant des

automates de treillis

Résumé : Les protocoles de communication utilisés actuellement peuvent être formellement décrits
en terme d’automates communicants. Ce modèle, très expressif, n’est cependant pas suffisant pour
modéliser facilement des protocoles complexes qui font intervenir des messages structurés encapsulant
des entiers ou des listes d’entiers. C’est pourquoi nous proposons, dans ce document, une extension
de ce modèle : les automates communicants symboliques. Nous proposons également une méthode
d’analyse d’accessibilité approchée, basées sur des automates de treillis. Les automates de treillis sont
des automates finis dont les transitions sont étiquetées par des éléments d’un treillis atomique. Nous
aborderons le problème de la déterminisation de ces automates, ainsi que la définition d’un opérateur
d’élargissement approprié. Nous montrerons aussi que ces automates sont utiles pour l’analyse inter-
procédurale.

Mots clés : Systèmes asynchrones, Interprétation abstraite, Vérification de systèmes infinis, canaux
FIFO, Automates de treillis, Analyse interprocédurale

Analysis of Communicating Infinite State Machines using Lattice Automata 3

1 Introduction

Communication protocols play a very important role in the context of distributed computing and
computer networks. These protocols, which aim at ensuring the data transmission and/or detect
communication failures, may be wrong due to logical errors of the protocol designer. Such errors
may be difficult to detect and to understand, due to the complexity and the non-determinism of
the behavior of asynchronous systems. Moreover, even if the protocol is free of logical error, some
properties remains of interest, like the maximum size that the buffers may have during the execution
of the system.

For these reasons, the verification of communication protocols is both an important issue from the
point of view of the protocol design, and a challenging problem for analysis techniques.

Communicating Finite-State Machines. Two fundamental approaches have been followed for
the analysis of communicating systems in general. One consists in eliminating the need for analyzing
FIFO queues contents by adopting a partial order semantics or a so-called true concurrency model:
when one process sends a message to another process, one just records the information that the output
precedes the input. The seminal work about event structures [40] leads later to scenario-based models
like (High-level) Message Sequence Charts [27, 42] incorporated in UML.

The second approach, on which this paper focuses, consists in considering a model with explicit
FIFO queues, and in analyzing their possible contents. A well-studied model is the model of Com-
municating Finite-State Machines (CFSM), in which finite-state machines communicate by sending
messages belonging to a finite alphabet to unbounded FIFO queues. Although it is simple, this model
is already quite expressive, since reachability is undecidable for this class of systems [11].

In [23], we proposed a method for the approximated analysis of Communicating Finite-State Ma-
chines (CFSM) based on Abstract Interpretation. The principles of our method were to represent the
queue contents by regular languages and to define a widening operator that ensures the termination
of the computation, but introduces some approximations.

Beyond CFSMs. In this paper, we extend this approach to more expressive communicating sys-
tems, where processes manipulate variables of unbounded types and where FIFO queues also transmit
values belonging to infinite domains, like integers. The CFSM model is indeed not expressive enough
for protocols that explicitly use variables, counters and infinite alphabets of messages. Typical ex-
amples of such protocols are sliding window protocols like the Service Specific Connection Oriented
Protocol (SSCOP) [10].

We will sketch our approach with the following example :

Example. Fig. 1 depicts a very simplified version of a sliding window protocol. The sender process
tries to send data (identified by an integer) to the receiver process. The receiver process sends
an acknowledgment message identifying the data received. The sender has two variables : s
is the index of the next data to send, and a is the index of the last acknowledgment message
received. The protocol ensures that the sender waits for acknowledgment if s = a + 10. If the
sender gets a message ack(p) with p > a + 1, it means that at least one message has been lost
and the protocol terminates with an error. There are two queues: one from the sender to the
receiver containing data messages, the other containing acknowledgment messages. Notice that
we do not model here possible loss of messages. �

As in [23], we want to abstract the contents of the queues by regular languages, represented by
finite automata. However, the messages contained in FIFO queues do not belong any more to a finite
alphabet, as shown by the example.

PI n˚1839

4 Tristan Le Gall & Bertrand Jeannet

error

run

s:=0
a:=0

s<a+10
1!data(s)
s:=s+1

p=a+1
2?ack(p)
a:=a+1

p>a+1
2?ack(p)

data(1) data(0)

ack(0) ack(1)
wait ack

v:=0

1?data(p)
v:=p

p=v
2!ack(p)

(a) Sender (b) Queues (c) Receiver

Figure 1: A simplistic protocol

Lattice automata. This motivates the introduction of lattice automata, which recognize (sort of)
regular languages on infinite alphabets, called lattice-based regular languages (LBRL). In both LBRL
and lattice automata, letters belonging to a finite alphabet are replaced by atomic elements of a lattice
L. The idea is that a language like

Y =
∑

n≥0

data(0) · . . . · data(n)

can be represented (with some approximations) by the LBRL

X = data(0) + data(0) · data(1) + data(0) · data(1) ·
(
data([2,+∞])

)∗

where the lattice L = {data} × I(Z) is isomorphic to the lattice of integer intervals I(Z) ordered
by inclusion. Here data(0) · data(1) ·

(
data([2,+∞])

)∗
represents the set of words data(0) · data(1) ·(∑∞

n=2 data(n)
)∗

.

Contributions. The first contribution of this paper is to define with lattice automata an effective
and canonical representation of languages on infinite alphabet, equipped with well-defined operations
(union, intersection, concatenation, . . .). Although the normal form we propose induces in general
some approximations, it is a robust notion in the sense that the normalization operator is an upper
closure operator which returns the best upper-approximation of a language in the set of normalized
languages. The resulting abstract domain allows to lift any atomic abstract domain A for ℘(S) to an
abstract domain Reg(A) for ℘(S∗), the set of finite words defined on the alphabet S.

The second contribution of the paper is to demonstrate the use of this representation for the analysis
of symbolic communicating machines (SCM). It appears indeed that this representation needs to be
exploited in a clever way in order to be able to prove even simple properties, like in the example that
messages in the queue 1 are always indexed by numbers smaller than the variable s. Our analysis
shows that a ≤ s ≤ a + 10 (complete results are in Sect. 6).

A third contribution is to show that lattice automata are also adapted to the abstraction of call-
stacks in imperative programs, and allows to design potentially very precise interprocedural analysis.

Outline Sect. 3 reminds some definitions about abstract interpretation and finite automata. In
Sect. 4, we recall the method of [23] for analyzing CFSMs using regular languages, which is our
departure point. The core contribution of the paper is Sect. 5 where we define lattice automata and
their operations, which allows to manipulate languages on infinite alphabet. In Sect. 6 we exploit this
representation for the abstract interpretation of Symbolic Communicating Machines. Sect. 7 discuss
the use of lattice automata for interprocedural analysis, where they allows to abstract call-stacks of
imperative programs.

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 5

2 Related work

The initial motivation of this work was the analysis of communicating machines. Many techniques
have been devoted to the analysis of Communicating Finite-State Machines (CFSM), where both the
machines and the alphabet of messages are finite. Reachability of CFSM is undecidable [11]. Most
approaches for the verification of CFSM are based on exact but semi-decidable acceleration techniques
[5, 4, 8, 2, 21]. A few attack the problem with abstract interpretation techniques [41, 29]. None of
these works deals with a potentially infinite alphabet of messages.

More generally, there are several lines of work aiming at extending classical finite automata
(resp. tree automata) representations for regular sets of words (resp. trees) for verification purposes.
Mauborgne has proposed efficient representations for a class of sets of trees which strictly includes
regular trees [36, 35]. Another approach is to focus on the decidability of some logic like the first
order logic or the monadic second order logic when the model is a word with data or a tree with data
(model of a XML document) [39]. New kind of automata were introduced, like register automata [32],
pebble automata [38] or data automata [6], with the idea that a word with data satisfies the logical
formula if it is recognized by the corresponding automata. This approach cannot be applied as is to
our problem, as such a logical approach does not take into account any specific logical interpretation
for data (in other word, the data domain is unspecified) and there is no notion of approximation.

They have been recently a lot of works devoted to shape analysis which can be relevant to the
analysis of queues or stacks. A FIFO queue or a stack can indeed be represented by a list, which
is most often the easiest data type to abstract in shape analysis techniques. However, most shape
analysis focus on the structure (“the shape”) of the memory and ignores data values held by the
memory cells [46, 48, 17, 9]. It is sometimes possible to handle finite data values, but mainly by
brute force enumeration, which is algorithmically expensive in such a context, certainly more than the
above-cited approaches based on finite automata. [24] is a pioneering work for taking into account data
values in memory cells. It uses a global polyhedron to relate the numeric contents of each abstract
memory cell in an abstract shape graph. The resulting abstraction is not comparable to our proposal,
as it is based on very different principles. In particular, the information used for abstraction in shape
graphs is mostly attached to nodes instead of edges as in automata. The involved algorithms are also
probably more expensive than in our solution.

Conversely, it should be noted that our abstract domain could be applied to shape analysis, al-
though this deserves yet a full study.

Work related to the application of lattice automata to stack abstraction and interprocedural anal-
ysis is delayed to Sect. 7.

3 Preliminaries

Finite automata. A finite automaton is a quintuple A = (Q,Σ, Q0, Qf , δ) where Q is a finite set of
states, Σ a finite alphabet of letters, Q0 ⊆ Q (resp. Qf ⊆ Q) the subset of initial (resp. final) states,
and δ ⊆ Q × Σ × Q the transition relation. A word σ = σ0 . . . σn ∈ Σ∗ is recognized by A if there
exists a sequence q0 . . . qn+1 ∈ Q∗ such that q0 ∈ Q0, ∀i ≤ n : (qi, σi, qi+1) ∈ δ, and qn+1 ∈ Qf . The
set of words recognized by A is a regular language denoted by L(A).

Let ≈ be an equivalence relation on the set of states Q. The equivalence class of a state q ∈ Q
w.r.t. ≈ is denoted by q̃. The quotient automaton A/ ≈= 〈Q̃,Σ, Q̃0, Q̃f , δ̃〉 is defined by

• Q̃ = Q/ ≈, the set of equivalence classes;

• Q̃0 = {q̃|q ∈ Q0} and Q̃f = {q̃|q ∈ Qf};

• (q̃, a, q̃′) ∈ δ̃ ⇐⇒ ∃q0 ∈ q̃,∃q′0 ∈ q̃′ : (q0, a, q′0) ∈ δ

PI n˚1839

6 Tristan Le Gall & Bertrand Jeannet

For any equivalence relation ≈, we have L(A) ⊆ L(A/ ≈).

Given an equivalence relation ' on Q, and k ≥ 0, the k-depth bisimulation equivalence relation
≈k based on ' is defined inductively by

• ≈0 = ';

• q ≈k+1 q′ ⇐⇒

{
∀(σ, q1) ∈ Σ×Q : δ(q, σ, q1)⇒ ∃q

′
1 : δ(q′, σ, q′1) ∧ q1 ≈k q′1

∀(σ, q′1) ∈ Σ×Q : δ(q′, σ, q′1)⇒ ∃q1 : δ(q, σ, q1) ∧ q1 ≈k q′1

The largest bisimulation relation contained in ' is defined as ≈=
⋂

k≥0 ≈k. The equivalence bisimula-
tion relation is defined as the largest bisimulation relation contained in the relation ' separating final
states from other states: q ' q′ , (q ∈ Qf ∧ q′ ∈ Qf) ∨ (q 6∈ Qf ∧ q′ 6∈ Qf). Two states are equivalent
if they are related by the equivalence bisimulation relation.

A is deterministic if there is a unique initial state and if δ(q, σ, q ′) ∧ δ(q, σ, q′′) =⇒ q′ = q′′. Any
finite automaton can be transformed into a deterministic automaton recognizing the same language,
using the subset construction. A is a minimal deterministic automaton (MDA) if it is deterministic and
if there exists no deterministic automaton with fewer states recognizing the same language. Given
a regular language L, there exists a unique (up to isomorphism) MDA A(L) recognizing it. Any
deterministic automaton A can be minimized by removing unreachable states and quotienting it w.r.t.
the largest bisimulation relation separating final states from non final states.

Lattices. A partially ordered set (Λ,v) is a lattice if it admits a smallest element ⊥, a greatest
element >, and if any finite set of elements X ⊆ Λ admits a greatest lower bound (glb) uX and
a least upper bound (lub) tX. A lattice is complete if the glb and lub operators are defined for
any (possibly infinite) subset of Λ. An element x ∈ L of a lattice Λ is an atom if it is minimal
i.e. ⊥ @ x ∧ ∀y ∈ A : ⊥ @ y v x =⇒ y = x. The set of atoms of L is denoted by At(Λ).
A lattice is atomic if any element x ∈ L is the least upper bound of atoms smaller than itself :
x =

⊔
{a | a ∈ At(Λ) ∧ a v x}. For instance, the set of convex polyhedra in Rn ordered by inclusion

is an atomic lattice but is not a complete lattice. However, the set of convex sets in Rn is an atomic
and complete lattice. A finite partition of a lattice is a finite set (λi)0≤i<n of elements such that
∀i 6= j : λi u λj = ⊥ and ∀λ ∈ Λ : λ =

⊔n−1
i=0 (λ u λi). If the lattice is atomic, there is an isomorphism

between an element λ ∈ Λ and its projection 〈λ u λ0, . . . , λ u λn−1〉 on the partition. A (finite)
partitioning function π : Σ→ Λ is a function such that (π(σ))σ∈Σ is a (finite) partition of Λ.

Abstract Interpretation. Most program analysis problems come down to solving a fix-point equa-
tion x = F (x) where x belongs to an ordered domain C (typically, the powerset ℘(S) of the state
space of a program). Abstract interpretation [15] is a general method to find approximate solutions
of such fix-point equations. Its principles are to perform successively two kind of approximations:

1. The static approximation consists in substituting to the concrete domain C, a simpler abstract
domain A. The abstract lattice A is linked to the concrete lattice C by a concretization function
γ : A → C which is monotone. The concrete fix-point equation is transposed into the abstract
domain A, so that to solve a new equation

y = F](y), y ∈ A with γ ◦ F] w F ◦ γ

This ensures the soundness of the method, in the sense that γ(lfp(F])) w lfp(F).

2. The iterative resolution of the new fix-point equation can still involve infinite iterations. Al-
though one can choose abstract lattices A that satisfy the ascending chain condition, better
results can be obtained by removing this restriction [16] and resorting to an additional dynamic
approximation. It consists in using a widening operator ∇ as follows: the original sequence

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 7

y0 = ⊥, yn+1 = F (yn) is replaced by z0 = ⊥, zn+1 = zn∇F (zn). Under technical assumptions
on ∇, the iterative computation of the sequence (zn)n≥0 is guaranteed to converge after a finite
number of steps to some upper-approximation z ∈ A of the least fix-point of F] (more precisely,
a post-fix-point of F]).

This principles can be applied for instance to define an interval analysis of a program with integer
variables, in which the concrete domain C = ℘(Zn) of possible valuations of variables is abstracted
by a product (I(Z))n of intervals on integers. An abstract value thus associates to each variable its
possible range of values. This is an upper-approximation in the sense that what is guaranteed is that
the values outside the interval cannot be taken by the variable.

Given two abstractions γi : Ai → C, i = 1, 2 for the same concrete domain C, A2 refines A1 if
there exists a (concretization) function γ12 : A1 → A2 such that γ1 = γ2 ◦ γ12. This means that any
concrete property c ∈ C representable by A1 (ie., ∃a1 ∈ A1 : c = γ1(a1)) is representable by A2 (ie.,
∃a2 ∈ A2 : c = γ2(a2) by taking a2 = γ12(a1)).

4 Analysis of CFSM using abstract interpretation

Our method for the analysis of Symbolic Communicating Machine (SCM) reuse most of the principles
we have developed in [23] for the analysis of the simpler model of Communicating Finite-State Ma-
chines. As a consequence, we first describe this method in this section, which serves as an introduction
to the next sections.

4.1 The CFSM Model

A Communicating Finite-State Machine (CFSM) models a system of finite-state machines sending or
receiving messages via n unbounded FIFO queues, modeling communication channels.

Definition 1 (CFSM) A communicating finite-state machine is given by a tuple (C,Σ, c0,∆) where:

• C is a finite set of locations (control states)

• Σ = Σ1∪Σ2∪· · ·∪Σn is a finite alphabet of messages, where Σi denotes the alphabet of messages
that can be stored in queue i;

• c0 ∈ C is the initial location;

• ∆ ⊆ C ×A×C is a finite set of transitions, where A =
⋃

i{i} × {!, ?} ×Σi is the set of actions.
An action can be

– either an output i!m: “the message m is sent through the queue i”;

– or an input i?m: “the message m is received from the queue i”.

In the examples, we define CFSMs in terms of an asynchronous product of finite state machines
(FSMs) reading and writing on queues.

Example. The connexion/disconnection protocol between two machines is the following (Fig. 2): the
client can open a session by sending the open message to the server. Once a session is open, the
client may close it on its own by sending the close message or on the demand of the server if it
receives the disconnect message. The server can read the request messages open and close, and
ask for a session closure. �

PI n˚1839

8 Tristan Le Gall & Bertrand Jeannet

0

1

1!open 1!close

2?disconnect

close open

disconnect

0

1

1?open 1?close

2!disconnect

(a) Client (b) Queues (c) Server

0,0

1,0 0,1

1,1

2!d
1?c
2?d

1!c

2?d 1!c
2!d1?c

1!o

1?o

1?o

1!o

(d) Global CFSM: product of client and server processes

Figure 2: The connexion/disconnection protocol

The operational semantics of a CFSM (C,Σ, c0,∆) is given as an infinite transition system 〈Q,Q0,→
〉 where

• Q = C × Σ∗
1 × · · · × Σ∗

n is the set of states;

• Q0 = {〈c0, ε, . . . , ε〉} is the set of initial states;

• → is defined by the two rules:

(c1, i!m, c2) ∈ ∆ w′
i = wi ·m

〈c1, w1, . . . , wi, . . . , wn〉 −→ 〈c2, w1, . . . , w
′
i, . . . , wn〉

(c1, i?m, c2) ∈ ∆ wi = m.w′
i

〈c1, w1, . . . , wi, . . . , wn〉 −→ 〈c2, w1, . . . , w
′
i, . . . , wn〉

A global state of a CFSM is thus a tuple 〈c, w1, . . . , wn〉 ∈ C × Σ∗
1 × · · · × Σ∗

n where c is the current
location and wi is a finite word on Σi representing the content of queue i. At the beginning, all queues
are empty, so the initial state is 〈c0, ε, . . . , ε〉.

4.2 Reachability analysis of a CFSM

The forward collecting semantics defines the semantics of a CFSM in terms of its set of reachable states.
A set of states X ∈ ℘(Q) = ℘(C × Σ∗

1 × · · · ×Σ∗
n) can be viewed as a map X : C → ℘(Σ∗

1 × · · · ×Σ∗
n)

associating a control state c with a language X(c) representing all possible contents of the queues when
being in the control state c. The forward semantics of actions JaK : ℘(Σ∗

1×· · ·×Σ∗
n)→ ℘(Σ∗

1×· · ·×Σ∗
n)

is defined as:

Ji!mK(L) = {〈w1, . . . , wi ·m, . . . , wn〉|〈w1, . . . , wi, . . . , wn〉 ∈ L} (1)

Ji?mK(L) = {〈w1, . . . , wi, . . . , wn〉|〈w1, . . . ,m · wi, . . . , wn〉 ∈ L} (2)

Ji!mK (resp. Ji?mK) associates to a set of queues contents the possible queues contents after the output
(resp. the input) of the message m on the queue i, according to the operational semantics of CFSM.
Using the inductive definition of reachability — a state is reachable either because it is initial, or
because it is the immediate successor of a reachable state —, the reachability set RS is defined as the
least solution of the fix-point equation

∀c ∈ C, X(c) = X0(c) ∪
⋃

(c′,a,c)∈∆

JaK(X(c′)) (3)

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 9

where Q0 is the initial set of states.

As there is no general algorithm that can compute exactly such a reachability set [11], we propose
in [23] an approximate analysis method based on abstract interpretation. The problem here is that
we need to abstract the concrete domain of queues ℘(Σ∗

1 × · · · × Σ∗
n) which does not enjoy a finite

representation.

4.3 Regular languages as an abstract domain for queues

Abstracting a single queue. For the sake of simplicity, we first consider the case of a single
queue. Observe that the set ℘(Σ∗) is actually the set of languages L(Σ) defined on the alphabet Σ.
The solution we propose in [23] is to abstract the set of languages L(Σ) by the set of regular languages
R(Σ). This simple solution presents two nice properties:

• R(Σ) is closed under union, intersection, negation and semantic transformers J!mK (corresp. to
concatenation) and J?mK (corresp. to the derivative operator of [12]). Moreover, Q0 = {〈c0, ε〉}
is regular, so that all operators involved in Eq. (3) can be transposed to R(Σ) without loss of
information.

• From a computational point of view, regular languages have as a standard canonical represen-
tation the minimal deterministic automaton (MDA) recognizing them.

As a consequence, we only have to define a suitable widening operator to ensure convergence of iterative
resolutions of fix-point equations on R(Σ). Indeed, the lattice R(Σ) does not satisfy the ascending
chain condition and is even not complete. [23] adapts a widening operator for regular languages first
mentioned in [20].

This widening operator is based on an extensive and idempotent operator ρk : R(Σ)→R(Σ) (i.e.
ρk(X) ⊇ X and ρk ◦ρk = ρk), where k ∈ N is a parameter. ρk will induce a widening operator defined
by X1∇kX2 = ρk(X1 ∪X2). Thus, the proposed widening does not work by extrapolating a difference
as usual in abstract interpretation, but by simplifying the regular languages generated during the
iterative resolution.

Now ρk(X) is defined by quotienting the MDA A(X) recognizing X by the k-depth bisimulation
relation based on the partition of the states Q of A(X) into Q0∩Qf , Q0\Qf , Qf \Q0, and Q\(Q0∪Qf).
Fig. 3 illustrates the effect of this operator. As the number of states of the MDA of ρk(X) is bounded

by 4|Σ|k+1

× 2|Σ|k , the co-domain of ρk is finite for a k and Σ fixed. Hence the defined operator ∇k

satisfies the technical definition of a widening operator.

An upper-approximation of the least solution of Eq. 3 can now be computed by computing the
sequence

∀c ∈ C X(0)(c) = X0(c)

∀c ∈ C X(n+1)(c) = X(n)(c) ∇k

⋃

(c′,a,c)∈∆

JaK(X(n)(c′)) (4)

Abstracting several queues. When the system involves several queues, the simplest solution is to
abstract each queue independently, leading thus to a non-relational or attribute-independent analysis.
It consists in taking

Anr = R(Σ1)× · · · × R(Σn)

as an abstract lattice, ordered component-wise. The meaning function γnr : Anr → ℘(Σ∗
1 × · · · × Σ∗

n)
is defined by

γnr (〈L1, . . . , Ln〉) = γ(L1)× · · · × γ(Ln)

We can however view a configuration of the queues, which is a vector of words (w1, . . . , wn) ∈
Σ∗

1×· · ·×Σ∗
n, as a single word w1] . . .]wn obtained by concatenation and the addition of a separation

PI n˚1839

10 Tristan Le Gall & Bertrand Jeannet

L = aax + bay ρ1(L) = (a + b)a(x + y)
a a x

b
a

y

a a x

b a y

L = ax3bx3c ρ1(L) = ax+(bx+)∗c

a x x x b x x x c a
x

x

b

x
c

Figure 3: The extensive and idempotent operator ρk on regular languages

letter]. One can then apply the abstraction for a single queue on such concatenated word. This leads
to the relational abstraction

Ar = R(Σ ∪ {]})

γr(X) = {〈w1, . . . , wn〉 ∈ Σ∗
1 × . . .× Σ∗

n | w1] . . .]wn ∈ X}

where a single automaton is used to represent the possible contents of all queues. One just has to
adapt to concatenated words the output and input operations, as well as the widening (by modifying
the initial partition on which ρk is based).

This abstraction is strictly more precise, as Ar can represent exactly all the elements of Anr , plus
many more.

Example. The connexion/disconnection protocol depicted in Fig. 2 illustrates both kind of abstrac-
tions and illustrates the usefulness of a more precise relational analysis:

Relational Analysis Non-Relational Analysis
Client/ Queue 1 # Queue 2
Server
0/0 (co)∗(oc)∗#ε + c(oc)∗#d
1/0 (co)∗(oc)∗o#ε + (co)∗#d
0/1 c(oc)∗#ε
1/1 (co)∗#ε

Client/ Queue 1 Q.2
Server
0/0 o∗ + (o∗c)+(ε + o+ + o+c) d∗

1/0 (o∗c)∗o+ d∗

0/1 o∗ + (o∗c)+(ε + o+ + o+c) d∗

1/1 o+ + o∗(co+)+ d∗

The result given by the relational analysis happens to be the exact reachability set, unlike the
non-relational one. The non-relational analysis misses the fact that there is at most one d in the
second queue, which induces many approximations. �

However, this operator ensures the convergence if and only if the alphabet Σ is finite. Thus this
work cannot be applied for communicating systems with an infinite alphabet of messages, e.g. a
protocol that can send integer values as messages, like the example of Sect. 1.

If we want to deal with such protocols, we must find a way to combine the previous work (on
regular languages) with more classical abstractions of infinite domains (intervals, polyhedra, etc...).

5 Lattice automata

In this section we define with lattice automata an abstract representation for languages on infinite
alphabets. The principle of lattice automata is to use elements of an atomic lattice for labeling the
transitions of a finite automaton, and to use a partition of this lattice in order to define a projected finite
automaton which acts as a guide for defining extensions of the classical finite automata operations.

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 11

We motivate our choices and show that they lead to a robust notion of approximation, in the sense
that normalization is an upper-closure operation and can be seen as a best upper-approximation in
the lattice of normalized lattice automata.

[0, 1]

[1, 2]

Figure 4: an interval automa-
ton

Lattice automata are finite automata, the transitions of which are
labeled by elements of an atomic lattice (Λ,v) instead of elements
of a finite and unstructured alphabet. They recognize languages on
atomic elements of this lattice. For instance, the interval automaton
of Fig. 4 recognizes all sequences of rational numbers x0 . . . xn−1 where
n is odd, x2i ∈ [0, 1] and x2i+1 ∈ [1, 2]. Such an automaton can be
used to represent possible contents of a queue containing rational
numbers.

However, the classical operations on finite automata cannot be extended as is on lattice automata.
It is in particular the case of the determinization and minimization operations, because some lattice
automata cannot be determinized in the usual way (this would require the ability to complement
elements). We need these two operations which provide a normal form in the finite case, and which
allows to define in a simple way other operations such as union and intersection. Consequently, we
propose another notion of determinization which is in some sense an optimal approximation of the
classical operation. We first formally define lattice automata, and we advocate the idea of using
a partition of the lattice in order to define a projected finite automaton which acts as a guide for
defining determinization, minimization operations. We then define the other classical operations such
as union and intersection, before defining a suitable widening operator which allows to consider lattice
automata as a fully equipped abstract domain.

5.1 Basic definition and discussion

Definition 2 (Lattice automaton) A lattice automaton is a tuple 〈Λ, Q,Q0, Qf , δ〉 where :

• Λ is an atomic lattice, the order of which is denoted by v;

• Q is a finite set of states;

• Q0 ⊆ Q and Qf ⊆ Q are the sets of initial and final states;

• δ ⊆ Q× (Λ \ {⊥})×Q is a finite transition relation.1

A finite word w = a0 . . . an ∈ At(Λ)∗ is accepted by the lattice automaton if there exists a sequence
q0, q1, . . . , qn+1 such that q0 ∈ Q0, qn+1 ∈ Qf , and ∀i ≤ n, ∃(qi, λi, qi+1) ∈ δ : ai v λi.

The set of words recognized by a lattice automaton A is denoted by LA. The inclusion relation
between languages induces a partial order on lattice automata :

Definition 3 (Partial order v on lattice automata) The partial order v between lattice automata
is defined as A v A′ iff LA ⊆ LA′ .

Remark 1 (Downward closure of transitions.) With the Definition 2, if there exists a transition
(q, λ, q′) in δ, then any (q, λ′, q′) with λ′ v λ may be added without modifying the recognized language.
Hence, such transitions are redundant.

From now on, we assume that all transitions of a lattice automaton are maximal in the following
sense : (q, λ, q′) ∈ δ ∧ (q, λ′, q′) ∈ δ implies that λ and λ′ are not comparable.

1No transition is labeled with the bottom element ⊥.

PI n˚1839

12 Tristan Le Gall & Bertrand Jeannet

[0, 0]

[2, 2]

[2k, 2k]

Figure 5: A family of inter-
val automata Ak with un-
bounded branching degree

1 2
y=0

x=0 1 1,2

2
“y=0 ∧ x 6= 0”

“x=0 ∧ y 6= 0”
x=0 ∧ y=0

“x=0 ∧ y 6= 0”

x=0 ∧ y=0

(a) non-deterministic (b) deterministic
automaton automaton ?

Figure 6: Attempt to determinize a lattice automaton on the lattice
of affine equalities

Remark 2 (Words on atoms) We restrict the recognized words of a lattice automaton to be com-
posed of atoms because we want the two automata of Fig. 8 to be equivalent in terms of their recognized
languages. If words were composed of any elements of the lattice, the word composed of the single el-
ement {0 ≤ x ≤ 3, 0 ≤ y ≤ 1} would be recognized by the first automaton but not the second one. In
the same spirit, we require that the lattice Λ is atomic, so that any element λ ∈ Λ labeling a transition
is isomorphic to the set of atoms it dominates.

Remark 3 (Status of ⊥) ⊥ cannot label a transition, not only as a consequence of the previous
remark, but also because this corresponds to the intuition that ⊥ does not represent any element and
denotes a notion of emptiness.

Definition 4 A lattice-based regular language is a language recognized by a lattice automaton A. We
denote by Reg(Λ) the set of lattice-based regular languages.

Definition 2 raises however a number of problems. We expose them before introducing our solution
to them. The first problem is related to the bounded branching degree property: in a deterministic
finite automaton, there are at most |Σ| transitions outgoing from a state. However, with definition 2,
the branching degree of lattice automata is not bounded, as shown in Fig. 5.

The second problem is related to the notion of determinism. The classical notion of determinism
can be extended in a straightforward way as follows:

Definition 5 (Deterministic lattice automaton) A lattice automaton 〈Λ, Q,Q0, Qf , δ〉 is deter-
ministic if it has a unique initial state and if (q, λ1, q1) ∈ δ ∧ (q, λ2, q2) ∈ δ =⇒ λ1 u λ2 = ⊥.

Can now any lattice automaton be made deterministic while still recognizing the same language ? The
answer is negative, as illustrated by the example of Fig. 6, which uses the lattice of affine equalities
[33]2. The problem here is that elements of an atomic lattice cannot be complemented in general.
With some lattices, like the lattice of intervals where an element can be complemented by a finite
union of intervals, this problem can be overcome by splitting transitions, cf. Fig. 7, but we are back
then to the branching degree problem.

Fig. 7 illustrates a third annoying aspect: we have given to the alphabet a lattice structure (instead
of a weaker partial ordered structure) with the idea of exploiting the lattice operations offered by
abstract domains. But in Fig. 7(c) we cheat by using several transitions instead of using the least
upper bound operator. Moreover, using such explicit unions may be problematic to define minimization
and canonical form. For instance, how to choose between the two minimal automata of Fig. 8 ? The
problem here is that there is no canonical representation for unions of convex polyhedra.

2The lattice of affine equalities, which could also be called the lattice of affine subspaces, is the lattice formed by the
conjunctions of affine equalities on the space Rn.

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 13

>

b c

a0 a1 a2 a3 a4

⊥

1 2
c

b
1,2

1

2

a0

a1

a2

a0
a1

a2

a3

a3
a4

(a) Lattice (b) non-deterministic (c) acceptable
automaton deterministic automaton

Figure 7: Attempt to determinize a lattice automaton

-1 0 1 2 3 4

-1

0

1

2

3

1 2

{0 ≤ x ≤ 3,
0 ≤ y ≤ 1 }

{0 ≤ x ≤ 1,
1 < y ≤ 2 }

1 2

{1 < x ≤ 3,
0 ≤ y ≤ 1 }

{0 ≤ x ≤ 1,
0 ≤ y ≤ 2 }

-1 0 1 2 3 4

-1

0

1

2

3

Figure 8: Two deterministic convex polyhedra automata that are equivalent

1 2

{0 < x ≤ 3,
0 ≤ y ≤ 2,
x + 2y ≤ 5}

-1 0 1 2 3 4

-1

0

1

2

3

Figure 9: A merged PLA with the one-element partition

The solution we propose to fix these problems is to use a finite partition of the lattice Λ, which
allows to decide when two transitions should be merged using the least upper bound operator. The
fusion of transitions will induce in general an over-approximation, controlled by the fineness of the
partition. The gain is that the projection of labels onto their equivalence classes produces a finite
automaton on which we can reuse classical notions.

Definition 6 (Partitioned lattice automaton (PLA)) A partitioned lattice automaton (PLA)
A is a lattice automaton A = 〈Λ, π,Q,Q0, Qf , δ〉 equipped with a partitioning function π : Σ→ Λ such
that Σ is a finite alphabet and the transition relation δ satisfies:

∀(q, λ, q′) ∈ δ, ∃σ ∈ Σ : λ v π(σ)

A PLA is merged3 if:

(q, λ1, q
′) ∈ δ ∧ (q, λ2, q

′) ∈ δ =⇒ π−1(λ1) ∩ π−1(λ2) = ∅

Definition 7 (Shape automaton and Shape equivalence) Given a PLA A = 〈Λ, π,Q,Q0, Qf , δ〉,
its shape automaton shape(A) is a finite automaton (Σ, Q,Q0, Qf ,→) obtained by projecting the tran-

sition relation δ onto the equivalence classes: (q, λ, q ′) ∈ δ =⇒ q
π−1(λ)
−→ q′.

Two PLA are shape-equivalent if their two shapes recognize the same language.

Two transitions of a PLA labeled by elements belonging to different equivalence classes cannot be
merged and are always kept separate, whereas they might be merged in the opposite case. Determin-

3The term “merged” comes from the merging operation needed to build a merged PLA from a given PLA.

PI n˚1839

14 Tristan Le Gall & Bertrand Jeannet

istic merged PLA have the finite branching degree property: its states can have at most |Σ| outgoing
transitions.

From an expressiveness point of view, PLA are as expressive as lattice automata.

Proposition 1 (Equivalence between lattice automata and PLA) Given a lattice automaton
A = 〈Λ, Q,Q0, Qf , δ〉 and a partitioning function π : Σ → Λ, there exists a partitioned lattice au-
tomaton A′ = 〈Λ, π,Q,Q0, Qf , δ〉 recognizing the same language (this relies on the atomic lattice
assumption).

Proof: A′ is obtained from A by replacing each transition (q, λ, q′) of A by at most |Σ| transitions
(q, λi, q

′), where λi = λ u π(σi) if λi 6= ⊥. �

However, for a given partition, merged PLA are strictly less expressive, as shown on Fig. 8 and 9 with
the trivial partition of size 1. Moreover, if one considers the lattice of affine equalities, which can be
partitioned only with the trivial partition of size 1, the automaton of Fig. 6(a) shows that in general
merged PLA are strictly less expressive than PLA.

Proposition 2 Let A be a PLA. If shape(A) is deterministic, then A is deterministic.

Proof: Let (q, λ1, q1) and (q, λ2, q2) be two transitions of A, and (q, σ1, q1) and (q, σ2, q2) be the two
corresponding transitions of shape(A). Since shape(A) is deterministic, π−1(λ1) ∩ π−1(λ2) = ∅. Since π
is a partitioning function, we have :

1. λi v π(σi)

2. π(σ1) u π(σ2) = ⊥

So λ1 u λ2 = ⊥. And then A is deterministic. �

The converse is false in general. This property leads us to define a stronger notion of determinism :

Definition 8 (Strong determinism) A PLA A is strongly deterministic if shape(A) is determin-
istic.

This notion of determinism is useful since it is defined on the well-known finite automata, and is a
guideline for the definition of a determinization algorithm. Therefore, in the sequel, “deterministic”
means “strongly deterministic”.

With all those definitions, we will be able to define a normalized form for lattice-based regular
language L. This normalization will exploit the following lemma :

Lemma 1 (Testing language inclusion) Let A = 〈Λ, π,Q,Q0, Qf , δ〉 and A′ = 〈Λ, π,Q′, Q′
0, Q

′
f , δ′〉

be two PLAs with the same partitioning function. Then A v A′ iff there is a simulation relation
R ⊆ ℘(Q)× ℘(Q′) verifying :

1. Q0RQ′
0

2. ∀X ⊆ Q,∀Y ⊆ Q′ : XRY =⇒
[
(X ∩Qf 6= ∅) =⇒

(
Y ∩Q′

f 6= ∅
)]

3. Let X ⊆ Q and Y ⊆ Q′ such that XRY . For any atom a ∈ At(Λ), there are two sets Xa ⊆ Q
and Ya ⊆ Q′ such that XaRYa and:

(
∃(qx, λx, q′x) ∈ δ : qx ∈ X ∧ a v λx

)
=⇒

(
∃(qy, λy, q

′
y) ∈ δ′ : qy ∈ Y ∧ a v λy ∧ q′x ∈ Xa ∧ q′y ∈ Ya

)

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 15

Algorithm: Inclusion test for two PLAs
Input: two PLAs A = 〈Λ, π : Σ→ Λ, Q, Q0, Qf , δ〉 and A = 〈Λ, π : Σ→ Λ, Q′, Q′

0, Q
′
f , δ′〉

Output: a boolean is included
begin

is included := true ;
R := {(Q0, Q

′
0)};

ToDo := {(Q0, Q
′
0)};

while ToDo 6= ∅ ∧ is included do
(X, Y) := pickAndRemoveElement(ToDo);
for all a ∈ At(Λ) do 1

Xa := ∅; Ya := ∅;
for all (qx, λx, q′x) ∈ δ such that qx ∈ X and a v λx do

Xa := Xa t {q′x};
endfor
for all (qy, λy, q′y) ∈ δ such that qy ∈ y and a v λy do

Ya := Ya ∪ {q′y};
endfor
if (Ya = ∅ =⇒ Xa = ∅) then

is included := is included ∧
(
Xa ∩Qf 6= ∅ =⇒ Ya ∩Q′

f 6= ∅
)

;

if (Xa, Ya) /∈ R then
R := R ∪ (Xa, Ya) ;
ToDo := ToDo ∪ (Xa, Ya) ;

endif
endif

endfor
endwhile
return is included ;

end

1 The number of atoms may be infinite. So an implementation would manipulate elements λx uλy

for all outgoing transitions (qx, λx, q′x) ∈ δ, qx ∈ X and (qy, λy, q′y) ∈ δ, qy ∈ Y .

Figure 10: Inclusion test algorithm for a merged PLA

Proof: On one hand, if there is a simulation like this one, it is obvious that LA ⊆ LA′ , because of the
definition of a language recognized by a lattice automaton.

On the other hand, if LA ⊆ LA′ , we can build R starting from Q0RQ′
0 and using the same algorithm

as the “inclusion test algorithm” (Fig. 10). And the condition : ∀X ⊆ Q, Y ⊆ Q′, XRY =⇒[
(X ∩Qf 6= ∅) =⇒

(
Y ∩Q′

f 6= ∅
)]

is always true, because LA ⊆ LA′ . This algorithm works if all states

of the two automata are reachable from an initial state and coreachable from a final state. Note that this
is an implicit hypothesis for all propositions and algorithms of the present paper. �

Note that the algorithm for inclusion test does not need any determinization step. This deter-
minization is implicitly performed on the fly during the algorithm.

5.2 Normalization of PLAs

Normalization of partitioned lattice automata will be obtained by merging, determinizing and mini-
mizing PLA. These operations provide a canonical form for PLA. Although this normalization induces
an upper-approximation of the recognized language, this is a robust notion in the sense that the ap-
proximation is optimal.

PI n˚1839

16 Tristan Le Gall & Bertrand Jeannet

1 2 3

4 5

[3, 5] [−7,−5] [4, 6]

[1, 2]

[−3,−1]

[3, 5]

2,4 3,5

1,2 3

[1, 5]

[−7,−1]

[−7,−5]

[3, 6]

[4, 6]

2,4

1,2 3,5

[1, 5] [−7,−1]

[−7,−5]
[3, 6]

(a) original (b) deterministic (c) minimal
automaton automaton automaton

Figure 11: Determinization and minimization of an interval automaton with the partition]−∞, 0] t
[0,+∞[

5.2.1 Merging.

Any PLA A = 〈Λ, π,Q,Q0, Qf , δ〉 recognizing a language L can be transformed into a merged PLA
Am = 〈Λ, π,Q,Q0, Qf , δm〉 w A recognizing a language Lm ⊇ L by merging transitions as follows:

q, q′ ∈ Q σ ∈ Σ λm =
⊔
{ λ u π(σ) | (q, λ, q′) ∈ δ}

(q, λm, q′) ∈ δm

The upper-approximation on the recognized language comes from the use of the lub operator. For
instance, with a single equivalence class on R2, the merged PLA associated to any automata depicted
on Fig. 8 is depicted on Fig. 9.

5.2.2 Determinization

The determinization of a PLA mimics the determinization of its shape automaton using the subset
construction on states and is illustrated on Fig. 11. The difference is that the transitions are merged
in the course of the algorithm when they are labeled with values belonging to the same equivalence
class. The resulting algorithm is given in Fig. 12.

Proposition 3 (Determinising PLA is a best upper-approximation) Let A be a PLA and A ′

the PLA obtained with the algorithm of Fig. 12. Then A′ is the best upper-approximation of A as a
merged and deterministic4 PLA:

1. A v A′;

2. For any merged and deterministic PLA A′′ based on the same partition as A, A v A′′ =⇒
A′ v A′′.

Proof: The result is a merged and deterministic PLA because the algorithm determinizes the shape and
performs merging of new transitions. It is also clear that the resulting automaton recognizes a greater
language than the original one. We must prove the third point of the proposition.

Let A = 〈Λ, π, Q, Q0, Qf , δ〉 be the initial PLA, A′ = 〈Λ, π,X , X0, Xf , ∆〉 the result of our algorithm and
A′′ = 〈Λ, π, Q′′, Q′′

0 = {q′′0}, Q
′′
f , δ′′〉 a merged and deterministic PLA such that LA ⊆ LA′′ . As usual, we

suppose that, in these automata, all states are reachable from the initial states and coreachable form the
final states.

We can build two simulation relations R′ on ℘(Q)×Q′ and R′′ on ℘(Q)×Q′′ defined as :

• At the beginning, (Q0, q
′
0) ∈ R

′ and (Q0, q
′′
0) ∈ R′′,

4Remember that “deterministic” means strongly deterministic.

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 17

Algorithm: Determinization of a PLA
Input: a PLA A = 〈Λ, π : Σ→ Λ, Q, Q0, Qf , δ〉 whose states are co-reachable
Output: a merged deterministic PLA A′ = 〈Λ, π, X, X0, Xf , ∆〉
begin

X := {Q0}; X0 := {Q0}; Xf := ∅;
∆ := ∅;
ToDo := {Q0};
while ToDo 6= ∅ do

x := pickAndRemoveElement(ToDo);
for all σ ∈ Σ do

λu := ⊥; x′ := ∅;
for all (q, λ, q′) ∈ δ such that q ∈ x and λ u π(σ) 6= ⊥ do

λu := λu t (λ u π(σ)); x′ := x′ ∪ {q′};
endfor
if λu 6= ⊥ then

∆ := ∆ ∪ {(x, λu, x′)};
if x′ 6∈ X then

X := X ∪ {x′};
if x′ ∩Qf 6= ∅ then Xf := Xf ∪ {x

′};
ToDo := ToDo ∪ {x′};

endif
endif

endfor
endwhile

end

Figure 12: Determinization algorithm for a merged PLA

• if we have (Qx, qx) ∈ R′′ then for all σ ∈ Σ, we consider Qy = {q′ ∈ Q|∃(q, λ, q′) ∈ δ ∧ q ∈
Qx ∧ λ v π(σ)}. Since LA ⊆ LA′′ and A′′ is deterministic, there is a unique q′′y ∈ Q′′ verifying
(qx, λ′′, q′′y) ∈ δ′′ ∧ λ′′ v π(σ), thus we add (Qy, q

′′
y) ∈ R′′. Note that we have λ′ =

⊔
{λ|∃(q, λ, q′) ∈

δ ∧ q ∈ Qx ∧ λ v π(σ)} v λ′′}. Since LA ⊆ LA′′ and A′′ is deterministic, there is a unique
q′′y ∈ Q′′ verifying (qx, λ′, q′y) ∈ δ′ ∧ λ′ v π(σ), so we can also add (Qy, q′y) ∈ R′.

By construction, the two simulation relations define a simulation relation R ⊆ Q′ ×Q′′ : (q′, q′′) ∈ R =
∃X ∈ ℘(Q), (X, q′) ∈ R′ ∧ (X, q′′) ∈ R′′ so LA′ ⊆ LA′′ . �

Corollary 1 (The determinisation operation is an upper-closure operation) The operation
det : PLA → PLA is an upper-closure operation: it is (i) extensive: det(A) w A; (ii) monotone:
for any A, A′ defined on the same partition, A v A′ ⇒ det(A) v det(A′); and (iii) idempotent:
det(det(A)) = det(A).

Proof: The extensivity has already been shown. We have A v A′ v det(A′). det(A) being the best
approximation of A as a deterministic merged PLA, det(A) v det(A′), which proves the monotonicity.
The idempotence is a trivial consequence of Prop. 3. �

[30] also studies the determinization of extended automata, but their extended automata represent
programs and have a different semantics. Transitions are labeled not only by guards (which could be
identified to our labels) but also assignments. In this context, the proposed determinization algorithm
is exact but may not terminate (it is only a semi-algorithm).

PI n˚1839

18 Tristan Le Gall & Bertrand Jeannet

5.2.3 Minimization

We use for PLA a notion of minimization based on its shape automaton, in the same spirit as for the
notion of determinism.

Definition 9 A PLA is minimal or normalized if it is merged and if its shape automaton is minimal
and deterministic. A normalized PLA will be also called a NLA (normalized lattice automaton).

The algorithm to minimize a PLA consists in removing its unconnected states, determinizing it ac-
cording to the previous algorithm and quotienting it according to the equivalence bisimulation relation
as defined on the states of its shape automaton (cf. Sect. 3). However, when quotienting the states of
a PLA, transitions labeled with elements belonging to the same equivalence class are merged, which
may induce an over-approximation of the recognized language, as shown on Fig. 11.

Definition 10 (Quotient PLA) Given a merged PLA 〈Λ, π : Σ → Λ, Q,Q0, Qf , δ〉 and an equiva-

lence relation ≈ on the set of states Q, the quotient automaton A/ ≈= 〈Λ, π, Q̃, Q̃0, Q̃f , δ̃〉 is defined
by

• Q̃ = Q/ ≈, the set of equivalence classes;

• Q̃0 = {q̃|q ∈ Q0} and Q̃f = {q̃|q ∈ Qf};

• δ̃ is defined by the rule
σ ∈ Σ λu =

⊔
{λ v π(σ) | ∃q0 ∈ q̃,∃q′0 ∈ q̃′ : (q0, λ, q′0) ∈ δ}

(q̃, λu, q̃′) ∈ δ̃

Note that the quotient automaton is a merged PLA.

Theorem 1 (Minimizing PLA is a best upper-approximation) For any PLA A, there is a unique
(up to isomorphism) NLA A′ based on the same partition π such that

1. A v A′

2. for any NLA A′′ based on the partition π, A v A′′ =⇒ A′ v A′′.

Proof: The minimization algorithm consists first in determinizing the automaton, and then, in quo-
tienting the result by the largest bisimulation relation on its states induced by its shape automaton.
The result is merged and deterministic and the quotient operation ensures that its shape is minimal and
deterministic. Thus it is minimal according to Def. 9.

Then we show that if two automata A1 and A2 recognize the same language L then minimize(A1) is
isomorph to minimize(A2). We have L ⊆ Ldet(A2) and det(A2) is merged and deterministic. According
to the properties of det(A1), we have Ldet(A1) ⊆ Ldet(A2). The same thing holds when switching A1 and
A2, so det(A1) and det(A2) are two deterministic automata recognizing the same language. Thus the
two automata are bisimilar according to a variant of Lemma 1 and we can conclude that Lminimize(A1) =
Lminimize(A2). Moreover shape(minimize(A1)) and shape(minimize(A2)) are isomorphic, and we can
extend this isomorphism to minimize(A1) and minimize(A2) thanks to the previous language equality.
�

Definition 11 Let fix a partitioning function π : Σ → Λ. For any language L ∈ Reg(Λ) recognized
by a lattice automaton A, L̂ will denote the language recognized by the unique NLA Â verifying the
properties of Thm. 1.

Corollary 2 (The normalisation operation is an upper-closure operation) The function ·̂ :
PLA→ NLA ⊆ PLA is an upper-closure operator: it is extensive, monotone (given a fixed partition),
and idempotent.

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 19

Algorithm Complexity

inclusion test O(2n)
merging O(m · p)
determinization O(2n)
quotienting O(n) + merging (if ≈ is known)
minimization O(n log n) + quotienting
normalization determinization + minimization

Table 1: Complexity of the basis operations on PLAs

Proof: Based on the same principle as Corollary 1. �

Corollary 3 For any languages L1 and L2,

L̂1 ∪ L̂2 ⊆ L̂1 ∪ L2 (5)

L̂1 ∩ L2 ⊆ L̂1 ∩ L̂2 (6)

The inclusion is strict, because of the use of least upper bound during normalization. To see this,
consider the lattice of intervals on rationals, partitioned with the trivial partition of size 1. Take
L1 = 0, L2 = 2. One has L̂1 = L1, L̂2 = L2, L̂1 ∪ L̂2 = 0 + 2, but L̂1 ∪ L2 =

∑
x∈[0,2] x. Take now

L1 = 0 + 2 and L2 = 1 + 3. One has L̂1 =
∑

x∈[0,2] x, L̂2 =
∑

x∈[1,3] x, L̂1 ∩ L̂2 =
∑

x∈[1,2] x, but

L̂1 ∩ L2 = ∅.

Complexity. Let A be a lattice automaton with n states, m transitions and a partition of size p
(i.e. |Σ| = p). The complexity of the previous algorithms is given on Tab. 1, where the operations on
Λ are considered as atomic.

Thm. 1 defines a normalization for languages recognized by PLA. For any language L ∈ Reg(Λ)
recognized by a PLA A, L̂ will denote the language recognized by the unique NLA verifying the
properties of Thm. 1. The set of NLA defined on Λ with the partition π will be denoted by Reg(Λ, π),
which denotes also the corresponding set of recognized languages.

Having defined a normal form for PLA, we can now specify classical operations on languages
recognized by NLA by defining them on their automata.

5.2.4 Refinement of the partitioning function

In the previous paragraphs, the partitioning function π : Σ → Λ was fixed. The precision of the
approximations made during the merging, determinization and minimization operations depends on
the fineness of the partitioning function. For example, all outgoing transitions from a given state
would be merged during the determinization algorithm employed with the trivial partition of size 1.

Definition 12 A partitioning function π2 : Σ2 → Λ refines a partitioning function π1 : Σ1 → Λ if :

∀σ2 ∈ Σ2,∃σ1 ∈ Σ1 : π2(σ2) v π1(σ1)

Let A1 = 〈Λ, π1 : Σ1 → Λ, Q,Q0, Qf , δ1〉 be a PLA. The automaton A2 = 〈Λ, π2 : Σ2 → Λ, Q,Q0, Qf , δ2〉
refines A1 if π2 refines π1 and the transitions of δ2 are obtained by :

(q, λ1, q
′) ∈ δ1 σ2 ∈ Σ2 λ2 = λ1 u π(σ2)

(q, λ2, q
′) ∈ δ2

PI n˚1839

20 Tristan Le Gall & Bertrand Jeannet

Refining an automaton does not modify immediately the recognized language, but leads to a more
precise upper-approximation in merging, determinization and minimization operations.

Proposition 4 Let A1 be a PLA and A2 a PLA refining A1. Then LA1
= LA2

, merge(A1) w

merge(A2), det(A1) w det(A2) and Â1 w Â2.

Proof:

1. Obvious

2. For two states q, q′ ∈ Q and for any σ1 ∈ Σ1, σ2 ∈ Σ2 such that π2(σ2) v π1(σ1), we have :

λm2
=

⊔
{ λ u π2(σ2) | (q, λ, q′) ∈ δ1} v λm1

=
⊔
{ λ u π1(σ1) | (q, λ, q′) ∈ δ1}

where λmi
labels the transition obtained by merging the transitions between q1, q2 labeled with

elements in πi(σi).

3. Idea of the proof : during each iteration of the while loop, the determinization of the automaton
A2 merges less states and less transitions than the determinization of the automaton A1.

4. Idea of the proof : the equivalence class of the bisimulation relation (for the quotienting algo-
rithms) are also more precise with π2, so both determinization and quotienting merge less states
and transitions of the original automaton.

�

Refining the partition π makes he class of normalized languages Reg(Λ, π) more expressive.

Proposition 5 Let π1 and π2 two partitioning functions for Λ, with π2 refining π1. Then Reg(Λ, π1) ⊆
Reg(Λ, π2).

Proof: Let A1 ∈ Reg(Λ, π1) be a NLA. Its refinement A2 according to π2 (cf. Def. 12) is normalized,
and thus A2 ∈ Reg(Λ, π2). �

Choosing an adequate partitioning function is thus important. For the analysis of SCM, where
data messages are usually composed of a message type and some parameters, the type of the message
defines a natural partition. When this standard partition is not sufficient for the analysis, it can be
refined to a more adequate partition. In this sense, the abstraction refinement techniques based on
partitioning (see for instance [28, 37]) are applicable to lattice automata.

5.3 Operations on PLA and their recognized languages

After the definition of a robust normalization concept, we can now define the classical operations on
languages (union, intersection, . . .) by defining them on lattice automata.

5.3.1 Set operations

Inclusion test. Two PLAs that are not normalized can be compared for language inclusion using
a simulation relation taking into account the partial order of the lattice, cf. lemma 1. If they are
normalized, one can first compare for inclusion their shape automata, and in case of inclusion, one
can compare the labels of matching transitions.

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 21

Λ = ({a, b, c, d}×I(Q)
ordered by

(x1, I1) v (x2, I2)
⇔

x1 = x2 ∧ I1 ⊆ I2

and partitioned with
π : x ∈ {a, b, c, d}

7→
(x, [−∞,+∞])

(a, [0, 0])

(b, [0, 0])

(d, [0, 0])

(d, [2, 2])

(c, [0, 0])

(a, [0, 0])

(b, [0, 0])

(d, [0, 0])

(d, [2, 2])

(c, [0, 0])

(Deterministic but not minimal)

(a, [0, 0])

(b, [0, 0])

(d, [0, 0])

(d, [2, 2])

(Deterministic and minimal)

(a, [0, 0])

(b, [0, 0])
(d, [0, 2])

(a) Lattice (b) The two minimized automata (c) Intersection
to be intersected and its approximation

Figure 13: Intersection of normalized PLA and its upper-approximation

Union and least upper bound. The exact union of two PLAs Ai = 〈Λ, π,Qi, Qi
0, Q

i
f , δi〉 can be

computed very simply as the disjoint union of the two PLA; this produces the PLA

A = 〈Λ, π,Q1 ∪Q2, Q1
0 ∪Q2

0, Q
1
f ∪Q2

f , δ1 ∪ δ2〉

which is not deterministic.

Normalizing A transforms the exact union operation in an upper bound operator t defined as
follows: A1 t A2 = Â1 ∪A2. As a corollary of Theorem 1, this upper bound operator is actually a
least upper bound operator on the set of NLA ordered by language inclusion.

Intersection and its normalized upper-approximation. The exact intersection of two PLAs
Ai = 〈Λ, π,Qi, Qi

0, Q
i
f , δi〉 can be computed as a product of the two PLA; this produces a PLA

A = 〈Λ, π,Q1 ×Q2, Q1
0 ×Q2

0, Q
1
f ×Q2

f , δ〉

where δ is defined by
(q1, λ1, q

′
1) ∈ δ1 (q2, λ2, q

′
2) ∈ δ2 λ1 u λ2 6= ⊥

((q1, q2), λ1 u λ2, (q′1, q
′
2)) ∈ δ

We implicitly remove unconnected states in A. If the input automata are normalized, A is merged
and deterministic, but not necessarily minimal. Minimizing it may induce an upper-approximation,
as shown by Fig. 13. Thus, NLA are not closed under (exact) intersection.

These operations allow to equip the set of NLA with a join semilattice structure.

Proposition 6 (NLA as a join semilattice) The set of NLA defined on an atomic lattice Λ with
a fixed partition π, ordered by language inclusion, is a join semilattice: it has bottom and top elements,
and a least upper bound operator.

If the standard lattice operations on Λ are computable, so are the corresponding operations on the join
semilattice of NLA.

Proof: It is clear that the bottom and top elements of this semilattice are respectively the empty
automaton 〈Λ, π, Q = ∅, Q0 = ∅, Qf = ∅, δ = ∅〉 recognizing no words, and the universal automaton
〈Λ, π, Q = {q}, Q0 = Q, Qf = Q, δ =

⋃
σ∈Σ(q, π(σ), q)〉 recognizing any word on the alphabet At(Λ). The

least upper bound operator is the operator t on NLA defined in Sect. 5.3. Last, we have also given in
Sect. 5.3 algorithms for testing inclusion and for computing the least upper bound. �

PI n˚1839

22 Tristan Le Gall & Bertrand Jeannet

Remark 4 (Deterministic merged PLA as a full lattice) If we consider the set of determinis-
tic and merged (but not necessarily minimal) PLA, then this set partially ordered by language inclusion
has a true lattice structure, instead of just the join semilattice structure of NLA. Indeed, Proposition 3
may be used to prove that the determinization of the exact union is a least upper bound operation,
and as the exact intersection of 2 deterministic merged PLA is a deterministic merged PLA, this
intersection is trivially a greatest lower bound.

One could manipulate deterministic merged PLA instead of NLA. But there may be several deter-
ministic merged PLA recognizing the same language, hence the isomorphism between languages and
automata is lost. The other drawbacks of such a choice is that testing inclusion is more expensive
(one needs to use simulation) and that one cannot extend the widening operation on finite automata
defined in Sect. 4.3.

5.3.2 Other language operations

Language concatenation. Language concatenation on deterministic PLA is performed exactly as
for finite automata, by substituting to the final states of the first automaton a copy of the initial
state of the second automaton. The obtained automaton is non-deterministic in general and requires
normalization. Language concatenation can also be computed on non deterministic PLA, by using ε
transitions and ε-closure to remove them.

Left derivation. In the finite case, the left derivation [12] of a finite automaton is performed w.r.t.
a letter. The corresponding operation would consists in deriving a PLA according to an equivalence
class. However, the partition is a way to control the precision of the approximations performed by the
various operations on PLA, and it does not have a semantic meaning.

As a consequence, we define a more general left derivation L/λ operator as follows:

·/· : Reg(Λ)× Λ → Reg(Λ)
(L, λ) 7→ {ω ∈ At(Λ)∗ | ∃a v λ : a · ω ∈ L}

We have clearly the identity L/λ =
∑

a∈At(λ) L/a, from which we can deduce the following proposition:

Proposition 7 Let λ ∈ Λ and (λσ)σ∈Σ be the projection of λ on the partition defined by π : Σ→ Λ.
Then L/λ =

∑
σ∈Σ L/λσ.

The left derivation can be implemented exactly on a deterministic PLA A = 〈Λ, π,Q,Q0 = {q0}, Qf , δ〉
as follows:

·/· : PLA× Λ → (Σ→ PLA)
(L, λ) 7→ (σ 7→ A/(λ u π(σ)))

where A/(λuπ(σ)) is the empty automaton if λuπ(σ) = ⊥, and the deterministic PLA 〈Λ, π,Q,Q0 =
{δ(q0, σ)}, Qf , δ〉 otherwise. One obtains a finite set of deterministic automata instead of a single one.
This set can be of course upper-approximated by the least upper bound deterministic PLA, denoted

by Â/λ =
⊔

σ∈Σ(A/λ)(σ).

“First” and “Pop” operations. In addition to the left derivation, it may also be useful to extract
the letters beginning the words of a language as follows:

first : Reg(Λ) → ℘(At(Λ))
L 7→ {a ∈ At(Λ) | a · ω ∈ L}

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 23

NLA operation complexity resulting PLA exact operation ?
inclusion test O(n · log n) — yes
union O(1) non-deterministic yes
intersection O(n2 + m2) deterministic, non minimal yes
language concatenation O(n · p) non-deterministic yes
letter right-concatenation O(n) non-deterministic yes
letter left-concatenation O(1) normalized yes
left derivation O(p) non-deterministic yes
first O(p) — yes
pop O(p) non-deterministic yes
normalized union (t) O(2n) normalized no
normalized intersection (u) O(n2 log n) normalized no
normalized pop O(p · 2n) normalized no

Table 2: Complexity of various operations on NLA. We assume NLA with n states, m transitions and
a partition of size p (i.e. |Σ| = p)

The equivalent (algorithmic) definition on a deterministic PLA A = 〈Λ, π,Q,Q0 = {q0}, Qf , δ〉 is :

first : PLA → (Σ→ Λ)
A 7→ (σ 7→ first(A)(σ))

where for each σ ∈ Σ, first(A)(σ) is the label of the unique transition (q0, λ, q) ∈ δ with λ v π(σ), if
it exists, and ⊥ otherwise. It is clear that the set of atoms covered by first(A) is exactly first(LA) :

⋃

σ∈Σ

{a ∈ At(Λ) | a v first(A)(σ)} = first(LA)

The first operation can be combined with the left derivation in order to implement the pop oper-
ation, which extracts the first letters and derives the corresponding “residue” automaton :

pop : PLA× Λ → (Σ→ Λ× PLA)

(A, λ) 7→
(
σ 7→

(
λ u first(A)(σ) , A/(λ u π(σ))

))

The complexity of the previous operations is summarized on Tab. 2.

5.4 Widening on NLA

The widening on NLA we define here combines the widening on finite automata of [23] reminded
in Sect. 4.3 with the standard widening operator ∇Λ : Λ × Λ → Λ that we assume for the atomic
lattice Λ. If a widening operator is not strictly required for Λ (because Λ satisfies the ascending chain
condition), then ∇Λ can be defined as the least upper bound t.

We first extend the ρk operator defined on finite automata in Sect 4.3.

Definition 13 (Operator ρk on NLA) Let A = (Λ, π,Q,Q0, Qf ,∆) be a NLA, shape(A) =
(Σ, Q,Q0, Qf , δ) its shape automaton. Let k ≥ 0 be an integer and ≈k the k-depth bisimulation
relation on Q induced by the partition of Q into Q0 ∩ Qf , Q0 \ Qf , Qf \ Q0 and Q \ (Q0 ∪Qf) and
the transition relation δ ⊆ Q×Σ×Q. We define ρk(A) as the quotient PLA A/ ≈k.

The widening operator we suggest consists in applying the operator ρk when the two argument au-
tomata have a different shape automaton, and to apply the widening operator of the lattice Λ on their
matching transitions when the two argument automata have the same shape automaton, as illustrated
by Fig. 14.

PI n˚1839

24 Tristan Le Gall & Bertrand Jeannet

[−7,−5]
∇0

[−9,−2] [6, 9]
=

[−9,−2]
[6, 9]

[−9,−5]

[5, 10]

∇0

[−9,−3]

[5, 12]

=

[−9, 0[

[5,+∞]

Figure 14: Widening on interval PLA, with a partition [−∞, 0[t[0,+∞] and k = 0

Definition 14 (Widening on NLA) Let A1 and A2 be two NLA defined on the same partition π
with A1 v A2. The widening operator ∇k is defined as :

A1∇kA2 =

{
ρ̂k(A2) if shape(A1) 6= shape(ρk(A2))
A1 ↗ A2 otherwise (which implies shape(A1) = shape(A2))

where A1 ↗ A2 is the NLA A which has the same set of states as A1 and A2 and the set of transitions
δ defined by the rule:

σ ∈ Σ (q, λ1, q
′) ∈ δ1 (q, λ2, q

′) ∈ δ2 λ1, λ2 v π(σ)

(q, (λ1∇Λλ2) u π(σ), q′) ∈ δ

If A1 6v A2, then A1∇kA2 , A1∇k(A1 tA2).

Notice that with the other hypothesis, the condition shape(A1) 6= shape(ρk(A2)) is equivalent to
shape(A1) (shape(ρk(A2)), and its negation shape(A1) = shape(ρk(A2)) ⊇ shape(A2) implies
shape(A1) = shape(A2).

Theorem 2 ∇k is a proper widening operator:

1. for any NLA A1,A2 defined on the same partition such that A1 v A2, A2 v A1∇kA2;

2. If there is an increasing chain of NLA A0 v A1 v . . . v An v . . ., the chain A′
0 v A

′
1 v . . . v

A′
n v . . . defined as A′

0 = A0 and A′
i+1 = A′

i∇k(A
′
i tAi+1) is not strictly increasing.

Proof:

1. We have A1 v A2 by hypothesis. If shape(A1) 6= ρk(shape(A2)) = shape(ρk(A2)), A1∇kA2 =

ρ̂k(A2) w A2. If shape(A1) = shape(A2) = ρk(shape(A2)), A2 v A1 ↗ A2 because for each pair
of matching transitions (q, λ1, q

′) and (q, λ2, q
′) with λ1, λ2 v π(σ), we have λ2 v (λ1∇Λλ2) u π(σ)

(as ∇Λ is a widening operator on Λ).

2. (A′
i)i≥0 is an increasing chain of NLA because of the first property. Thus, (S ′

i = shape(A′
i))i≥0 is an

increasing chain of finite automata. Moreover, by definition of∇k on NLA, S′
i+1 = S′

i∇k(S′
itSi+1) =

ρk(S′
itSi+1). As ∇k as defined on finite automata is a widening operator, the chain (S ′

i)i≥0 becomes
stationary at some rank N . The chain (A′

i)i≥N is thus an increasing sequence of NLA with identical
shape automaton S. For each transition (q, σ, q′) ∈ δS , one can extract the corresponding transition
sequence (q, λ′

i, q
′) ∈ δA

′

i with λ′
i v π(σ). The sequence (λ′

i)i≥N converges after a finite number
of steps, because ∇Λ is a widening operator. As there is only a finite number of transitions in the
shape automaton S, the sequence (A′

i)i≥N also converges after a finite number of steps.

�

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 25

5.5 NLA as an abstract domain for languages, stacks and queues.

Normalized lattice automata allows to define an abstract domain functor which lifts abstract domains
for some set to abstract domains for languages on this set. More precisely, given an atomic abstract
lattice A

γA−−→ ℘(S) for some set S with the concretization function γA, and a partitioning function π
for A, Reg(A, π) can be viewed as an abstract domain for L(S) = ℘(S∗), the languages on elements
of S, with the concretization function

γ : Reg(A, π) → ℘(S∗)
A 7→ {s0 . . . sn ∈ S∗ | a0 . . . an ∈ LA ∧ ∀i : si ∈ γA(ai)}

and the widening operator of Def. 14. Reg(A, π) is a non-complete join semilattice of infinite height.

We have in addition the following monotonicity result for Reg(A, π) seen as a functor.

Theorem 3 Let γi : Ai → ℘(S), i = 1, 2 two abstract domains for ℘(S) such that A2 refines A1, with
γ12 : A1 → A2 such that γ1 = γ2 ◦ γ12 (cf. Sect. 3). Let π1 a partitioning function for A1, and π2 a
partitioning function for A2 refining γ12 ◦ π1. The abstract domain Reg(A2, π2) refines Reg(A1, π1).

Proof: Let Γi : Reg(Ai, πi)→ ℘(S∗) the two concretization functions. Let A1 ∈ Reg(A1, π1) be a NLA.
We can build a NLA A2 ∈ Reg(A2, π2) such that γ2(A2) = γ1(A1).

One first replace in A1 transitions labeled by λ1 ∈ π1(σ1) by transitions labeled by λ2 = γ12(λ1) ∈
γ12 ◦ π1(σ1). The set of elements in S “covered” by the two labels is clearly the same. The resulting
automaton A′

2 thus satisfies Γ2(A′
2) = Γ1(A1). Moreover, A′

2 is a NLA belonging to Reg(A2, γ12 ◦ π2).
One now define A2 as the refinement of A′

2 w.r.t. the refined partition π2, which recognizes the same
language according to Prop. 4.

This transformation from A1 to A2 defines a function Γ12 : Reg(A1, π1) → Reg(A2, π2) such that Γ1 =
Γ2 ◦ Γ12. �

Most languages operations can be efficiently abstracted in Reg(A, π). This is in particular the case
of languages operations corresponding to the operations offered by the FIFO queue or stack abstract
datatypes. Hence, Reg(A, π) is a suitable abstract domain for FIFO queues or stacks on elements of
S.

6 Application to the abstract interpretation of SCM

We illustrate in this section the application of the abstract domain Reg(A, π) defined in the previous
section to the analysis of symbolic (or extended) Communicating Machines. This application is actually
the initial motivation for the study of lattice automata.

6.1 Symbolic Communicating Machines

Symbolic Communicating Machines (SCM) are Communicating Finite-State Machine extended with
a finite set of variables V , the values of which can be sent into FIFO queues, cf. Fig. 1. A transition
is triggered when a condition on the value of the variables is satisfied. In such a case, the transition
can first emit or receive values from a FIFO queue, then modify the values of variables, and last make
the control jump to the destination location. This model is similar to other models like Extended
Communicating Finite-State Machines [26] or Parametrized Communicating Extended Finite-State
Machines [34].

Definition 15 A SCM with N queues is defined by a tuple 〈C, V, c0,Θ0, P,∆〉 where :

PI n˚1839

26 Tristan Le Gall & Bertrand Jeannet

• C is a nonempty finite set of locations (control states).

• V = {v1, . . . , vn} is a nonempty, finite set of variables. The domain of values of a variable v is
denoted by Dv, and the set of valuations of all variables in V by DV .

• c0 ∈ C is the initial control state, and Θ0 ⊆ DV , a predicate on V , is the initial condition.

• P = {p1, . . . , pn} is a nonempty, finite set of formal parameters that are used to send/receive
values to/from FIFO queues. We assume that all queues use the same set of parameters DP .

• ∆ is a finite set of transitions. A transition δ is either an input 〈c1, G, i?~p,A, c2〉 or an output
〈c1, G, i!~p,A, c2〉 where :

1. c1 and c2 are resp. the origin and destination locations;

2. i ∈ [1..N] is a queue number

3. ~p is the vector of formal parameters, which holds the values sent or received to/from the
queue i;

4. G(~v, ~p) ⊆ DV × DP is a predicate on the variables and the formal parameters (also called
guard).

5. A is an assignment of the form ~v′ := A(~v, ~p), where A : DV ×DP → DV , which defines the
values of the variables after the transition.

Compared to the definition of Extended Communicating Finite-State Machines [26], the values sent to
queues may be of any type. Indeed, our model is closer to the Parametrized Communicating Extended
Finite-State Machines model [34] (although there is no major difference between the three models).
As a consequence, the alphabet of the queue contents is DP . This alphabet is not finite if DP is not
finite.

The operational semantics of a SCM 〈C, V, c0,Θ0, P,∆〉 is given as an infinite transition system
〈Q,Q0,→〉 where

• Q = C ×DV ×
(
(DP)∗

)N
is the set of states;

• Q0 = {〈c0, ~v, ε, . . . , ε〉 |~v ∈ Θ0} is the set of initial states;

• → is defined by the two rules:

(c1, G, i!~p,A, c2) ∈ ∆ w′
i = wi · ~p G(~v, ~p) ~v′ = A(~v, ~p)

〈c1, ~v, w1, . . . , wi, . . . , wN 〉 → 〈c2, ~v′, w1, . . . , w
′
i, . . . , wN 〉

(c1, G, i?~p,A, c2) ∈ ∆ wi = ~p.w′
i G(~v, ~p) ~v′ = A(~v, ~p)

〈c1, ~v, w1, . . . , wi, . . . , wN 〉 → 〈c2, ~v′, w1, . . . , w
′
i, . . . , wN 〉

A global state of a SCM is thus a tuple 〈c, ~v, w1, . . . , wN 〉 ∈ C ×DV × (DP)∗ × · · · × (DP)∗ where c is
a control state, ~v is the current value of the variables and wi is a finite word on DP representing the
content of queue i.

The concrete collecting semantics of a SCM depicted on Tab. 4 is deduced from the operational
semantics as it was done in Sect. 4.2. It is a bit more complex because the model involves symbolic
operations.

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 27

6.2 SCM with a single queue: a simple approach

There are classical solution for the abstraction of scalar variables. Consequently, the main issue of
applying abstract interpretation techniques on this model is the abstraction of the queue contents.
Whereas the queue contents in the CFSM model were abstracted by regular languages, queue contents
in the SCM model will be abstracted using the abstract domain of lattice automata.

If there is a single queue, the concrete set of states associated to each control point c ∈ C has the
structure ℘(DV × (DP)∗): one associates to each control point the set of possible configurations for
the variables of the communicating machine and its FIFO queue

The concrete lattice ℘(DV × (DP)∗) can be abstracted with ℘(DV)×L(DP) by projecting the two
components. This allows to abstract ℘(DV) using classical abstractions for variables of the environ-
ment, and to use lattice automata for abstracting the domain of queue contents L(DP).

For the sake of simplicity, and as an example, we will assume in the sequel that all variables and
parameters are of rational type, and that sets of valuations are abstracted using the lattice of convex
polyhedra V (k) = Pol(Qk). We have the abstraction

℘(Qn × (Qp)∗) −−→←−− ℘(Qn)×L(Qp) ←− V (n) ×Reg(V (p))

As the atoms of the lattice V (p) = Pol(Qp) are precisely the elements of Qp, the concretization function
of Reg(V (p)) is just the identity. The induced abstract semantics is given on Tab. 5.

Example. We consider the protocol presented in the introduction (Fig. 1). For the purpose of the
analysis, we make the asynchronous product of the two automata. The result is a control
structure with four states, labeled 00, 01, 10 and 11, with the following convention : the SCM
is in the “xy” state if the sender is in the “x” state and the receiver is in the “y” one.

The example was modeled by a system of equation and we solved the reachability analysis using
a generic fix-point calculator. We used the polyhedra abstract lattice as implemented in the
APRON library[1]. No partitioning of the alphabet lattice was employed in this example. We
obtained the result of Tab. 6. �

The result of this analysis is disappointing: one is not able to prove that the messages contained in
the queues are indexed by integers that are lower than the variable s. This is not due to the queue
abstraction, nor due to the variables abstraction, but to the coupling of the two abstractions. The
following section proposes a solution to this problem..

6.3 SCM with a single queue: linking message and state variables

The idea to improve on the previous abstraction is to use an augmented semantics to link the message
variables contained in queues with the state variables of the machines.

The proposal of this section is to put into queues not only the queue content itself, but also (a
subset of) the environment. This allows not only to establish relations between messages in queues
and the current environment, but also to indirectly establish relations between the messages contained
in different letters. For instance, the abstract value

(
s ∈ [8, 9], data({s− p = 3}) · data({s− p = 2}) · data({s− p = 1})

)

will represent the 2 concrete states (s = 8, data(5) · data(6) · data(7)) and (s = 9, data(6) · data(7) ·
data(8)). This is to be compared with the standard abstraction of these 2 states:

(
s ∈ [8, 9], data(p ∈ [5, 6])) · data(p ∈ [6, 7]) · data(p ∈ [7, 8])

)

which represents 24 = 16 concrete states.

PI n˚1839

28 Tristan Le Gall & Bertrand Jeannet

Parameterized Domains with k ≥ 0

Concrete domain C (k) = ℘(Qk × (Qp)∗)

Abstract domain for variables V (k) = Pol(Qk)

Abstract domain for one FIFO queue L = Reg(V (p))

Abstract domain A(k) = V (k) × L

Table 3: Semantic domains

Concrete collecting semantics

guard G(~v, ~p) JGK : ℘(Qn) → ℘(Qn+p) by extension JGK : C (n) → C(n+p)

assignmentA(~v, ~p) JAK : ℘(Qn+p) → ℘(Qn) by extension JAK : C (n+p) → C(n)

output 1!~p J1!~pK : C (n+p) → C(n+p)

X 7→ {(~v, ~p, ω · ~p) | (~v, ~p, ω) ∈ X}

input 1?~p J1?~pK: C (n+p) → C(n+p)

X 7→ {(~v, ~p, ω) | (~v, ~p, ~p · ω) ∈ X}

transition t JtK : C (n) → C(n)

X 7→

JAK ◦ JGK if t = (G,−−, A)
JAK ◦ J1!~pK ◦ JGK if t = (G, 1!~p,A)
JAK ◦ J1?~pK ◦ JGK if t = (G, 1?~p,A)

The semantics of a transition is defined as follows: first the queue variables ~p are intro-
duced, and then constrained by the guard (semantics of guards). A push or pop operation
is possibly performed. Last, the assignment updates the value of state variables. For push
and pop, the value ~p is defined by a kind of unification between the guard and the queue
content.

Table 4: Concrete collecting semantics

Standard abstract semantics

guard G(~v, ~p) JGK] : V (n) → V (n+p) by extension JGK] : A(n) → A(n+p)

assignmentA(~v, ~p) JAK] : V (n+p) → V (n) by extension JAK] : A(n+p) → A(n)

output 1!~p J1!~pK] :V (n+p) × L → V (n+p) × L
(Y, F) 7→ (Y, F · (∃~v : Y))

input 1?~p J1?~pK]:V (n+p) × L → V (n+p) × L
(Y, F) 7→

⊔
σ(Y u Embed ◦ first(F)(σ), (F/(∃~v : Y))(σ))

with Embed : V (p) → V (n+p) a canonical embedding function

transition t JtK] : A(n) → A(n)

X 7→

JAK] ◦ JGK] if t = (G,−−, A)
JAK] ◦ J1!~pK] ◦ JGK] if t = (G, 1!~p,A)
JAK] ◦ J1?~pK] ◦ JGK] if t = (G, 1?~p,A)

Table 5: Standard abstract semantics

Non-standard abstract semantics. The formalization of this technique requires slightly heavier
notations. We assume that we put all the environment in the queue. The abstract lattice is then

A(n) = V (n) × L with L = Reg(V (n+p))

with the concretization function

γ(Y, F) = {(~v, ω = ω0 . . . ωk) ∈ Qn × (Qp)∗ | ~v ∈ Y ∧ (~v, ω0) . . . (~v, ωk) ∈ F}

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 29

Control Abstract Value
00 [|s ≥ 0; a ≥ 0|]

(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

01 [|v ≥ 0; s ≥ 0; a ≥ 0|]
(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

10 [|s ≥ 0; a− 2 ≥ 0|]
(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

11 [|v ≥ 0; s ≥ 0; a− 2 ≥ 0|]
(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

Table 6: Analysis of the example
with the standard approach

Control Abstract Value
00 [|0 ≤ a ≤ s ≤ a + 10|]

(d, [|0 ≤ a ≤ s− 1 ≤ a + 9; 0 ≤ p ≤ s− 1|])∗

(a, [|0 ≤ a ≤ s ≤ a + 10; 0 ≤ p ≤ s− 1; 0 ≤ v ≤ s− 1|])∗

01 [|0 ≤ a ≤ s ≤ a + 10; 0 ≤ v ≤ s− 1|]
(d, [|0 ≤ a ≤ s− 1 ≤ a + 9; 0 ≤ p ≤ s− 1|])∗

(a, [|0 ≤ a ≤ s ≤ a + 10; 0 ≤ p ≤ s− 1; 0 ≤ v ≤ s− 1|])∗

10 [|0 ≤ a ≤ s− 3 ≤ a + 7; 0 ≤ v ≤ s− 1|]
(d, [|0 ≤ a ≤ s− 1 ≤ a + 9; 0 ≤ p ≤ s− 1|])∗

(a, [|0 ≤ a ≤ s ≤ a + 10; 0 ≤ p ≤ s− 1; 0 ≤ v ≤ s− 1|])∗

11 [|0 ≤ a ≤ s− 3 ≤ a + 7; 0 ≤ v ≤ s− 1|]
(d, [|0 ≤ a ≤ s− 1 ≤ a + 10; 0 ≤ p ≤ s− 1|])∗

(a, [|0 ≤ a ≤ s ≤ a + 10; 0 ≤ p ≤ s− 1; 0 ≤ v ≤ s− 1|])∗

Table 7: Analysis of the example with the non-standard ap-
proach

The partitioning function π : Σ → V (p) used in PLA is implicitly extended to π : Σ → V (n+p). A(n)

may be seen as a reduced product of the two interacting components V (n) and Reg(V (n+p)).

Abstract operations. The abstract semantics of guards now involves both the abstract environ-
ment and the queue:

JGKr : V (n) ×Reg(V (n+p)) → V (n+p) ×Reg(V (n+p))
(Y, F = 〈Λ, π,Q,Q0, Qf , δ〉) 7→ (JGK](Y), F ′ = 〈Λ, π,Q,Q0, Qf , δ′〉)

with δ′ = { (q1, λ
′, q2) | (q1, λ, q2) ∈ δ ∧ λ′ = λ u (∃~p : G)}.

The abstract semantics of assignments is more complex:

JAKr : V (n+p) ×Reg(V (n+p)) → V (n) ×Reg(V (n+p))
(Y, F = 〈Λ, π,Q,Q0, Qf , δ〉) 7→ (Y ′, F ′ = 〈Λ, π,Q,Q0, Qf , δ′〉)

where Y ′ = JAK](Y) and δ′ = {(q1, λ
′, q2) | (q1, λ, q2) ∈ δ ∧ λ′ defined as below }. λ′(~v, ~p0) is obtained

from λ(~v, ~p0) by the following operations:

We build φ(~v, ~p, ~v′, ~p0) = λ(~v, ~p0)∧ ~v′ = A(~v, ~p)∧Y (~v, ~p), where ~v′ is the value of the state
variables after the assignment, ~v and ~p the current value of state and message variables,
and ~p0 the value of the message variable in the transition of the lattice automaton.

We then build φ′(~v′, ~p0) = ∃~v∃~p : φ by eliminating variables in the current environment;

Last we perform a renaming: λ′(~v, ~p0) = φ′(~v′, ~p0)[~v ← ~v′]

The application of the assignment to a NLA produces a NLA; in particular, as the partitioning function
involves only the message parameters, and JAK] modifies only the state variables, the lattice automaton
remains well-partitioned.

The semantics of message outputs and inputs are in some way simpler than with the previous
abstract semantics:

J1!~pKr(Y, F) = (Y, F · Y)

J1?~pKr(Y, F) = (Y u first(F), F̂/Y)

The semantics of transitions remains similar to that of Tab. 5.

PI n˚1839

30 Tristan Le Gall & Bertrand Jeannet

Example. We performed a new analysis based on these non-standard semantics on the same example
as before. A ‘widening up to” operator was used instead of the standard widening on polyhedra
[25]. We obtained the better result of Tab. 7. �

This analysis is quite accurate, since it shows that :

• 0 ≤ a ≤ s ≤ a + 10

• 0 ≤ p ≤ s− 1

• 0 ≤ v ≤ s− 1

Remark 5 (Efficiency of the approach.) It should be noted that the abstraction of this section
is much more expensive than the abstraction of Sect. 6.2, because guards and assignments do not
apply only on the abstract value representing state variables, but also the abstract values labeling the
transitions of the automata. This suggests the use of a small partition π of the lattice Λ and the use of
a small parameter k in the widening, in order to keep the lattice automata reasonably small. However,
the gain in precision brought by this approach worth it, although experimental results on a significative
set of examples is still lacking.

Remark 6 (The particular case of a partition of size 1) In our analysis examples, we did not
exploit a partition of the alphabet lattice. In such a case, normalized lattice automata have a very
simple, linear structure of the form:

q0 q1 q2 qn

If such an automaton is the normalized image of the widening operator with parameter k, then n ≤
k + 2.

λ0 λ1 λn−1
λn

In general, the most natural choice for the analysis of SCM is to partition the alphabet according to
the different kinds of messages exchanged (transmission, retransmission, acknowledgment, . . .).

6.4 SCM with several queues

As in Sect. 4.3, there are mainly two ways to analyze systems with several queues. One can follow :

• a non-relational, attribute-independent method, in which an abstract configuration is defined
by a polyhedron representing the value of the state variables and N lattice automata, each
representing a queue content,

• or a relational, attribute-dependent method, in which a single lattice automaton recognizes
concatenated words w = w1]w2] . . .]wN , where each subword wi represents the content of the
queue i and] is a special separating character [4].

The extension to lattice automata of these two variants discussed in Sect. 4.3 for finite automata is
straightforward. In the previous subsections, the analyzed example, which has two FIFO queues, was
implicitly analyzed with a non-relational approach.

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 31

Prog = (Pi)0≤i<n : A program is defined by a set of procedures

LVar i, ~li : Set of local variables of procedure Pi

~fpi : Tuple of formal call parameters of procedure Pi
~fpi ⊆ LVar i

~fr i : Tuple of formal return parameters of procedure Pi
~fr i ⊆ LVar i

Gi = 〈Ki, Ii〉 : Flow graph of the procedure Pi

Ki : Control points of the procedure Pi

si, ei ∈ Ki : start and exit points of procedure Pi

Table 8: Syntactic domains for imperative programs

v ∈ Value : values of expressions and variables
εi ∈ LEnv i = LVar i → Value : local environments for procedure/function Pi

ε ∈ LEnv =
⋃

i LEnv i : local environments for any procedure/function
〈c, ε〉 ∈ Act = K × LEnv : activation record

Γ ∈ Act∗ : stacks (sequences) of activation records = program states

Table 9: Semantic domains for imperative programs

7 Application to interprocedural analysis

The analysis of communicating machines was the initial motivation for the study of lattice automata
in Sect. 5. However there is an interesting application in precise interprocedural analysis, where one
can use lattice automata for abstracting call-stacks. This would allow both to simplify and to improve
the abstraction proposed in [29]. One can also see this application as an extension to infinite state
programs of [19] which uses pushdown automata to model finite-state recursive programs and finite
automata for representing (co)reachable sets of configurations.

Program model. Tab. 8 sums up our notations and assumptions on recursive programs. Notice
that we assume no global variables, and parameter passing by value. We use a symmetrical notion
of effective and formal call parameters for return parameters in an instruction (y1, y2) = P (x1, x2)
where y1, y2 are effective return parameters assigned from formal return parameters ~fr in P . To
integrate the call-string and functional approach, we make an important assumption, which is that
formal parameters are not modified in a procedure. This is not restrictive, as one can always copy
such variables into local variables. Tab. 9 defines the semantic domains used for these programs. We
assume that the top of a stack Γ ∈ Act+ is on the left side of the word Γ, but the other convention is
also possible.5

We do not detail more the program model, as we will focus on the abstraction of call-stacks and
we will not detail the induced abstraction of the instructions and procedure calls and returns.

Well-formed call-stacks. Reachable call-stacks should reflect the equality of effective parameters
in a caller procedure and formal callee parameters in the callee procedure. Thus well-formed call-
stacks Γ = 〈cn, εn〉 . . . 〈c1, ε1〉 . . . 〈c0, ε0〉 satisfy : ∀i < n : εi+1(~fp) = εi(~x) where ~x denotes the
effective parameters at the call point ci and ~fp the formal call parameters in the corresponding callee
procedure. We will implicitly focus on such well-formed stacks.

Using lattice automata for interprocedural analysis. In the concrete semantics of programs,
it is standard to partition the state-space according to the current control point. Thus, we use the
identity Act+ = K → LEnv ×Act∗. Now, given an abstraction ℘(LEnv) −−→←−− Λ for environments, we

5This choice is important insofar as the lattice automata abstraction does not commute with the reverse operation
on words.

PI n˚1839

32 Tristan Le Gall & Bertrand Jeannet

can use the following abstraction:

℘(Act+) −−−→←−−−α
γ

K → Λ×Reg(K × Λ)

The most natural partitioning for the lattice K×Λ is of course the finite partitioning function π(k) =
{k} × >Λ.

In the forward abstract (operational) semantics induced by this abstraction, an intraprocedural
instruction modifies only Y in an abstract configuration (Y,Γ) ∈ Λ × Reg(K × Λ). A procedure call
from an abstract configuration (Y, F) at point c results in a configuration of the form (Y ′, ({c}, Y) ·F)
at start point s of the callee. A procedure return from an abstract configuration (Y, F) at exit point e
to the return point c consists in computing Y ′ = first(F)(c) and in modifying it using the return value
in Y . This is where it is useful to exploit the well-formedness of call-stacks, by unifying Y ′ with Y
using the equality Y (~fp) = Y ′(~x) before assigning the formal return parameters in Y to the effective
return parameters in Y ′.

One can define similarly a backward abstract semantics, and one can also intersect the resulting
backward analysis with the result of a forward analysis, as described in [29]

Interprocedural analysis by explicit representation of the call-stacks. The call-string ap-
proach of [47], generalized by tokens in [31] corresponds to a very strong abstraction of the call-stacks
in which the value of variables is largely ignored. It is more suitable to compilation-oriented dataflow
analysis than to program verification. A different line of work consists in modeling recursive pro-
grams using pushdown automata, and exploiting the property that the set of (co)reachable stacks
of pushdown automata is regular [13] and its computation has a polynomial complexity [18, 7, 22].
The application of this approach to verification is mainly restricted either to programs manipulating
finite-state variables, or to programs first abstracted to such programs [19], although [43] removes
some restrictions using weights on transitions. The approach sketched in this section can be seen as
an extension of this line of work to more expressive programs, where undecidability is overcome by
resorting to approximations.

The lattice automata abstraction may be seen as both an improvement and a simplification of [29],
which derives and unifies two classical techniques for interprocedural analysis (namely the call-string
and functional approaches identified by [47]) by abstract interpretation of the operational semantics of
imperative programs. Compared to the lattice automata abstraction, the abstract domain is roughly
a set of environments labeled with call-strings: K ∗ → Λ (instead of Reg(K ×Λ)). The concretization
function uses again the well-formedness property to rebuild stacks from such abstract values. In
the context of interprocedural shape analysis, [44] represents explicitly the call-stack using the same
abstract representation than for the memory configurations.

There are some advantages in having an explicit representation of call-stacks in interprocedural
analysis. As long as data variables are not abstracted, the more classical functional approach is
as precise, but as soon as they are, such an explicit representation allows to recover some loss of
information. Moreover, the stack abstraction approach allows to describe naturally transformations
such as procedures inlining in the course of an analysis. This is discussed in more details in [29]. Last,
some applications require information on the stack. This is the case for instance of analysis related
to stack inspection mechanisms for ensuring security properties in Java and .NET architecture [3].
Another example is the test selection technique proposed in [14], in the context of conformance testing
of reactive systems w.r.t. an interprocedural specification.

8 Conclusion

We defined in this paper an abstract domain for languages on infinite alphabets, which are represented
by lattice automata. Our main motivation was the analysis of symbolic (or extended) communicating

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 33

machines which exchange infinite data through FIFO queues, but this abstract domain may also be
used for abstracting call-stacks in the analysis of recursive programs.

The principle of lattice automata is to use elements of an atomic lattice for labeling the transitions
of a finite automaton, and to use a partition of this lattice in order to define a projected finite
automaton which acts as a guide for defining determinization, minimization and widening operations.
We motivate our choices and show that they lead to a robust notion of approximation, in the sense
that normalization is an upper-closure operation and can be seen as a best upper-approximation in
the join semilattice of normalized lattice automata.

The resulting abstract domain allows to lift any atomic abstract domain A for ℘(S) to an abstract
domain Reg(A) for ℘(S∗). It is also parametric: it is parametrized first by the underlying alphabet
lattice, then by a partition of the alphabet lattice, and last by the parameter of the widening operator.
Its precision may be improved by adjusting these parameters.

We illustrate the use of lattice automata for the verification of symbolic communicating machines,
and we show the need for a non-standard semantics to couple the abstraction of the state variables
of the machines with the contents of the FIFO queues. To our knowledge, this is the first technique
able to prove the specified properties on our example without manual transformation of the model,
despite its relative simplicity. We also explore the applicability of lattice automata to interprocedural
analysis and compare this solution to related work.

As a result, this work extends both analysis techniques dedicated to communicating machines, and
interprocedural analysis based on an explicit representation of the call-stacks.

Future work includes first a deeper study of the experimental relevance of lattice automata to the
analysis of SCM. The challenge we would like to take up is the verification of the SSCOP commu-
nication protocol, which is a sliding window protocol from which our running example is extracted.
Previous verification attempts that we are aware of are either based on enumerated state-space explo-
ration techniques [10], or on the partial use of theorem proving [45]. It would be interesting to study
the application of lattice automata to shape analysis, in the spirit of [9]. A last direction which could
be explored is the generalization of lattice automata recognizing languages on infinite alphabets to
tree automata recognizing trees on infinite sets of symbols.

References

[1] The APRON numerical abstract domain library. http://apron.cri.ensmp.fr/library/.

[2] Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure Petrucci. FAST: Fast Acceleration of
Symbolic Transition systems. In Computer Aided Verification (CAV’03), volume 2725 of LNCS,
July 2003.

[3] Frederic Besson, Thomas Jensen, Daniel Le Métayer, and Tommy Thorn. Model checking security
properties of control flow graphs. Journal of Computer Security, 9, 2001.

[4] Bernard Boigelot and Patrice Godefroid. Symbolic verification of communication protocols with
infinite state spaces using QDDs. Formal Methods in System Design, 14(3), 1997.

[5] Bernard Boigelot, Patrice Godefroid, Bernard Willems, and Pierre Wolper. The power of QDDs
(extended abstract). In Static Analysis Symposium, SAS’97, 1997.

[6] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David. Two-
variable logic on words with data. In Symposium on Logic in Computer Science,LICS ’06, 2006.

PI n˚1839

34 Tristan Le Gall & Bertrand Jeannet

[7] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown automata:
Application to model checking. In Int. Conf. on Concurrency Theory, CONCUR’97, volume 1243
of LNCS, 1997.

[8] Ahmed Bouajjani and Peter Habermehl. Symbolic reachability analysis of FIFO-channel systems
with nonregular sets of configurations. Theoretical Computer Science, 221(1-2), 1999.

[9] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Thomas Vojnar. Abstract tree
regular model checking of complex dynamic data structures. In Static Analysis Symposium,
SAS’06, volume 4218 of LNCS, 2006.

[10] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Claude Jard, Thierry Jéron, Alain Ker-
brat, Pierre Morel, and Laurent Mounier. Verification and test generation for the SSCOP protocol.
Scientific Computer Programming, 36(1), 2000.

[11] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of ACM,
30(2), 1983.

[12] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4), 1964.

[13] Didier Caucal. On the regular structure of prefix rewriting. Theoretical Computer Science, 106,
1992.

[14] Camille Constant, Bertrand Jeannet, and Thierry Jéron. Automatic test generation from interpro-
cedural specifications. Technical Report PI 1835, IRISA, 2007. Submitted to TESTCOM/FATES
conference.

[15] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Symposium on Principles
of Programming Languages, POPL ’77, 1977.

[16] Patrick Cousot and Radhia Cousot. Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In Symposium on Programming Language Implementation
and Logic Programming, 1992.

[17] Dino Distefano, Peter O’Hearn, and Hongseok Yang. A local shape analysis based on separation
logic. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS’06, volume
3920 of LNCS, 2006.

[18] Javier Esparza and Jens Knoop. An automata-theoretic approach to interprocedural data-flow
analysis. In Int. Conf. on Foundations of Software Science and Computation Structure (FoSSaCS
’99), volume 1578 of LNCS, March 1999.

[19] Javier Esparza and Stefan Schwoon. A BDD-based model checker for recursive programs. In
Computer Aided Verification, CAV’01, volume 2102 of LNCS, 2001.

[20] Jérôme Feret. Abstract interpretation-based static analysis of mobile ambients. In Eighth Int.
Static Analysis Symposium (SAS’01), number 2126 in LNCS, 2001.

[21] Alain Finkel, S. Purushothaman Iyer, and Grégoire Sutre. Well-abstracted transition systems:
application to FIFO automata. Information and Computation, 181(1), 2003.

[22] Alain Finkel, Bernard Willems, and Pierre Wolper. A direct symbolic approach to model checking
pushdown systems. Electronic Notes on Theoretical Computer Science, 9, 1997.

Irisa

Analysis of Communicating Infinite State Machines using Lattice Automata 35

[23] Tristan Le Gall, Bertrand Jeannet, and Thierry Jéron. Verification of communication protocols
using abstract interpretation of FIFO queues. In Algebraic Methodology and Software Technology,
AMAST ’06, volume 4019 of LNCS, July 2006.

[24] Denis Gopan, Frank DiMaio, Nurit Dor, Thomas Reps, and Mooly Sagiv. Numeric domains with
summarized dimensions. In Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’04, volume 2988 of LNCS, 2004.

[25] Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2), August 1997.

[26] Masahiro Higuchi, Osamu Shirakawa, Hiroyuki Seki, Mamoru Fujii, and Tadao Kasami. A veri-
fication procedure via invariant for extended communicating finite-state machines. In Computer
Aided Verification,CAV ’92, volume 663 of LNCS, 1993.

[27] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC), 1999.

[28] Bertrand Jeannet. Dynamic partitioning in linear relation analysis. application to the verification
of reactive systems. Formal Methods in System Design, 23(1), July 2003.

[29] Bertrand Jeannet and Wedelin Serwe. Abstracting call-stacks for interprocedural verification
of imperative programs. In Int. Conf. on Algebraic Methodology and Software Technology,
AMAST’04, volume 3116 of LNCS, July 2004.

[30] Thierry Jéron, Hervé Marchand, and Vlad Rusu. Symbolic determinisation of extended automata.
In IFIP Int. Conf. on Theoretical Computer Science, IFIP book series, 2006.

[31] Neil D. Jones and Steven S. Muchnick. A flexible approach to interprocedural data flow anal-
ysis and programs with recursive data structures. In Symposium on Principles of Programming
Languages (POPL’82), 1982.

[32] Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer Science,
134(2), 1994.

[33] Michael Karr. Affine relationships among variables of a program. Acta Informatica, 6, 1976.

[34] David Lee, K. K. Ramakrishnan, W. Melody Moh, and Udaya Shankar. Protocol specification
using parameterized communicating extended finite stte machines - a case study of the atm abr
rate control scheme. In Int. Conf. on Network Protocols (ICNP ’96), 1996.

[35] Laurent Mauborgne. Representation of sets of trees for abstract interpretation. PhD thesis, École
Polytechnique, 1999.

[36] Laurent Mauborgne. Tree schemata and fair termination. In Static Analyis Symposium, SAS’00,
volume 1824 of LNCS, 2000.

[37] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation based static
analyzers. In European Symposium on Programming, ESOP’05, volume 3444 of LNCS, 2005.

[38] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers. In Symposium
on Principles of Database Systems, 2000.

[39] Frank Neven, Thomas Schwentick, and Victor Vianu. Towards regular languages over infinite
alphabets. volume 2136 of LNCS, 2001.

[40] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event structures and domains,
part 1. Theoretical Computer Science, 13, 1981.

PI n˚1839

36 Tristan Le Gall & Bertrand Jeannet

[41] Wuxu Peng and S. Puroshothaman. Data flow analysis of communicating finite state machines.
ACM Trans. Program. Lang. Syst., 13(3), 1991.

[42] Michel Reniers and Sjouke Mauw. High-level message sequence charts. In SDL Forum, Sep 1997.

[43] Thomas Reps, Stefan Schwoon, Somesh Jha, and David Melski. Weighted pushdown systems
and their application to interprocedural dataflow analysis. Science of Computer Programming,
58(1–2), 2005.

[44] Noam Rinetzky and Mooly Sagiv. Interprocedural shape analysis for recursive programs. In
Compiler Construction, CC’01, volume 2027 of LNCS, 2001.

[45] Vlad Rusu. Combining formal verification and conformance testing for validating reactive systems.
Journal of Software Testing, Verification, and Reliability, 13(3), September 2003.

[46] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-valued logic.
In Symposium on Principles of Programming Languages (POPL’99), January 1999.

[47] Micha Sharir and Amir Pnueli. Semantic foundations of program analysis. In Program Flow
Analysis: Theory and Applications, chapter 7. 1981.

[48] Tuba Yavuz-Kahveci and Tevfik Bultan. Automated verification of concurrent linked lists with
counters. In Static Analysis Symposium, SAS’02, volume 2477 of LNCS, 2002.

Irisa

